organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

7-Chloro-2-[1-(4-meth­oxy­phen­yl)pyrazol-4-yl]-3,3-di­methyl-3H-indole

aThe School of Chemistry, The University of Manchester, Manchester M13 9PL, England, bFaculty of Petroleum Chemistry, Urmia University of Technology, Urmia, Iran, and cDepartment of Chemistry, Faculty of Science, University of Urmia, Urmia 57135, Iran
*Correspondence e-mail: mmbaradarani@yahoo.com

(Received 26 November 2009; accepted 7 December 2009; online 12 December 2009)

In the title compound, C20H18ClN3O, the dihedral angle between the pyrazole and the 3H-indole components is only 13.28 (6)°, indicating that there is conjugation between the two heterocyclic subunits. The N-methoxy­phenyl unit makes a dihedral angle of 25.10 (7)° with the pyrazole ring.

Related literature

For related structures, see: Baradarani et al. (2006[Baradarani, M. M., Afghan, A., Zebarjadi, F., Hasanzadeh, K. & Joule, J. A. (2006). J. Heterocycl. Chem. 43, 1591-1596.]); Rashidi et al. (2009[Rashidi, A., Afghan, A., Baradarani, M. M. & Joule, J. A. (2009). J. Heterocycl. Chem. 46, 428-431.]).

[Scheme 1]

Experimental

Crystal data
  • C20H18ClN3O

  • Mr = 351.82

  • Monoclinic, P 21 /n

  • a = 11.635 (3) Å

  • b = 10.328 (3) Å

  • c = 14.141 (4) Å

  • β = 95.681 (5)°

  • V = 1690.9 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 100 K

  • 0.50 × 0.40 × 0.20 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • 9553 measured reflections

  • 3461 independent reflections

  • 2662 reflections with I > 2σ(I)

  • Rint = 0.092

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.124

  • S = 0.97

  • 3461 reflections

  • 229 parameters

  • H-atom parameters constrained

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

We have been studying the interaction of 2,3,3-trimethyl-3H-indoles with the Vilsmeier reagent and discovered that this produced (3,3-dimethyl-2,3-dihydroindol-2-ylidene)malondialdehydes (Baradarani et al., 2006). 2,3,3-trimethyl-3H-pyrrolo[2,3-f]quinoline and 2,3,3-trimethyl-3H-pyrrolo[3,2-h]quinoline behave similarly (Rashidi et al., 2009). The malondialdehydes could be reacted in turn with arylhydrazines to produce mono-arylhydrazones which, on simple reflux in ethanol, were converted into 3,3-dimethyl-2-[1-aryl-1H -pyrazol-4-yl]-3H-indoles (Scheme 2). We now report the crystallographically determined structure of one of these: (1-(4-methoxyphenyl)pyrazol-4-yl)-3H-indole (1).

The structure of (1) reveals the extent of conjugation of the two heterocyclic components of the molecule, i.e. the pyrazole and the 3H-indole. Each of these two components is essential planar; the greatest distance from the least squares plane through the atoms C11 - C13, N2, N3 is 0.004 (2) Å for C11 and the greatest distance from the least squares plane through the atoms C1—C8, N1 is 0.027 (2) Å for C7. Furthermore, the dihedral angle between these two planes is only 13.28 (6) °, indicating conjugation between the two aromatic heterocycles. The N-methoxyphenyl unit, perhaps surprisingly, is not coplanar with its attached pyrazole making a dihedral angle of 25.10 (7) ° with the pyrazole unit.

Related literature top

For related structures, see: Baradarani et al. (2006); Rashidi et al. (2009).

Experimental top

A mixture of 7-chloro-3,3-dimethyl-2,3-dihydroindol- 2-ylidene)malondialdehyde (150 mg, 0.6 mmol) and 4-methoxyphenylhydrazine hydrochloride (110 mg, 0.6 mmol) in ethanol (15 ml) was heated at reflux for 2 h. After this time, the solvent was evaporated and residue recrystallized from absolute ethanol to give 7-chloro-3,3-dimethyl-2- (1-(4-methoxyphenyl)pyrazol-4-yl)-3H-indole (179 mg, 85%). m.p. 464–465 K. 1H-NMR (CDCl3) δ 1.56 (6H, s, 2xMe), 3.88 (3H, s, OMe), 7.02 (2H, d, J = 9 Hz, Ar—H), 7.17 (t, J = 7.5 Hz, 1H, H-5), 7.24 (dd, J = 7.5, 1.2 Hz, H-4), 7.35 (1H, dd, J = 7.5, 1.2 Hz, H-6), 7.69 (2H, d, J = 9 Hz, Ar—H), 8.29 (1H, s, pyrazol-5-yl-H), 8.61 (1H, s, pyrazol-3-yl-H). 13C-NMR (CDCl3) δ 24.72, 54.56, 55.61, 114.67, 119.33, 121.15, 126.19, 127.75, 128.32, 140.30, 148.22, 158.91, 179.38. νmax 3022, 2970, 2927, 1606, 1508, 1255.

Refinement top

H atoms bonded to the C atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic) and 0.96 Å (methyl), with Uiso(H) = 1.2 times those of the parent atoms for the aromatic H atoms and Uiso(H) = 1.5 times those of the parent atoms for the methyl H atoms.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title compound showing the atom numbering scheme with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The formation of the title compound.
7-Chloro-2-[1-(4-methoxyphenyl)pyrazol-4-yl]-3,3-dimethyl-3H-indole top
Crystal data top
C20H18ClN3OF(000) = 736
Mr = 351.82Dx = 1.382 Mg m3
Monoclinic, P21/nMelting point = 464–465 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 11.635 (3) ÅCell parameters from 858 reflections
b = 10.328 (3) Åθ = 2.9–26.0°
c = 14.141 (4) ŵ = 0.24 mm1
β = 95.681 (5)°T = 100 K
V = 1690.9 (8) Å3Irregular, yellow
Z = 40.50 × 0.40 × 0.20 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2662 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.092
Graphite monochromatorθmax = 26.4°, θmin = 2.2°
phi and ω scansh = 1414
9553 measured reflectionsk = 1212
3461 independent reflectionsl = 1017
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0596P)2]
where P = (Fo2 + 2Fc2)/3
3461 reflections(Δ/σ)max = 0.001
229 parametersΔρmax = 0.70 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C20H18ClN3OV = 1690.9 (8) Å3
Mr = 351.82Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.635 (3) ŵ = 0.24 mm1
b = 10.328 (3) ÅT = 100 K
c = 14.141 (4) Å0.50 × 0.40 × 0.20 mm
β = 95.681 (5)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2662 reflections with I > 2σ(I)
9553 measured reflectionsRint = 0.092
3461 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 0.97Δρmax = 0.70 e Å3
3461 reflectionsΔρmin = 0.30 e Å3
229 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.22881 (4)0.17525 (5)0.17785 (4)0.02511 (18)
O10.48712 (12)0.88812 (14)0.58360 (11)0.0251 (4)
N11.03001 (14)0.27790 (17)0.29514 (12)0.0184 (4)
N20.81439 (14)0.57762 (16)0.43402 (12)0.0190 (4)
N30.91804 (14)0.62821 (17)0.41446 (12)0.0203 (4)
C11.04052 (17)0.1445 (2)0.27506 (14)0.0180 (4)
C21.12290 (17)0.0837 (2)0.22603 (14)0.0208 (5)
C31.11990 (18)0.0494 (2)0.21418 (15)0.0236 (5)
H31.17500.09040.18140.028*
C41.03402 (18)0.1217 (2)0.25156 (15)0.0249 (5)
H41.03290.21120.24420.030*
C50.95010 (19)0.0621 (2)0.29962 (15)0.0229 (5)
H50.89220.11050.32370.028*
C60.95434 (17)0.0709 (2)0.31094 (14)0.0192 (5)
C70.87609 (17)0.16310 (19)0.35671 (14)0.0182 (5)
C80.93947 (17)0.2890 (2)0.34114 (14)0.0171 (4)
C90.86942 (19)0.1327 (2)0.46245 (15)0.0254 (5)
H9A0.83860.04730.46880.038*
H9B0.82010.19470.48900.038*
H9C0.94540.13730.49570.038*
C100.75543 (18)0.1630 (2)0.30166 (16)0.0265 (5)
H10A0.76090.19280.23800.040*
H10B0.70540.21940.33270.040*
H10C0.72460.07670.30000.040*
C110.90599 (17)0.41488 (19)0.37521 (14)0.0183 (5)
C120.80538 (18)0.4512 (2)0.41173 (14)0.0205 (5)
H120.74260.39800.41960.025*
C130.97206 (17)0.5295 (2)0.37985 (14)0.0196 (5)
H131.04600.53490.36050.024*
C140.73117 (18)0.6587 (2)0.47155 (14)0.0189 (5)
C150.76750 (18)0.7680 (2)0.52286 (14)0.0209 (5)
H150.84580.78790.53180.025*
C160.68888 (18)0.8471 (2)0.56077 (15)0.0210 (5)
H160.71380.92090.59460.025*
C170.57208 (18)0.8165 (2)0.54834 (15)0.0202 (5)
C180.53577 (18)0.7079 (2)0.49591 (15)0.0223 (5)
H180.45750.68790.48690.027*
C190.61435 (18)0.6295 (2)0.45722 (15)0.0215 (5)
H190.58940.55730.42160.026*
C200.5233 (2)1.0001 (2)0.63873 (16)0.0274 (5)
H20A0.57200.97380.69420.041*
H20B0.45671.04420.65770.041*
H20C0.56541.05720.60120.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0224 (3)0.0279 (3)0.0255 (3)0.0004 (2)0.0048 (2)0.0008 (2)
O10.0289 (8)0.0239 (8)0.0229 (9)0.0037 (7)0.0038 (7)0.0050 (7)
N10.0208 (9)0.0183 (9)0.0151 (9)0.0010 (7)0.0019 (7)0.0004 (7)
N20.0212 (9)0.0192 (9)0.0161 (9)0.0004 (7)0.0009 (7)0.0000 (7)
N30.0212 (9)0.0220 (9)0.0174 (9)0.0015 (8)0.0007 (8)0.0005 (7)
C10.0186 (10)0.0201 (11)0.0142 (11)0.0020 (8)0.0041 (9)0.0015 (8)
C20.0188 (10)0.0269 (12)0.0161 (11)0.0005 (9)0.0014 (9)0.0028 (9)
C30.0260 (11)0.0249 (12)0.0193 (12)0.0062 (10)0.0011 (9)0.0027 (9)
C40.0281 (12)0.0207 (11)0.0249 (13)0.0018 (10)0.0031 (10)0.0016 (9)
C50.0244 (11)0.0234 (12)0.0204 (12)0.0033 (9)0.0003 (9)0.0007 (9)
C60.0221 (10)0.0214 (11)0.0128 (11)0.0003 (9)0.0038 (8)0.0014 (8)
C70.0203 (10)0.0193 (11)0.0147 (11)0.0002 (8)0.0008 (9)0.0001 (8)
C80.0195 (10)0.0204 (11)0.0103 (10)0.0015 (8)0.0046 (8)0.0017 (8)
C90.0333 (12)0.0233 (11)0.0203 (12)0.0002 (10)0.0059 (10)0.0018 (9)
C100.0231 (11)0.0272 (12)0.0287 (13)0.0003 (10)0.0002 (10)0.0067 (10)
C110.0215 (10)0.0200 (11)0.0127 (10)0.0017 (9)0.0017 (8)0.0038 (8)
C120.0244 (11)0.0178 (11)0.0188 (11)0.0020 (9)0.0009 (9)0.0013 (8)
C130.0190 (10)0.0234 (11)0.0160 (11)0.0028 (9)0.0002 (9)0.0021 (9)
C140.0232 (11)0.0202 (11)0.0127 (11)0.0035 (9)0.0007 (9)0.0017 (8)
C150.0222 (10)0.0231 (11)0.0162 (11)0.0006 (9)0.0035 (9)0.0027 (9)
C160.0275 (11)0.0183 (11)0.0163 (11)0.0019 (9)0.0020 (9)0.0008 (9)
C170.0269 (11)0.0200 (11)0.0133 (11)0.0025 (9)0.0008 (9)0.0023 (8)
C180.0207 (10)0.0249 (12)0.0206 (12)0.0013 (9)0.0010 (9)0.0005 (9)
C190.0274 (11)0.0182 (11)0.0179 (11)0.0022 (9)0.0020 (9)0.0023 (9)
C200.0393 (14)0.0223 (12)0.0206 (12)0.0051 (10)0.0030 (10)0.0042 (9)
Geometric parameters (Å, º) top
Cl1—C21.744 (2)C9—H9A0.9600
O1—C171.367 (2)C9—H9B0.9600
O1—C201.434 (2)C9—H9C0.9600
N1—C81.297 (2)C10—H10A0.9600
N1—C11.415 (3)C10—H10B0.9600
N2—C121.344 (3)C10—H10C0.9600
N2—N31.367 (2)C11—C121.378 (3)
N2—C141.422 (3)C11—C131.410 (3)
N3—C131.317 (3)C12—H120.9300
C1—C21.387 (3)C13—H130.9300
C1—C61.393 (3)C14—C151.384 (3)
C2—C31.385 (3)C14—C191.387 (3)
C3—C41.393 (3)C15—C161.375 (3)
C3—H30.9300C15—H150.9300
C4—C51.388 (3)C16—C171.389 (3)
C4—H40.9300C16—H160.9300
C5—C61.383 (3)C17—C181.388 (3)
C5—H50.9300C18—C191.375 (3)
C6—C71.507 (3)C18—H180.9300
C7—C81.521 (3)C19—H190.9300
C7—C101.536 (3)C20—H20A0.9600
C7—C91.537 (3)C20—H20B0.9600
C8—C111.453 (3)C20—H20C0.9600
C17—O1—C20116.76 (16)C7—C10—H10A109.5
C8—N1—C1106.09 (17)C7—C10—H10B109.5
C12—N2—N3111.93 (16)H10A—C10—H10B109.5
C12—N2—C14128.26 (17)C7—C10—H10C109.5
N3—N2—C14119.80 (16)H10A—C10—H10C109.5
C13—N3—N2104.03 (16)H10B—C10—H10C109.5
C2—C1—C6119.53 (19)C12—C11—C13103.48 (18)
C2—C1—N1128.23 (18)C12—C11—C8129.33 (19)
C6—C1—N1112.24 (17)C13—C11—C8127.18 (18)
C3—C2—C1119.95 (19)N2—C12—C11107.65 (18)
C3—C2—Cl1120.07 (16)N2—C12—H12126.2
C1—C2—Cl1119.97 (17)C11—C12—H12126.2
C2—C3—C4119.77 (19)N3—C13—C11112.91 (18)
C2—C3—H3120.1N3—C13—H13123.5
C4—C3—H3120.1C11—C13—H13123.5
C5—C4—C3120.9 (2)C15—C14—C19119.85 (19)
C5—C4—H4119.5C15—C14—N2119.45 (18)
C3—C4—H4119.5C19—C14—N2120.70 (18)
C6—C5—C4118.58 (19)C16—C15—C14120.6 (2)
C6—C5—H5120.7C16—C15—H15119.7
C4—C5—H5120.7C14—C15—H15119.7
C5—C6—C1121.21 (19)C15—C16—C17119.71 (19)
C5—C6—C7131.37 (19)C15—C16—H16120.1
C1—C6—C7107.40 (17)C17—C16—H16120.1
C6—C7—C898.95 (16)O1—C17—C18116.06 (18)
C6—C7—C10110.03 (17)O1—C17—C16124.34 (19)
C8—C7—C10111.04 (17)C18—C17—C16119.59 (19)
C6—C7—C9112.32 (17)C19—C18—C17120.63 (19)
C8—C7—C9112.76 (17)C19—C18—H18119.7
C10—C7—C9111.17 (17)C17—C18—H18119.7
N1—C8—C11120.19 (19)C18—C19—C14119.63 (19)
N1—C8—C7115.26 (18)C18—C19—H19120.2
C11—C8—C7124.54 (18)C14—C19—H19120.2
C7—C9—H9A109.5O1—C20—H20A109.5
C7—C9—H9B109.5O1—C20—H20B109.5
H9A—C9—H9B109.5H20A—C20—H20B109.5
C7—C9—H9C109.5O1—C20—H20C109.5
H9A—C9—H9C109.5H20A—C20—H20C109.5
H9B—C9—H9C109.5H20B—C20—H20C109.5
C12—N2—N3—C130.1 (2)C10—C7—C8—C1167.3 (2)
C14—N2—N3—C13178.87 (18)C9—C7—C8—C1158.2 (3)
C8—N1—C1—C2179.1 (2)N1—C8—C11—C12168.9 (2)
C8—N1—C1—C60.8 (2)C7—C8—C11—C1212.2 (3)
C6—C1—C2—C30.8 (3)N1—C8—C11—C1312.4 (3)
N1—C1—C2—C3179.3 (2)C7—C8—C11—C13166.5 (2)
C6—C1—C2—Cl1178.18 (15)N3—N2—C12—C110.4 (2)
N1—C1—C2—Cl11.6 (3)C14—N2—C12—C11178.24 (19)
C1—C2—C3—C40.0 (3)C13—C11—C12—N20.7 (2)
Cl1—C2—C3—C4179.00 (16)C8—C11—C12—N2179.67 (19)
C2—C3—C4—C50.9 (3)N2—N3—C13—C110.6 (2)
C3—C4—C5—C60.9 (3)C12—C11—C13—N30.8 (2)
C4—C5—C6—C10.1 (3)C8—C11—C13—N3179.82 (19)
C4—C5—C6—C7178.4 (2)C12—N2—C14—C15155.5 (2)
C2—C1—C6—C50.8 (3)N3—N2—C14—C1526.0 (3)
N1—C1—C6—C5179.35 (19)C12—N2—C14—C1924.5 (3)
C2—C1—C6—C7177.89 (18)N3—N2—C14—C19154.00 (19)
N1—C1—C6—C72.0 (2)C19—C14—C15—C160.8 (3)
C5—C6—C7—C8179.4 (2)N2—C14—C15—C16179.27 (18)
C1—C6—C7—C82.1 (2)C14—C15—C16—C170.7 (3)
C5—C6—C7—C1064.3 (3)C20—O1—C17—C18179.43 (18)
C1—C6—C7—C10114.23 (19)C20—O1—C17—C161.5 (3)
C5—C6—C7—C960.1 (3)C15—C16—C17—O1179.54 (19)
C1—C6—C7—C9121.36 (19)C15—C16—C17—C181.5 (3)
C1—N1—C8—C11178.18 (17)O1—C17—C18—C19179.89 (18)
C1—N1—C8—C70.8 (2)C16—C17—C18—C190.8 (3)
C6—C7—C8—N11.9 (2)C17—C18—C19—C140.6 (3)
C10—C7—C8—N1113.7 (2)C15—C14—C19—C181.4 (3)
C9—C7—C8—N1120.8 (2)N2—C14—C19—C18178.62 (19)
C6—C7—C8—C11177.07 (18)

Experimental details

Crystal data
Chemical formulaC20H18ClN3O
Mr351.82
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)11.635 (3), 10.328 (3), 14.141 (4)
β (°) 95.681 (5)
V3)1690.9 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.50 × 0.40 × 0.20
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9553, 3461, 2662
Rint0.092
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.124, 0.97
No. of reflections3461
No. of parameters229
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.70, 0.30

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors are grateful to the University of Urmia for financial support of the preparative aspects of this work.

References

First citationBaradarani, M. M., Afghan, A., Zebarjadi, F., Hasanzadeh, K. & Joule, J. A. (2006). J. Heterocycl. Chem. 43, 1591–1596.  CrossRef CAS Google Scholar
First citationBruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationRashidi, A., Afghan, A., Baradarani, M. M. & Joule, J. A. (2009). J. Heterocycl. Chem. 46, 428–431.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds