metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(3,4-di­meth­oxy­benzoato-κ2O,O′)(1,10-phenanthroline-κ2N,N′)copper(II)

aSchool of Science, North University of China, 030051 Taiyuan, Shanxi, People's Republic of China, bDepartment of Materials and Chemical Engineering, Taishan University, 271021 Tai'an, Shandong, People's Republic of China, and cCollege of Foreign Languages, Shandong Agricultural University, 271000 Tai'an, Shandong, People's Republic of China
*Correspondence e-mail: klsz79@163.com

(Received 24 November 2009; accepted 4 December 2009; online 9 December 2009)

The asymmetric unit of the title compound, [Cu(C9H9O4)2(C12H8N2)], contains one half-mol­ecule, the complete mol­ecule being generated by a twofold rotation axis. The CuII atom exhibits a six-coordinated distorted octa­hedral geometry with two N atoms from the phenanthroline ligand [Cu—N 2.007 (2) Å] and four O atoms from two 3,4-dimethoxy­benzoate ligands [Cu—O 1.950 (1) and 2.524 (1) Å]. The difference in Cu—O bond distances indicates a strong Jahn–Teller effect. In the crystal, C—H⋯π inter­actions result in chains of mol­ecules along the c axis.

Related literature

For metal–1,10-phenanthroline complexes with unusual features, see: Ma et al. (2004[Ma, C., Wang, W., Zhang, X., Chen, C., Liu, Q., Zhu, H., Liao, D. & Li, L. (2004). Eur. J. Inorg. Chem. pp. 3522-3532.]); Bi et al. (2004[Bi, W., Cao, R., Sun, D., Yuan, D., Li, X., Wang, Y., Li, X. & Hong, M. (2004). Chem. Commun. pp. 2104-2105.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C9H9O4)2(C12H8N2)]

  • Mr = 606.07

  • Monoclinic, C 2/c

  • a = 12.1639 (10) Å

  • b = 11.4296 (9) Å

  • c = 19.7470 (16) Å

  • β = 104.027 (1)°

  • V = 2663.5 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.88 mm−1

  • T = 273 K

  • 0.23 × 0.21 × 0.19 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.824, Tmax = 0.851

  • 6857 measured reflections

  • 2351 independent reflections

  • 2136 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.086

  • S = 1.01

  • 2351 reflections

  • 187 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8BCg1 0.96 2.98 3.642 (3) 127
C1 is the centroid of the C22,C23,C29,C22′,C23′,C29′ ring.

Data collection: SMART (Bruker, 2005[Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Metal complexes with carboxylate ligands are among the most investigated complexes in the field of coordination chemistry. In addition, metal–1,10-phenanthroline complexes and their derivatives have attracted much attention during recent decades because of their unusual features (Ma et al., 2004; Bi et al., 2004). In this work, the title compound was obtained from the reaction of 3,4-dimethoxybenzoic acid and cupric acetate in the presence of 1,10-phenanthroline.

The molecular structure of the title complex is shown in Fig. 1. The Cu(II) atom exhibits a six-coordinated distorted octahedral geometry with two N atoms [Cu—N 2.007 (2) Å] from the phenanthroline ligand and four O atoms from the two 3,4-dimethoxybenzoate ligands [Cu—O 1.950 (1), 2.524 (1) Å]. The difference in Cu—O bond distances [Cu—O 1.950 (1), 2.524 (1) Å] indicates a strong Jahn-Teller effect. Two O atoms and two N atoms occupy the equatorial planar position with a slight deviation from the ideal plane of 0.0263 (2)Å, while two O atoms lie in the apical positions with an axis angle of 127.6 (2)° showing a large deviation from the normal 180°. A C8—H8b···π interaction results in chains of molecules along the c-axis [H8b···CG1 2.979 (3) Å, where CG1 is the centroid of the C22, C23, C29, C22i, C23i, C29i ring; symmetry operator, i: -x, y, 0.5 - z].

Related literature top

For metal–1,10-phenanthroline complexes with unusual features, see: Ma et al. (2004); Bi et al. (2004).

Experimental top

The reaction was carried out by the solvothermal method. 3,4-dimythoxybenzoic acid (0.121 g, 2 mmol), cupric acetate (0.199 g, 1 mmol) and 1,10-phenanthroline (0.180 g, 1 mmol) were added to the airtight vessel with a 1:2 ratio of ethanol to water. The resulting blue solution was filtered. The filtrate was left for several days at room temperature to yield blue, block-shaped crystals.

The yield was 78% and elemental analysis: calc. for C30H26CuN2O8: C 59.45, H 4.32, N 4.62; found: C 59.31, H 4.49, N 4.53. The elemental analyses were performed with a PERKIN ELMER MODEL 2400 SERIES II.

Refinement top

The Uiso(H) values were set at 1.2Ueq(C—H) for the H atoms in the phenanthroline and aromatic ring, and 1.5Ueq(C—H) for the methyl moiety. As the diffraction intensities were of high quality, the The H atoms could be located in difference Fourier maps.

Computing details top

Data collection: SMART (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids for non-H atoms. (Symmetry code: -x, y, 0.5 - z)
Bis(3,4-dimethoxybenzoato-κ2O,O')(1,10-phenanthroline- κ2N,N')copper(II) top
Crystal data top
[Cu(C9H9O4)2(C12H8N2)]F(000) = 1252
Mr = 606.07Dx = 1.511 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 12.1639 (10) ÅCell parameters from 4483 reflections
b = 11.4296 (9) Åθ = 2.5–28.3°
c = 19.7470 (16) ŵ = 0.88 mm1
β = 104.027 (1)°T = 273 K
V = 2663.5 (4) Å3Block, blue
Z = 40.23 × 0.21 × 0.19 mm
Data collection top
Bruker SMART APEX
diffractometer
2351 independent reflections
Radiation source: fine-focus sealed tube2136 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
ϕ and ω scansθmax = 25.1°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1414
Tmin = 0.824, Tmax = 0.851k = 1013
6857 measured reflectionsl = 2322
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.045P)2 + 1.2527P]
where P = (Fo2 + 2Fc2)/3
2351 reflections(Δ/σ)max = 0.001
187 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
[Cu(C9H9O4)2(C12H8N2)]V = 2663.5 (4) Å3
Mr = 606.07Z = 4
Monoclinic, C2/cMo Kα radiation
a = 12.1639 (10) ŵ = 0.88 mm1
b = 11.4296 (9) ÅT = 273 K
c = 19.7470 (16) Å0.23 × 0.21 × 0.19 mm
β = 104.027 (1)°
Data collection top
Bruker SMART APEX
diffractometer
2351 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2136 reflections with I > 2σ(I)
Tmin = 0.824, Tmax = 0.851Rint = 0.059
6857 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.086H-atom parameters constrained
S = 1.01Δρmax = 0.30 e Å3
2351 reflectionsΔρmin = 0.38 e Å3
187 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.00000.96118 (3)0.25000.03588 (14)
O10.00052 (11)0.87873 (12)0.36863 (7)0.0437 (3)
O20.10961 (12)0.84452 (12)0.29637 (7)0.0445 (3)
O50.11674 (13)0.56453 (14)0.55593 (8)0.0539 (4)
O60.27611 (14)0.44980 (13)0.52542 (9)0.0592 (4)
N10.10829 (13)1.09400 (15)0.21869 (8)0.0389 (4)
C10.07772 (15)0.82281 (16)0.35206 (9)0.0364 (4)
C20.13570 (15)0.72454 (16)0.39696 (9)0.0341 (4)
C30.09898 (15)0.69411 (16)0.45613 (10)0.0365 (4)
H30.04070.73640.46760.044*
C40.14771 (16)0.60242 (17)0.49769 (10)0.0385 (4)
C50.23698 (17)0.53957 (16)0.48098 (11)0.0406 (5)
C60.27502 (16)0.57054 (18)0.42332 (11)0.0418 (5)
H60.33490.53000.41260.050*
C70.22402 (16)0.66243 (17)0.38092 (10)0.0389 (4)
H70.24930.68230.34160.047*
C80.0266 (2)0.6253 (2)0.57448 (12)0.0583 (6)
H8A0.04940.70450.58680.087*
H8B0.00790.58720.61350.087*
H8C0.03850.62550.53560.087*
C90.3730 (2)0.3888 (3)0.51835 (16)0.0801 (9)
H9A0.35780.35140.47350.120*
H9B0.39260.33070.55440.120*
H9C0.43490.44260.52230.120*
C190.21817 (17)1.0896 (2)0.18725 (11)0.0482 (5)
H190.25251.01720.17560.058*
C200.28296 (19)1.1910 (2)0.17132 (12)0.0588 (6)
H200.35971.18540.14970.071*
C210.23515 (19)1.2974 (2)0.18712 (11)0.0547 (6)
H210.27931.36460.17740.066*
C220.11811 (18)1.30632 (18)0.21845 (10)0.0454 (5)
C230.05979 (16)1.20062 (17)0.23347 (9)0.0375 (4)
C290.0562 (2)1.41293 (19)0.23526 (11)0.0541 (6)
H290.09421.48390.22570.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0365 (2)0.0395 (2)0.0311 (2)0.0000.00731 (14)0.000
O10.0448 (7)0.0459 (8)0.0407 (7)0.0081 (6)0.0110 (6)0.0047 (6)
O20.0497 (8)0.0496 (8)0.0357 (7)0.0074 (6)0.0134 (6)0.0075 (6)
O50.0605 (9)0.0624 (9)0.0452 (8)0.0236 (7)0.0253 (7)0.0197 (7)
O60.0618 (10)0.0582 (10)0.0624 (10)0.0301 (8)0.0244 (8)0.0214 (8)
N10.0365 (8)0.0467 (9)0.0323 (8)0.0016 (7)0.0060 (7)0.0015 (7)
C10.0377 (9)0.0363 (10)0.0330 (9)0.0037 (8)0.0044 (8)0.0019 (8)
C20.0369 (9)0.0339 (9)0.0304 (9)0.0024 (8)0.0062 (7)0.0038 (8)
C30.0359 (9)0.0377 (10)0.0362 (10)0.0059 (8)0.0093 (8)0.0022 (8)
C40.0400 (10)0.0423 (11)0.0345 (10)0.0049 (8)0.0115 (8)0.0023 (8)
C50.0415 (10)0.0381 (11)0.0410 (11)0.0074 (8)0.0077 (9)0.0009 (8)
C60.0391 (10)0.0430 (10)0.0449 (11)0.0061 (8)0.0133 (9)0.0075 (9)
C70.0426 (10)0.0421 (10)0.0336 (9)0.0013 (8)0.0125 (8)0.0040 (8)
C80.0647 (14)0.0700 (15)0.0497 (12)0.0195 (12)0.0321 (11)0.0105 (11)
C90.0833 (19)0.0836 (19)0.0792 (18)0.0514 (16)0.0313 (15)0.0234 (15)
C190.0376 (10)0.0640 (13)0.0404 (11)0.0020 (10)0.0042 (9)0.0029 (10)
C200.0405 (11)0.0834 (18)0.0493 (13)0.0151 (12)0.0046 (10)0.0050 (12)
C210.0580 (13)0.0639 (15)0.0431 (12)0.0226 (12)0.0139 (10)0.0087 (11)
C220.0599 (12)0.0508 (12)0.0290 (9)0.0124 (10)0.0173 (9)0.0053 (9)
C230.0435 (10)0.0451 (11)0.0255 (9)0.0019 (8)0.0116 (8)0.0001 (8)
C290.0834 (15)0.0426 (11)0.0415 (12)0.0092 (11)0.0251 (11)0.0036 (10)
Geometric parameters (Å, º) top
Cu1—O2i1.950 (1)C6—C71.392 (3)
Cu1—O21.950 (1)C6—H60.9300
Cu1—N1i2.007 (2)C7—H70.9300
Cu1—N12.007 (2)C8—H8A0.9600
Cu1—O12.524 (1)C8—H8B0.9600
O1—C11.244 (2)C8—H8C0.9600
O2—C11.276 (2)C9—H9A0.9600
O5—C41.365 (2)C9—H9B0.9600
O5—C81.419 (2)C9—H9C0.9600
O6—C51.359 (2)C19—C201.394 (3)
O6—C91.406 (3)C19—H190.9300
N1—C191.331 (2)C20—C211.351 (3)
N1—C231.355 (2)C20—H200.9300
C1—C21.497 (3)C21—C221.412 (3)
C2—C71.387 (3)C21—H210.9300
C2—C31.392 (3)C22—C231.396 (3)
C3—C41.374 (3)C22—C291.429 (3)
C3—H30.9300C23—C23i1.443 (4)
C4—C51.406 (3)C29—C29i1.350 (5)
C5—C61.375 (3)C29—H290.9300
O2i—Cu1—O293.72 (9)C7—C6—H6119.9
O2i—Cu1—N1i170.07 (6)C2—C7—C6120.39 (18)
O2—Cu1—N1i92.84 (6)C2—C7—H7119.8
O2i—Cu1—N192.84 (6)C6—C7—H7119.8
O2—Cu1—N1170.07 (6)O5—C8—H8A109.5
N1i—Cu1—N181.69 (9)O5—C8—H8B109.5
O2i—Cu1—O191.61 (5)H8A—C8—H8B109.5
O2—Cu1—O157.40 (5)O5—C8—H8C109.5
N1i—Cu1—O198.20 (5)H8A—C8—H8C109.5
N1—Cu1—O1114.98 (5)H8B—C8—H8C109.5
C1—O1—Cu177.28 (11)O6—C9—H9A109.5
C1—O2—Cu1102.80 (12)O6—C9—H9B109.5
C4—O5—C8116.78 (15)H9A—C9—H9B109.5
C5—O6—C9118.78 (19)O6—C9—H9C109.5
C19—N1—C23118.06 (18)H9A—C9—H9C109.5
C19—N1—Cu1128.66 (15)H9B—C9—H9C109.5
C23—N1—Cu1113.28 (12)N1—C19—C20121.5 (2)
O1—C1—O2122.24 (17)N1—C19—H19119.3
O1—C1—C2120.47 (17)C20—C19—H19119.3
O2—C1—C2117.28 (16)C21—C20—C19120.5 (2)
C7—C2—C3119.18 (17)C21—C20—H20119.7
C7—C2—C1121.90 (17)C19—C20—H20119.7
C3—C2—C1118.91 (16)C20—C21—C22119.9 (2)
C4—C3—C2120.81 (17)C20—C21—H21120.1
C4—C3—H3119.6C22—C21—H21120.1
C2—C3—H3119.6C23—C22—C21115.9 (2)
O5—C4—C3125.33 (17)C23—C22—C29118.47 (19)
O5—C4—C5114.98 (16)C21—C22—C29125.62 (19)
C3—C4—C5119.69 (18)N1—C23—C22124.09 (17)
O6—C5—C6126.41 (18)N1—C23—C23i115.86 (10)
O6—C5—C4113.81 (18)C22—C23—C23i120.05 (12)
C6—C5—C4119.77 (18)C29i—C29—C22121.46 (12)
C5—C6—C7120.13 (18)C29i—C29—H29119.3
C5—C6—H6119.9C22—C29—H29119.3
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
C1 is the centroid of the C22,C23,C29,C22',C23',C29' ring.
D—H···AD—HH···AD···AD—H···A
C8—H8B···Cg10.962.983.642 (3)127

Experimental details

Crystal data
Chemical formula[Cu(C9H9O4)2(C12H8N2)]
Mr606.07
Crystal system, space groupMonoclinic, C2/c
Temperature (K)273
a, b, c (Å)12.1639 (10), 11.4296 (9), 19.7470 (16)
β (°) 104.027 (1)
V3)2663.5 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.88
Crystal size (mm)0.23 × 0.21 × 0.19
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.824, 0.851
No. of measured, independent and
observed [I > 2σ(I)] reflections
6857, 2351, 2136
Rint0.059
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.086, 1.01
No. of reflections2351
No. of parameters187
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.38

Computer programs: SMART (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
C1 is the centroid of the C22,C23,C29,C22',C23',C29' ring.
D—H···AD—HH···AD···AD—H···A
C8—H8B···Cg10.962.9793.642 (3)127.44
 

Acknowledgements

The authors thank the Postgraduate Foundation of Taishan University for financial support (grant No.Y07-2-15).

References

First citationBi, W., Cao, R., Sun, D., Yuan, D., Li, X., Wang, Y., Li, X. & Hong, M. (2004). Chem. Commun. pp. 2104–2105.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMa, C., Wang, W., Zhang, X., Chen, C., Liu, Q., Zhu, H., Liao, D. & Li, L. (2004). Eur. J. Inorg. Chem. pp. 3522–3532.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds