organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-4-Octyloxybenzaldehyde thio­semicarbazone

aDepartment of Chemistry, Rajshahi University of Engineering & Technology, Rajshahi 6204, Bangladesh, bDepartment of Chemistry, Rajshahi University, Rajshahi 6205, Bangladesh, and cDipartimento di Scienze Chimiche, Via Licio Giorgieri 1, 34127 Trieste, Italy
*Correspondence e-mail: ttofazzal@yahoo.com

(Received 24 November 2009; accepted 21 December 2009; online 24 December 2009)

In the title compound, C16H25N3OS, the thio­semicarbazone group adopts an E configuration with respect to the C=N bond and is almost coplanar with the benzene ring, forming a dihedral angle of 9.3 (1)°. In the crystal packing, the mol­ecules lie along the a axis in an anti­parallel arrangement and are held in place by van der Waals inter­actions. As a consequence, there is relatively low anisotropic thermal motion in the terminal atoms of the n-octyl chain.

Related literature

For the related structures, see: Basuli et al. (2000[Basuli, F., Peng, S.-M. & Bhattacharya, S. (2000). Inorg. Chem. 39, 1120-1127.]); Narayana et al. (2007[Narayana, B., Sunil, K., Sarojini, B. K., Yathirajan, H. S. & Bolte, M. (2007). Acta Cryst. E63, o4834-o4835.]); Pal et al. (2002[Pal, I., Basuli, F. & Bhattacharya, S. (2002). Proc. Indian Acad. Sci. Chem. Sci. 114, 255-268.]); Tian et al. (2002[Tian, Y.-P., Yu, W.-T., Zhao, C.-Y., Jiang, M.-H., Cai, Z.-G. & Fun, H. K. (2002). Polyhedron, 21, 1217-1222.]); Tarafder et al. (2008[Tarafder, M. T. H., Islam, M. A. A. A. A., Crouse, K. A., Chantrapromma, S. & Fun, H.-K. (2008). Acta Cryst. E64, o988-o989.]).

[Scheme 1]

Experimental

Crystal data
  • C16H25N3OS

  • Mr = 307.45

  • Triclinic, [P \overline 1]

  • a = 5.785 (2) Å

  • b = 7.586 (2) Å

  • c = 20.789 (4) Å

  • α = 94.74 (2)°

  • β = 91.85 (2)°

  • γ = 104.42 (3)°

  • V = 879.2 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 293 K

  • 0.42 × 0.40 × 0.14 mm

Data collection
  • Enraf–Nonius dip1030 image-plate diffractometer

  • 9930 measured reflections

  • 3226 independent reflections

  • 2749 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.140

  • S = 1.04

  • 3226 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: XPRESS (MacScience, 2002[MacScience (2002). XPRESS. MacScience Co. Ltd, Yokohama, Japan.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

When used in coordination chemistry this molecule is potentially a bidentate ligand acting through the α- or β-nitrogen and thiolate sulfur anion forming a four- and five-membered chelate ring, respectively (Pal et al., 2002), although a behavior as monocoordinated ligand through sulfur has also been reported (Tian et al., 2002). In the crystal structure the molecules are interconnected by N—H···N and N–H···S hydrogen bonds as found in other thiosemicarbazone species (Narayana et al., 2007; Tarafder et al., 2008). The crystal structure is also stabilized by C–H···π interactions. The octyl chain presents an anti conformation with the exception of the O1—C9—C10—C11 part that has a torsion angle of -72.7 (3)°.

Related literature top

For the related structures, see: Basuli et al. (2000); Narayana et al. (2007); Pal et al. (2002); Tian et al. (2002); Tarafder et al. (2008).

Experimental top

4-n-octyloxybenzaldehyde (6.09 g, 26 mmol) was added to a hot solution of thiosemicarbazide (2.38 g, 26 mmol) in methanol (200 ml). The mixture was refluxed for 30 min and cooled down to room temperature. The product was recrystallized from dichloromethane to give colorless microcrystals. M.P. 381 K. Brilliant colorless flat rectangular shaped crystals suitable for X-ray difraction were obtained from a mixture of dichloromethane and toluene (10:5; v/v) after 5 days.

Refinement top

Data collection was performed on a image plate with a phi scan over 180° that allows to get a completion (for the triclinic space group) of 97%. All H atoms were located geometrically and treated as riding atoms, with C—H = 0.93–0.96 Å, N—H = 0.86 and with Uĩso~(H) = 1.2U~eq~(C or N) or 1.5U~eq~(C) for methyl H atoms.

Computing details top

Data collection: XPRESS (MacScience, 2002); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELX97 (Sheldrick, 2008); program(s) used to refine structure: SHELX97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. ORTEP drawing (ellipsoids at the 40% probability level) of the compoud with atom-labelling scheme.
(E)-4-Octyloxybenzaldehyde thiosemicarbazone top
Crystal data top
C16H25N3OSZ = 2
Mr = 307.45F(000) = 332
Triclinic, P1Dx = 1.161 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.785 (2) ÅCell parameters from 146 reflections
b = 7.586 (2) Åθ = 3.0–18.1°
c = 20.789 (4) ŵ = 0.19 mm1
α = 94.74 (2)°T = 293 K
β = 91.85 (2)°Plate, colorless
γ = 104.42 (3)°0.42 × 0.40 × 0.14 mm
V = 879.2 (4) Å3
Data collection top
Enraf–Nonius dip1030 image-plate
diffractometer
2749 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.030
Graphite monochromatorθmax = 25.7°, θmin = 3.6°
ϕ–scans with narrow framesh = 77
9930 measured reflectionsk = 98
3226 independent reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.1026P)2 + 0.0242P]
where P = (Fo2 + 2Fc2)/3
3226 reflections(Δ/σ)max < 0.001
191 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C16H25N3OSγ = 104.42 (3)°
Mr = 307.45V = 879.2 (4) Å3
Triclinic, P1Z = 2
a = 5.785 (2) ÅMo Kα radiation
b = 7.586 (2) ŵ = 0.19 mm1
c = 20.789 (4) ÅT = 293 K
α = 94.74 (2)°0.42 × 0.40 × 0.14 mm
β = 91.85 (2)°
Data collection top
Enraf–Nonius dip1030 image-plate
diffractometer
2749 reflections with I > 2σ(I)
9930 measured reflectionsRint = 0.030
3226 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.140H-atom parameters constrained
S = 1.04Δρmax = 0.19 e Å3
3226 reflectionsΔρmin = 0.18 e Å3
191 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S11.33919 (6)0.29398 (5)0.99374 (2)0.06930 (19)
N11.0386 (2)0.02579 (17)0.89975 (6)0.0648 (3)
N21.1983 (2)0.04336 (17)0.93483 (6)0.0690 (3)
H21.34350.02030.94210.083*
N30.9025 (2)0.29670 (17)0.94909 (6)0.0668 (3)
H3A0.80330.24890.92950.080*
H3B0.85340.40240.96310.080*
O10.6110 (2)0.55328 (16)0.73145 (6)0.0812 (3)
C11.1305 (2)0.20768 (19)0.95761 (7)0.0591 (3)
C21.1216 (3)0.1882 (2)0.88465 (7)0.0663 (4)
H2A1.27640.24980.89950.080*
C30.9864 (3)0.2818 (2)0.84546 (7)0.0630 (4)
C40.7501 (3)0.2031 (2)0.82202 (7)0.0681 (4)
H40.67250.08670.83210.082*
C50.6322 (3)0.2971 (2)0.78409 (8)0.0716 (4)
H50.47610.24310.76830.086*
C60.7444 (3)0.4721 (2)0.76919 (7)0.0677 (4)
C70.9777 (3)0.5528 (2)0.79263 (7)0.0726 (4)
H71.05360.67040.78330.087*
C81.0957 (3)0.4563 (2)0.82997 (7)0.0698 (4)
H81.25260.51000.84510.084*
C90.7089 (4)0.7404 (2)0.72041 (9)0.0880 (5)
H9A0.85640.75290.69830.106*
H9B0.74320.81610.76120.106*
C100.5257 (4)0.7986 (3)0.67937 (9)0.0890 (5)
H10A0.37170.76240.69820.107*
H10B0.56930.93090.68050.107*
C110.5012 (4)0.7192 (3)0.60985 (8)0.0811 (5)
H11A0.45230.58690.60850.097*
H11B0.65610.75220.59130.097*
C120.3221 (3)0.7838 (3)0.56889 (9)0.0817 (5)
H12A0.16600.74480.58630.098*
H12B0.36620.91640.57270.098*
C130.3025 (3)0.7155 (2)0.49799 (9)0.0826 (5)
H13A0.25730.58280.49400.099*
H13B0.45830.75430.48030.099*
C140.1228 (3)0.7824 (3)0.45814 (8)0.0810 (5)
H14A0.03310.74200.47560.097*
H14B0.16670.91500.46290.097*
C150.1029 (4)0.7182 (3)0.38689 (9)0.0891 (5)
H15A0.05620.58570.38190.107*
H15B0.25890.75730.36930.107*
C160.0752 (4)0.7893 (3)0.34816 (10)0.0987 (6)
H16A0.23290.74160.36240.148*
H16B0.07100.75090.30310.148*
H16C0.03470.92040.35440.148*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0526 (3)0.0696 (3)0.0871 (3)0.01517 (17)0.00582 (18)0.02038 (19)
N10.0600 (7)0.0703 (8)0.0671 (7)0.0211 (5)0.0045 (5)0.0120 (6)
N20.0551 (7)0.0706 (8)0.0817 (8)0.0141 (6)0.0097 (6)0.0204 (6)
N30.0527 (6)0.0681 (7)0.0810 (8)0.0158 (5)0.0032 (5)0.0155 (6)
O10.0863 (8)0.0834 (7)0.0823 (7)0.0315 (6)0.0029 (6)0.0277 (6)
C10.0534 (7)0.0639 (8)0.0604 (8)0.0158 (6)0.0003 (6)0.0060 (6)
C20.0666 (9)0.0705 (9)0.0627 (8)0.0181 (7)0.0032 (6)0.0120 (7)
C30.0680 (8)0.0687 (8)0.0555 (7)0.0224 (6)0.0007 (6)0.0090 (6)
C40.0709 (9)0.0664 (8)0.0691 (9)0.0191 (7)0.0004 (7)0.0152 (7)
C50.0677 (9)0.0792 (10)0.0713 (9)0.0228 (7)0.0027 (7)0.0159 (7)
C60.0774 (9)0.0744 (9)0.0587 (8)0.0309 (7)0.0027 (7)0.0132 (7)
C70.0831 (10)0.0666 (9)0.0687 (9)0.0177 (7)0.0007 (7)0.0153 (7)
C80.0712 (9)0.0711 (9)0.0662 (9)0.0159 (7)0.0042 (7)0.0102 (7)
C90.1125 (15)0.0781 (11)0.0813 (11)0.0368 (10)0.0047 (10)0.0185 (9)
C100.1121 (15)0.0853 (11)0.0837 (12)0.0468 (11)0.0025 (10)0.0239 (9)
C110.0900 (12)0.0816 (11)0.0815 (11)0.0349 (9)0.0066 (9)0.0225 (8)
C120.0882 (12)0.0861 (11)0.0802 (11)0.0350 (9)0.0053 (9)0.0224 (9)
C130.0886 (12)0.0810 (11)0.0843 (11)0.0299 (9)0.0039 (9)0.0174 (9)
C140.0875 (12)0.0802 (10)0.0797 (11)0.0276 (9)0.0040 (8)0.0146 (8)
C150.0945 (13)0.0900 (12)0.0859 (12)0.0307 (10)0.0021 (9)0.0068 (9)
C160.1001 (14)0.1156 (15)0.0842 (12)0.0372 (12)0.0079 (10)0.0060 (11)
Geometric parameters (Å, º) top
S1—C11.6930 (15)C9—H9A0.9700
N1—C21.275 (2)C9—H9B0.9700
N1—N21.3863 (16)C10—C111.507 (3)
N2—C11.341 (2)C10—H10A0.9700
N2—H20.8600C10—H10B0.9700
N3—C11.3227 (19)C11—C121.518 (2)
N3—H3A0.8600C11—H11A0.9700
N3—H3B0.8600C11—H11B0.9700
O1—C61.3665 (19)C12—C131.513 (3)
O1—C91.432 (2)C12—H12A0.9700
C2—C31.453 (2)C12—H12B0.9700
C2—H2A0.9300C13—C141.517 (2)
C3—C81.387 (2)C13—H13A0.9700
C3—C41.402 (2)C13—H13B0.9700
C4—C51.377 (2)C14—C151.512 (3)
C4—H40.9300C14—H14A0.9700
C5—C61.390 (2)C14—H14B0.9700
C5—H50.9300C15—C161.515 (3)
C6—C71.389 (2)C15—H15A0.9700
C7—C81.383 (2)C15—H15B0.9700
C7—H70.9300C16—H16A0.9600
C8—H80.9300C16—H16B0.9600
C9—C101.511 (3)C16—H16C0.9600
C2—N1—N2114.83 (13)C9—C10—H10A108.7
C1—N2—N1121.23 (12)C11—C10—H10B108.7
C1—N2—H2119.4C9—C10—H10B108.7
N1—N2—H2119.4H10A—C10—H10B107.6
C1—N3—H3A120.0C10—C11—C12113.38 (15)
C1—N3—H3B120.0C10—C11—H11A108.9
H3A—N3—H3B120.0C12—C11—H11A108.9
C6—O1—C9117.89 (14)C10—C11—H11B108.9
N3—C1—N2117.74 (13)C12—C11—H11B108.9
N3—C1—S1123.14 (12)H11A—C11—H11B107.7
N2—C1—S1119.09 (11)C13—C12—C11114.97 (15)
N1—C2—C3123.26 (14)C13—C12—H12A108.5
N1—C2—H2A118.4C11—C12—H12A108.5
C3—C2—H2A118.4C13—C12—H12B108.5
C8—C3—C4118.26 (14)C11—C12—H12B108.5
C8—C3—C2118.79 (14)H12A—C12—H12B107.5
C4—C3—C2122.94 (15)C12—C13—C14113.91 (15)
C5—C4—C3120.37 (15)C12—C13—H13A108.8
C5—C4—H4119.8C14—C13—H13A108.8
C3—C4—H4119.8C12—C13—H13B108.8
C4—C5—C6120.57 (15)C14—C13—H13B108.8
C4—C5—H5119.7H13A—C13—H13B107.7
C6—C5—H5119.7C15—C14—C13114.88 (16)
O1—C6—C7124.47 (15)C15—C14—H14A108.5
O1—C6—C5115.77 (15)C13—C14—H14A108.5
C7—C6—C5119.76 (15)C15—C14—H14B108.5
C8—C7—C6119.26 (15)C13—C14—H14B108.5
C8—C7—H7120.4H14A—C14—H14B107.5
C6—C7—H7120.4C14—C15—C16113.71 (16)
C7—C8—C3121.78 (15)C14—C15—H15A108.8
C7—C8—H8119.1C16—C15—H15A108.8
C3—C8—H8119.1C14—C15—H15B108.8
O1—C9—C10107.53 (17)C16—C15—H15B108.8
O1—C9—H9A110.2H15A—C15—H15B107.7
C10—C9—H9A110.2C15—C16—H16A109.5
O1—C9—H9B110.2C15—C16—H16B109.5
C10—C9—H9B110.2H16A—C16—H16B109.5
H9A—C9—H9B108.5C15—C16—H16C109.5
C11—C10—C9114.12 (15)H16A—C16—H16C109.5
C11—C10—H10A108.7H16B—C16—H16C109.5
C2—N1—N2—C1175.56 (13)O1—C6—C7—C8179.39 (14)
N1—N2—C1—N34.3 (2)C5—C6—C7—C80.7 (2)
N1—N2—C1—S1174.08 (10)C6—C7—C8—C30.9 (2)
N2—N1—C2—C3177.06 (12)C4—C3—C8—C70.2 (2)
N1—C2—C3—C8177.92 (14)C2—C3—C8—C7179.72 (13)
N1—C2—C3—C41.6 (2)C6—O1—C9—C10178.39 (13)
C8—C3—C4—C50.7 (2)O1—C9—C10—C1173.0 (2)
C2—C3—C4—C5178.83 (13)C9—C10—C11—C12178.21 (16)
C3—C4—C5—C60.8 (2)C10—C11—C12—C13176.73 (17)
C9—O1—C6—C76.4 (2)C11—C12—C13—C14179.85 (15)
C9—O1—C6—C5173.52 (14)C12—C13—C14—C15179.08 (16)
C4—C5—C6—O1179.76 (13)C13—C14—C15—C16179.20 (17)
C4—C5—C6—C70.1 (2)

Experimental details

Crystal data
Chemical formulaC16H25N3OS
Mr307.45
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)5.785 (2), 7.586 (2), 20.789 (4)
α, β, γ (°)94.74 (2), 91.85 (2), 104.42 (3)
V3)879.2 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.42 × 0.40 × 0.14
Data collection
DiffractometerEnraf–Nonius dip1030 image-plate
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9930, 3226, 2749
Rint0.030
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.140, 1.04
No. of reflections3226
No. of parameters191
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.18

Computer programs: XPRESS (MacScience, 2002), DENZO (Otwinowski & Minor, 1997), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELX97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

 

Acknowledgements

MAAAAI, MTHT and CMZ are grateful to Rajshahi University for the provision of laboratory facilities. MAAAAI thanks Rajshahi University of Engineering and Technology for sanctioning sabbatical leave and NG thanks MIUR, Rome (PRIN No. 2007HMTJWP_002) for a fellowship.

References

First citationBasuli, F., Peng, S.-M. & Bhattacharya, S. (2000). Inorg. Chem. 39, 1120–1127.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMacScience (2002). XPRESS. MacScience Co. Ltd, Yokohama, Japan.  Google Scholar
First citationNarayana, B., Sunil, K., Sarojini, B. K., Yathirajan, H. S. & Bolte, M. (2007). Acta Cryst. E63, o4834–o4835.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPal, I., Basuli, F. & Bhattacharya, S. (2002). Proc. Indian Acad. Sci. Chem. Sci. 114, 255–268.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTarafder, M. T. H., Islam, M. A. A. A. A., Crouse, K. A., Chantrapromma, S. & Fun, H.-K. (2008). Acta Cryst. E64, o988–o989.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationTian, Y.-P., Yu, W.-T., Zhao, C.-Y., Jiang, M.-H., Cai, Z.-G. & Fun, H. K. (2002). Polyhedron, 21, 1217–1222.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds