organic compounds
(E)-4-Octyloxybenzaldehyde thiosemicarbazone
aDepartment of Chemistry, Rajshahi University of Engineering & Technology, Rajshahi 6204, Bangladesh, bDepartment of Chemistry, Rajshahi University, Rajshahi 6205, Bangladesh, and cDipartimento di Scienze Chimiche, Via Licio Giorgieri 1, 34127 Trieste, Italy
*Correspondence e-mail: ttofazzal@yahoo.com
In the title compound, C16H25N3OS, the thiosemicarbazone group adopts an E configuration with respect to the C=N bond and is almost coplanar with the benzene ring, forming a dihedral angle of 9.3 (1)°. In the crystal packing, the molecules lie along the a axis in an antiparallel arrangement and are held in place by van der Waals interactions. As a consequence, there is relatively low anisotropic thermal motion in the terminal atoms of the n-octyl chain.
Related literature
For the related structures, see: Basuli et al. (2000); Narayana et al. (2007); Pal et al. (2002); Tian et al. (2002); Tarafder et al. (2008).
Experimental
Crystal data
|
Data collection: XPRESS (MacScience, 2002); cell DENZO (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536809054841/fj2264sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809054841/fj2264Isup2.hkl
4-n-octyloxybenzaldehyde (6.09 g, 26 mmol) was added to a hot solution of thiosemicarbazide (2.38 g, 26 mmol) in methanol (200 ml). The mixture was refluxed for 30 min and cooled down to room temperature. The product was recrystallized from dichloromethane to give colorless microcrystals. M.P. 381 K. Brilliant colorless flat rectangular shaped crystals suitable for X-ray difraction were obtained from a mixture of dichloromethane and toluene (10:5; v/v) after 5 days.
Data collection was performed on a image plate with a phi scan over 180° that allows to get a completion (for the triclinic space group) of 97%. All H atoms were located geometrically and treated as riding atoms, with C—H = 0.93–0.96 Å, N—H = 0.86 and with Uĩso~(H) = 1.2U~eq~(C or N) or 1.5U~eq~(C) for methyl H atoms.
Data collection: XPRESS (MacScience, 2002); cell
DENZO (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELX97 (Sheldrick, 2008); program(s) used to refine structure: SHELX97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. ORTEP drawing (ellipsoids at the 40% probability level) of the compoud with atom-labelling scheme. |
C16H25N3OS | Z = 2 |
Mr = 307.45 | F(000) = 332 |
Triclinic, P1 | Dx = 1.161 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 5.785 (2) Å | Cell parameters from 146 reflections |
b = 7.586 (2) Å | θ = 3.0–18.1° |
c = 20.789 (4) Å | µ = 0.19 mm−1 |
α = 94.74 (2)° | T = 293 K |
β = 91.85 (2)° | Plate, colorless |
γ = 104.42 (3)° | 0.42 × 0.40 × 0.14 mm |
V = 879.2 (4) Å3 |
Enraf–Nonius dip1030 image-plate diffractometer | 2749 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.030 |
Graphite monochromator | θmax = 25.7°, θmin = 3.6° |
ϕ–scans with narrow frames | h = −7→7 |
9930 measured reflections | k = −9→8 |
3226 independent reflections | l = −25→25 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.045 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.140 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.1026P)2 + 0.0242P] where P = (Fo2 + 2Fc2)/3 |
3226 reflections | (Δ/σ)max < 0.001 |
191 parameters | Δρmax = 0.19 e Å−3 |
0 restraints | Δρmin = −0.18 e Å−3 |
C16H25N3OS | γ = 104.42 (3)° |
Mr = 307.45 | V = 879.2 (4) Å3 |
Triclinic, P1 | Z = 2 |
a = 5.785 (2) Å | Mo Kα radiation |
b = 7.586 (2) Å | µ = 0.19 mm−1 |
c = 20.789 (4) Å | T = 293 K |
α = 94.74 (2)° | 0.42 × 0.40 × 0.14 mm |
β = 91.85 (2)° |
Enraf–Nonius dip1030 image-plate diffractometer | 2749 reflections with I > 2σ(I) |
9930 measured reflections | Rint = 0.030 |
3226 independent reflections |
R[F2 > 2σ(F2)] = 0.045 | 0 restraints |
wR(F2) = 0.140 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.19 e Å−3 |
3226 reflections | Δρmin = −0.18 e Å−3 |
191 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 1.33919 (6) | −0.29398 (5) | 0.99374 (2) | 0.06930 (19) | |
N1 | 1.0386 (2) | 0.02579 (17) | 0.89975 (6) | 0.0648 (3) | |
N2 | 1.1983 (2) | −0.04336 (17) | 0.93483 (6) | 0.0690 (3) | |
H2 | 1.3435 | 0.0203 | 0.9421 | 0.083* | |
N3 | 0.9025 (2) | −0.29670 (17) | 0.94909 (6) | 0.0668 (3) | |
H3A | 0.8033 | −0.2489 | 0.9295 | 0.080* | |
H3B | 0.8534 | −0.4024 | 0.9631 | 0.080* | |
O1 | 0.6110 (2) | 0.55328 (16) | 0.73145 (6) | 0.0812 (3) | |
C1 | 1.1305 (2) | −0.20768 (19) | 0.95761 (7) | 0.0591 (3) | |
C2 | 1.1216 (3) | 0.1882 (2) | 0.88465 (7) | 0.0663 (4) | |
H2A | 1.2764 | 0.2498 | 0.8995 | 0.080* | |
C3 | 0.9864 (3) | 0.2818 (2) | 0.84546 (7) | 0.0630 (4) | |
C4 | 0.7501 (3) | 0.2031 (2) | 0.82202 (7) | 0.0681 (4) | |
H4 | 0.6725 | 0.0867 | 0.8321 | 0.082* | |
C5 | 0.6322 (3) | 0.2971 (2) | 0.78409 (8) | 0.0716 (4) | |
H5 | 0.4761 | 0.2431 | 0.7683 | 0.086* | |
C6 | 0.7444 (3) | 0.4721 (2) | 0.76919 (7) | 0.0677 (4) | |
C7 | 0.9777 (3) | 0.5528 (2) | 0.79263 (7) | 0.0726 (4) | |
H7 | 1.0536 | 0.6704 | 0.7833 | 0.087* | |
C8 | 1.0957 (3) | 0.4563 (2) | 0.82997 (7) | 0.0698 (4) | |
H8 | 1.2526 | 0.5100 | 0.8451 | 0.084* | |
C9 | 0.7089 (4) | 0.7404 (2) | 0.72041 (9) | 0.0880 (5) | |
H9A | 0.8564 | 0.7529 | 0.6983 | 0.106* | |
H9B | 0.7432 | 0.8161 | 0.7612 | 0.106* | |
C10 | 0.5257 (4) | 0.7986 (3) | 0.67937 (9) | 0.0890 (5) | |
H10A | 0.3717 | 0.7624 | 0.6982 | 0.107* | |
H10B | 0.5693 | 0.9309 | 0.6805 | 0.107* | |
C11 | 0.5012 (4) | 0.7192 (3) | 0.60985 (8) | 0.0811 (5) | |
H11A | 0.4523 | 0.5869 | 0.6085 | 0.097* | |
H11B | 0.6561 | 0.7522 | 0.5913 | 0.097* | |
C12 | 0.3221 (3) | 0.7838 (3) | 0.56889 (9) | 0.0817 (5) | |
H12A | 0.1660 | 0.7448 | 0.5863 | 0.098* | |
H12B | 0.3662 | 0.9164 | 0.5727 | 0.098* | |
C13 | 0.3025 (3) | 0.7155 (2) | 0.49799 (9) | 0.0826 (5) | |
H13A | 0.2573 | 0.5828 | 0.4940 | 0.099* | |
H13B | 0.4583 | 0.7543 | 0.4803 | 0.099* | |
C14 | 0.1228 (3) | 0.7824 (3) | 0.45814 (8) | 0.0810 (5) | |
H14A | −0.0331 | 0.7420 | 0.4756 | 0.097* | |
H14B | 0.1667 | 0.9150 | 0.4629 | 0.097* | |
C15 | 0.1029 (4) | 0.7182 (3) | 0.38689 (9) | 0.0891 (5) | |
H15A | 0.0562 | 0.5857 | 0.3819 | 0.107* | |
H15B | 0.2589 | 0.7573 | 0.3693 | 0.107* | |
C16 | −0.0752 (4) | 0.7893 (3) | 0.34816 (10) | 0.0987 (6) | |
H16A | −0.2329 | 0.7416 | 0.3624 | 0.148* | |
H16B | −0.0710 | 0.7509 | 0.3031 | 0.148* | |
H16C | −0.0347 | 0.9204 | 0.3544 | 0.148* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0526 (3) | 0.0696 (3) | 0.0871 (3) | 0.01517 (17) | −0.00582 (18) | 0.02038 (19) |
N1 | 0.0600 (7) | 0.0703 (8) | 0.0671 (7) | 0.0211 (5) | −0.0045 (5) | 0.0120 (6) |
N2 | 0.0551 (7) | 0.0706 (8) | 0.0817 (8) | 0.0141 (6) | −0.0097 (6) | 0.0204 (6) |
N3 | 0.0527 (6) | 0.0681 (7) | 0.0810 (8) | 0.0158 (5) | −0.0032 (5) | 0.0155 (6) |
O1 | 0.0863 (8) | 0.0834 (7) | 0.0823 (7) | 0.0315 (6) | −0.0029 (6) | 0.0277 (6) |
C1 | 0.0534 (7) | 0.0639 (8) | 0.0604 (8) | 0.0158 (6) | 0.0003 (6) | 0.0060 (6) |
C2 | 0.0666 (9) | 0.0705 (9) | 0.0627 (8) | 0.0181 (7) | −0.0032 (6) | 0.0120 (7) |
C3 | 0.0680 (8) | 0.0687 (8) | 0.0555 (7) | 0.0224 (6) | 0.0007 (6) | 0.0090 (6) |
C4 | 0.0709 (9) | 0.0664 (8) | 0.0691 (9) | 0.0191 (7) | 0.0004 (7) | 0.0152 (7) |
C5 | 0.0677 (9) | 0.0792 (10) | 0.0713 (9) | 0.0228 (7) | −0.0027 (7) | 0.0159 (7) |
C6 | 0.0774 (9) | 0.0744 (9) | 0.0587 (8) | 0.0309 (7) | 0.0027 (7) | 0.0132 (7) |
C7 | 0.0831 (10) | 0.0666 (9) | 0.0687 (9) | 0.0177 (7) | 0.0007 (7) | 0.0153 (7) |
C8 | 0.0712 (9) | 0.0711 (9) | 0.0662 (9) | 0.0159 (7) | −0.0042 (7) | 0.0102 (7) |
C9 | 0.1125 (15) | 0.0781 (11) | 0.0813 (11) | 0.0368 (10) | −0.0047 (10) | 0.0185 (9) |
C10 | 0.1121 (15) | 0.0853 (11) | 0.0837 (12) | 0.0468 (11) | 0.0025 (10) | 0.0239 (9) |
C11 | 0.0900 (12) | 0.0816 (11) | 0.0815 (11) | 0.0349 (9) | 0.0066 (9) | 0.0225 (8) |
C12 | 0.0882 (12) | 0.0861 (11) | 0.0802 (11) | 0.0350 (9) | 0.0053 (9) | 0.0224 (9) |
C13 | 0.0886 (12) | 0.0810 (11) | 0.0843 (11) | 0.0299 (9) | 0.0039 (9) | 0.0174 (9) |
C14 | 0.0875 (12) | 0.0802 (10) | 0.0797 (11) | 0.0276 (9) | 0.0040 (8) | 0.0146 (8) |
C15 | 0.0945 (13) | 0.0900 (12) | 0.0859 (12) | 0.0307 (10) | −0.0021 (9) | 0.0068 (9) |
C16 | 0.1001 (14) | 0.1156 (15) | 0.0842 (12) | 0.0372 (12) | −0.0079 (10) | 0.0060 (11) |
S1—C1 | 1.6930 (15) | C9—H9A | 0.9700 |
N1—C2 | 1.275 (2) | C9—H9B | 0.9700 |
N1—N2 | 1.3863 (16) | C10—C11 | 1.507 (3) |
N2—C1 | 1.341 (2) | C10—H10A | 0.9700 |
N2—H2 | 0.8600 | C10—H10B | 0.9700 |
N3—C1 | 1.3227 (19) | C11—C12 | 1.518 (2) |
N3—H3A | 0.8600 | C11—H11A | 0.9700 |
N3—H3B | 0.8600 | C11—H11B | 0.9700 |
O1—C6 | 1.3665 (19) | C12—C13 | 1.513 (3) |
O1—C9 | 1.432 (2) | C12—H12A | 0.9700 |
C2—C3 | 1.453 (2) | C12—H12B | 0.9700 |
C2—H2A | 0.9300 | C13—C14 | 1.517 (2) |
C3—C8 | 1.387 (2) | C13—H13A | 0.9700 |
C3—C4 | 1.402 (2) | C13—H13B | 0.9700 |
C4—C5 | 1.377 (2) | C14—C15 | 1.512 (3) |
C4—H4 | 0.9300 | C14—H14A | 0.9700 |
C5—C6 | 1.390 (2) | C14—H14B | 0.9700 |
C5—H5 | 0.9300 | C15—C16 | 1.515 (3) |
C6—C7 | 1.389 (2) | C15—H15A | 0.9700 |
C7—C8 | 1.383 (2) | C15—H15B | 0.9700 |
C7—H7 | 0.9300 | C16—H16A | 0.9600 |
C8—H8 | 0.9300 | C16—H16B | 0.9600 |
C9—C10 | 1.511 (3) | C16—H16C | 0.9600 |
C2—N1—N2 | 114.83 (13) | C9—C10—H10A | 108.7 |
C1—N2—N1 | 121.23 (12) | C11—C10—H10B | 108.7 |
C1—N2—H2 | 119.4 | C9—C10—H10B | 108.7 |
N1—N2—H2 | 119.4 | H10A—C10—H10B | 107.6 |
C1—N3—H3A | 120.0 | C10—C11—C12 | 113.38 (15) |
C1—N3—H3B | 120.0 | C10—C11—H11A | 108.9 |
H3A—N3—H3B | 120.0 | C12—C11—H11A | 108.9 |
C6—O1—C9 | 117.89 (14) | C10—C11—H11B | 108.9 |
N3—C1—N2 | 117.74 (13) | C12—C11—H11B | 108.9 |
N3—C1—S1 | 123.14 (12) | H11A—C11—H11B | 107.7 |
N2—C1—S1 | 119.09 (11) | C13—C12—C11 | 114.97 (15) |
N1—C2—C3 | 123.26 (14) | C13—C12—H12A | 108.5 |
N1—C2—H2A | 118.4 | C11—C12—H12A | 108.5 |
C3—C2—H2A | 118.4 | C13—C12—H12B | 108.5 |
C8—C3—C4 | 118.26 (14) | C11—C12—H12B | 108.5 |
C8—C3—C2 | 118.79 (14) | H12A—C12—H12B | 107.5 |
C4—C3—C2 | 122.94 (15) | C12—C13—C14 | 113.91 (15) |
C5—C4—C3 | 120.37 (15) | C12—C13—H13A | 108.8 |
C5—C4—H4 | 119.8 | C14—C13—H13A | 108.8 |
C3—C4—H4 | 119.8 | C12—C13—H13B | 108.8 |
C4—C5—C6 | 120.57 (15) | C14—C13—H13B | 108.8 |
C4—C5—H5 | 119.7 | H13A—C13—H13B | 107.7 |
C6—C5—H5 | 119.7 | C15—C14—C13 | 114.88 (16) |
O1—C6—C7 | 124.47 (15) | C15—C14—H14A | 108.5 |
O1—C6—C5 | 115.77 (15) | C13—C14—H14A | 108.5 |
C7—C6—C5 | 119.76 (15) | C15—C14—H14B | 108.5 |
C8—C7—C6 | 119.26 (15) | C13—C14—H14B | 108.5 |
C8—C7—H7 | 120.4 | H14A—C14—H14B | 107.5 |
C6—C7—H7 | 120.4 | C14—C15—C16 | 113.71 (16) |
C7—C8—C3 | 121.78 (15) | C14—C15—H15A | 108.8 |
C7—C8—H8 | 119.1 | C16—C15—H15A | 108.8 |
C3—C8—H8 | 119.1 | C14—C15—H15B | 108.8 |
O1—C9—C10 | 107.53 (17) | C16—C15—H15B | 108.8 |
O1—C9—H9A | 110.2 | H15A—C15—H15B | 107.7 |
C10—C9—H9A | 110.2 | C15—C16—H16A | 109.5 |
O1—C9—H9B | 110.2 | C15—C16—H16B | 109.5 |
C10—C9—H9B | 110.2 | H16A—C16—H16B | 109.5 |
H9A—C9—H9B | 108.5 | C15—C16—H16C | 109.5 |
C11—C10—C9 | 114.12 (15) | H16A—C16—H16C | 109.5 |
C11—C10—H10A | 108.7 | H16B—C16—H16C | 109.5 |
C2—N1—N2—C1 | 175.56 (13) | O1—C6—C7—C8 | −179.39 (14) |
N1—N2—C1—N3 | −4.3 (2) | C5—C6—C7—C8 | 0.7 (2) |
N1—N2—C1—S1 | 174.08 (10) | C6—C7—C8—C3 | −0.9 (2) |
N2—N1—C2—C3 | 177.06 (12) | C4—C3—C8—C7 | 0.2 (2) |
N1—C2—C3—C8 | −177.92 (14) | C2—C3—C8—C7 | 179.72 (13) |
N1—C2—C3—C4 | 1.6 (2) | C6—O1—C9—C10 | −178.39 (13) |
C8—C3—C4—C5 | 0.7 (2) | O1—C9—C10—C11 | −73.0 (2) |
C2—C3—C4—C5 | −178.83 (13) | C9—C10—C11—C12 | −178.21 (16) |
C3—C4—C5—C6 | −0.8 (2) | C10—C11—C12—C13 | 176.73 (17) |
C9—O1—C6—C7 | −6.4 (2) | C11—C12—C13—C14 | −179.85 (15) |
C9—O1—C6—C5 | 173.52 (14) | C12—C13—C14—C15 | 179.08 (16) |
C4—C5—C6—O1 | −179.76 (13) | C13—C14—C15—C16 | −179.20 (17) |
C4—C5—C6—C7 | 0.1 (2) |
Experimental details
Crystal data | |
Chemical formula | C16H25N3OS |
Mr | 307.45 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 5.785 (2), 7.586 (2), 20.789 (4) |
α, β, γ (°) | 94.74 (2), 91.85 (2), 104.42 (3) |
V (Å3) | 879.2 (4) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.19 |
Crystal size (mm) | 0.42 × 0.40 × 0.14 |
Data collection | |
Diffractometer | Enraf–Nonius dip1030 image-plate diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9930, 3226, 2749 |
Rint | 0.030 |
(sin θ/λ)max (Å−1) | 0.609 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.045, 0.140, 1.04 |
No. of reflections | 3226 |
No. of parameters | 191 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.19, −0.18 |
Computer programs: XPRESS (MacScience, 2002), DENZO (Otwinowski & Minor, 1997), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELX97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
Acknowledgements
MAAAAI, MTHT and CMZ are grateful to Rajshahi University for the provision of laboratory facilities. MAAAAI thanks Rajshahi University of Engineering and Technology for sanctioning sabbatical leave and NG thanks MIUR, Rome (PRIN No. 2007HMTJWP_002) for a fellowship.
References
Basuli, F., Peng, S.-M. & Bhattacharya, S. (2000). Inorg. Chem. 39, 1120–1127. Web of Science CSD CrossRef PubMed CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
MacScience (2002). XPRESS. MacScience Co. Ltd, Yokohama, Japan. Google Scholar
Narayana, B., Sunil, K., Sarojini, B. K., Yathirajan, H. S. & Bolte, M. (2007). Acta Cryst. E63, o4834–o4835. Web of Science CSD CrossRef IUCr Journals Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Pal, I., Basuli, F. & Bhattacharya, S. (2002). Proc. Indian Acad. Sci. Chem. Sci. 114, 255–268. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tarafder, M. T. H., Islam, M. A. A. A. A., Crouse, K. A., Chantrapromma, S. & Fun, H.-K. (2008). Acta Cryst. E64, o988–o989. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Tian, Y.-P., Yu, W.-T., Zhao, C.-Y., Jiang, M.-H., Cai, Z.-G. & Fun, H. K. (2002). Polyhedron, 21, 1217–1222. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
When used in coordination chemistry this molecule is potentially a bidentate ligand acting through the α- or β-nitrogen and thiolate sulfur anion forming a four- and five-membered chelate ring, respectively (Pal et al., 2002), although a behavior as monocoordinated ligand through sulfur has also been reported (Tian et al., 2002). In the crystal structure the molecules are interconnected by N—H···N and N–H···S hydrogen bonds as found in other thiosemicarbazone species (Narayana et al., 2007; Tarafder et al., 2008). The crystal structure is also stabilized by C–H···π interactions. The octyl chain presents an anti conformation with the exception of the O1—C9—C10—C11 part that has a torsion angle of -72.7 (3)°.