organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 1| January 2010| Pages o171-o172

1-(5-Carb­oxy­pent­yl)-2,3,3-tri­methyl-3H-indol-1-ium bromide monohydrate

aDepartment of Chemistry, Morgan State University, Baltimore, MD 21251, USA, bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, and cDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: rbutcher99@yahoo.com

(Received 1 September 2009; accepted 18 November 2009; online 16 December 2009)

In the title compound, C17H24NO2+·Br·H2O, the pentyl group chain in the cation extends nearly perpendicular [N—C—C—C = −64.4 (3)°] to the mean plane of the indole ring with the carboxyl end group twisted such that the dihedral angle between the mean planes of the indole and carb­oxy groups measures 43.2 (4)°. Both ions in the salt form inter­molecular hydrogen bonds (O—H⋯Br and O—H⋯O) with the water mol­ecule. As a result of the Br⋯H—O—H⋯Br inter­actions, a zigzag chain is formed in the c-axis direction. The crystal packing is influenced by the collective action of the O—H⋯O and O—H⋯Br inter­molecular inter­actions as well as ππ stacking inter­molecular inter­actions between adjacent benzyl rings of the indole group [centroid–centroid distance = 3.721 (13) Å] and inter­molecular C—H⋯π inter­actions between a methyl hydrogen and the benzyl ring of the indole group. The O—H⋯Br inter­actions form a distorted tetra­hedral array about the central Br atom. A MOPAC AM1 calculation provides support to these observations.

Related literature

For chemical and biological background, see: Zhu et al. (1994[Zhu, H., Clark, S. M., Benson, S. C., Rye, H. S., Glazer, A. N. & Mathies, R. A. (1994). Anal. Chem. 66, 1941-1948.]); Schwartz & Ulfelder (1992[Schwartz, H. E. & Ulfelder, K. J. (1992). Anal. Chem. 64, 1737-1740.]); Bengtsson et al. (2003[Bengtsson, M., Karlsson, H. J., Westman, G. & Kubista, M. (2003). Nucleic Acids Res. 31, e45/1.]); Hirons et al. (1994[Hirons, G. T., Fawcett, J. J. & Crissman, H. A. (1994). Cytometry, 15, 129-140.]); Kurihara et al. (1977[Kurihara, K., Toyoshima, Y. & Sukigara, M. (1977). J. Phys. Chem. 81, 1833-1837.]); Armitage & O'Brien (1992[Armitage, B. & O'Brien, D. F. (1992). J. Am. Chem. Soc. 114, 7396-7403.]); Reers et al. (1991[Reers, M., Smith, T. W. & Chen, L. B. (1991). Biochemistry, 30, 4480-4486.]); Jung & Kim (2006[Jung, M. E. & Kim, W. (2006). Bio. Med. Chem. 14, 92-97.]); Menger & Pertusati (2008[Menger, F. M. & Pertusati, P. (2008). J. Org. Chem. 73, 2939-2942.]). A geometry optimized MOPAC AM1 computational calculation was performed using WebMO Pro (Schmidt & Polik, 2007[Schmidt, J. R. & Polik, W. F. (2007). WebMO Pro, Version 8.0.010e; WebMO, LLC: Holland, MI, USA, available from http://www.webmo.net.]).

[Scheme 1]

Experimental

Crystal data
  • C17H24NO2+·Br·H2O

  • Mr = 372.30

  • Monoclinic, P 21 /c

  • a = 14.4528 (3) Å

  • b = 15.3367 (2) Å

  • c = 8.0810 (2) Å

  • β = 99.437 (2)°

  • V = 1766.98 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 3.27 mm−1

  • T = 200 K

  • 0.55 × 0.18 × 0.12 mm

Data collection
  • Oxford Diffraction Gemini R diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis Pro and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.296, Tmax = 0.676

  • 13155 measured reflections

  • 3504 independent reflections

  • 3049 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.098

  • S = 1.06

  • 3504 reflections

  • 209 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2O⋯O1W 0.84 1.82 2.637 (4) 166
O1W—H1W1⋯Br 0.812 (19) 2.431 (19) 3.240 (2) 175 (5)
O1W—H1W2⋯Bri 0.817 (19) 2.47 (2) 3.262 (3) 165 (5)
C4—H4BCg2i2 0.99 2.88 3.828 (3) 162
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]. Cg2 is the centroid of the C6–C11 ring.

Data collection: CrysAlis Pro (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis Pro and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis Pro; data reduction: CrysAlis Pro; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound,C17H24NO2+, Br-, H2O, (I), a salt with a crystallized water molecule, was synthesized under microwave conditions (Scheme 1). It has been used as a precursor for cyanine dyes which have widespread application as fluorescent probes. They have been used in DNA sequencing, immunoassays, agarose gel and capillary electrophoresis staining (Zhu et al., (1994)), DNA analysis in polymerization chain reactions (Schwartz et al., (1992); Bengtsson et al., (2003)), in flow cytometry (Hirons et al., (1994)), or as fluorescent probes for membrane fluidity (Kurihara et al., 1977); Armitage et al., 1992)) as well as in membrane potential studies (Reers et al., (1991)). This precursor is of particular importance due to the presence of the carboxylic acid group, which when converted to the NHS ester, allows the attachment of these dyes to proteins.

In the cation, the mean plane of indole ring bisects the angle between the two attached 3,3 dimethyl groups (angles C1–C3–C4 = 109.1 (2)°; C1–C3–C5 = 111.86 (19)°; C5–C3–C4 = 110.3 (2)°) whereas the third methyl group is nearly in the plane of the indole ring (torsion angle C2–C1–C3–C6 = 178.4 (2)°), Fig. 1. The pentyl group chain extends nearly perpendicular to the mean plane of the indole ring (torsion angle N1–C12–C13–C14 = -64.4 (3)°) with the carboxyl end group twisted such that the dihedral angle between the mean planes of the indole and carboxy groups measures 43.2 (4)° (torsion angle C14–C15–C16–C17 = 94.4 (4)°).

Both ions from the salt form intermolecular hydrogen bonds (O–H···Br & O–H···O) with the water molecule. As a result of the Br···H–O–H···Br interactions a zigzag one-dimensional chain is formed in the c direction.(Fig. 2). Crystal packing is influenced by the collective action of intermolecular O—H···O and O—H···Br hydrogen bond interactions as well as π-π stacking intermolecular interactions between the center of gravity of nearby benzyl rings of the indole group (Cg2···Cg2: 3.721 (13) Å; slippage = 1.514 Å; 2 - x, 1 - y, 1 - z) and π-ring C4–H4B···Cg2 intermolecular interactions between a methyl hydrogen and the benzene ring of the indole group [H···Cg = 2.88 Å; X—H···Cg = 162°; X···CgX-H = 3.828 (3) Å; Cg2 = C6–C11; x, 3/2 - y, 1/2 + z] in the unit cell (Fig. 3). In addition there are weak C—H···Br interactions between the phenyl H atoms of two adjoining cations which, together with the O–H···Br interactions, form a distorted tetrahedral array about the central Br.

A geometry optimized MOPAC AM1 computational calculation was performed on the cation in the absence of the bromide ion and water molecule using WebMO Pro (Schmidt & Polik, 2007). The Hartree-Fock closed-shell (restricted) wavefunction along with [AM1 (Austin Model 1)] was used and minimizations were terminated at an r.m.s. gradient of less than 0.01 kJ mol-1 Å-1]. As a result of this calculation the dihedral angle between the mean planes of the indole and carboxy groups changes from 43.2 (4)° to 34.5 (2) Å. From this it is apparent that the collective influence of O–H···O and O–H···Br hydrogen bonds, weaker C–H···Br intermolecular interactions, π-π stacking intermolecular interactions, and π-ring C–H···Cg2 intermolecular interactions significantly influence crystal packing for this molecule.

Related literature top

For chemical and biological background, see: Zhu et al. (1994); Schwartz et al. (1992); Bengtsson et al. (2003); Hirons et al. (1994); Kurihara et al. (1977); Armitage et al. (1992); Reers et al. (1991); Jung et al. (2006); Menger et al. (2008). A geometry optimized MOPAC AM1 computational calculation was performed using WebMO Pro (Schmidt & Polik, 2007). [THE SCHEME SHOULD SHOW THE WATER SOLVENT MOLECULE]

Experimental top

The title compound (I) has been previously synthesized by refluxing reagents with the solvent o-dichloro-benzene for 12–24 h followed by filtration (Jung et al., (2006); Menger et al. (2008)). For our study the title compound, (I), was synthesized as follows: 6-bromohexanoic acid (0.67 g, 0.0034 moles) and 2,3,3-trimethylindolenine (0.54 ml, 0.0034 moles) were added to a reaction vial via syringe and heated at 433 K for 1200 s and a ramp of 150 s in a Biotage Initiator microwave system (Scheme 2). The crystals were washed with acetone and dried under vacuum to yield (0.51 g, 42%). The sample was recrystallized by dissolving in dichloromethane then allowed to evaporate slowly at room temperature. 1H-NMR (DMSO-d6, 400 MHz): δ (p.p.m.): 7.87–8.01 (m, 1H), 7.78–7.87 (m, 1H), 7.26–7.64 (m, 2H) 4.45 (t, J = 7.6 Hz, 2H), 2.87 (s, 3H), 2.24 (t, J = 7.2 Hz, 2H), 1.85–1.81 (m, 2H), 1.6–1.5 (m, 8H), 1.44 (m, 3H); 13C-NMR (DMSO-d6, 100 MHz): δ (p.p.m.): 196.5 (C), 174.2 (C), 141.8 (C), 141.0 (C), 129.3 (CH), 128.9 (CH), 123.5 (CH), 115.4 (CH), 54.1 (C), 47.4 (CH2), 33.3 (CH2), 26.9 (CH2), 25.4 (CH2), 24.0 (CH2), 22.0 (CH3), 14.0 (CH3).

Refinement top

H1W1, H1W2 were obtained from a difference fourier map and refined with Uiso(H) = 1.5Ueq(O). The rest of the H atoms were placed in their calculated positions and then refined using a riding model with C(O)—H distances ranging from 0.84 to 0.99 Å, and with Uiso(H) = 1.2eq(C,O) [1.5Ueq for CH3].

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis PRO (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom numbering scheme and 50% probability displacement ellipsoids. Dashed lines show the O2–H2O···O1W and O1W–H1W1···Br hydrogen bonds.
[Figure 2] Fig. 2. The molecular packing for (I) viewed down the a axis of the unit cell. Dashed lines indicate intermolecular O2–H2O···O1W, and O1W–H1W1···Br interactions. The O–H···Br···H–O interactions form a zigzag chain in the c direction.
[Figure 3] Fig. 3. The formation of the title compound.
1-(5-Carboxypentyl)-2,3,3-trimethyl-3H-indol-1-ium bromide monohydrate top
Crystal data top
C17H24NO2+·Br·H2OF(000) = 776
Mr = 372.30Dx = 1.399 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 8515 reflections
a = 14.4528 (3) Åθ = 5.6–73.5°
b = 15.3367 (2) ŵ = 3.27 mm1
c = 8.0810 (2) ÅT = 200 K
β = 99.437 (2)°Needle, colorless
V = 1766.98 (6) Å30.55 × 0.18 × 0.12 mm
Z = 4
Data collection top
Oxford Diffraction Gemini R
diffractometer
3504 independent reflections
Radiation source: fine-focus sealed tube3049 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 10.5081 pixels mm-1θmax = 73.7°, θmin = 5.8°
ϕ and ω scansh = 1715
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
k = 1819
Tmin = 0.296, Tmax = 0.676l = 108
13155 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0518P)2 + 1.5238P]
where P = (Fo2 + 2Fc2)/3
3504 reflections(Δ/σ)max = 0.001
209 parametersΔρmax = 0.52 e Å3
3 restraintsΔρmin = 0.43 e Å3
Crystal data top
C17H24NO2+·Br·H2OV = 1766.98 (6) Å3
Mr = 372.30Z = 4
Monoclinic, P21/cCu Kα radiation
a = 14.4528 (3) ŵ = 3.27 mm1
b = 15.3367 (2) ÅT = 200 K
c = 8.0810 (2) Å0.55 × 0.18 × 0.12 mm
β = 99.437 (2)°
Data collection top
Oxford Diffraction Gemini R
diffractometer
3504 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
3049 reflections with I > 2σ(I)
Tmin = 0.296, Tmax = 0.676Rint = 0.033
13155 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0373 restraints
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.52 e Å3
3504 reflectionsΔρmin = 0.43 e Å3
209 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br0.168343 (18)0.871933 (16)0.50535 (3)0.03689 (11)
O10.5587 (2)0.7918 (2)0.1347 (5)0.0893 (10)
O20.42824 (18)0.81569 (14)0.2331 (4)0.0661 (7)
H2O0.38000.78730.24480.079*
O1W0.28626 (17)0.7310 (2)0.3254 (3)0.0707 (8)
H1W10.254 (3)0.764 (3)0.372 (5)0.106*
H1W20.251 (3)0.714 (3)0.242 (4)0.106*
N10.79026 (13)0.52889 (12)0.5047 (2)0.0254 (4)
C10.76946 (16)0.56100 (15)0.6432 (3)0.0279 (5)
C20.68861 (18)0.53476 (18)0.7221 (3)0.0379 (6)
H2A0.65660.48530.66070.057*
H2B0.64490.58380.71920.057*
H2C0.71060.51780.83890.057*
C30.84000 (16)0.63015 (14)0.7139 (3)0.0268 (5)
C40.78975 (19)0.71914 (16)0.7114 (3)0.0367 (6)
H4A0.75790.73170.59720.055*
H4B0.83590.76490.74780.055*
H4C0.74350.71730.78750.055*
C50.88798 (19)0.60805 (17)0.8929 (3)0.0348 (5)
H5A0.91550.54960.89440.052*
H5B0.84160.60970.96870.052*
H5C0.93750.65080.92970.052*
C60.90648 (16)0.62789 (13)0.5885 (3)0.0252 (4)
C70.98805 (16)0.67357 (15)0.5803 (3)0.0301 (5)
H7A1.01180.71480.66430.036*
C81.03446 (17)0.65748 (16)0.4452 (3)0.0327 (5)
H8A1.09040.68860.43690.039*
C91.00061 (17)0.59686 (16)0.3225 (3)0.0318 (5)
H9A1.03380.58730.23190.038*
C100.91882 (16)0.54979 (15)0.3296 (3)0.0281 (5)
H10A0.89520.50780.24700.034*
C110.87436 (15)0.56811 (14)0.4644 (3)0.0246 (4)
C120.73635 (17)0.46508 (15)0.3907 (3)0.0320 (5)
H12A0.69400.43190.45220.038*
H12B0.78000.42320.35080.038*
C130.67861 (17)0.51091 (16)0.2403 (3)0.0339 (5)
H13A0.72150.54540.18230.041*
H13B0.64880.46610.16070.041*
C140.60247 (18)0.57112 (19)0.2847 (3)0.0391 (6)
H14A0.56310.53840.35270.047*
H14B0.63230.61990.35400.047*
C150.5405 (2)0.6079 (2)0.1308 (4)0.0553 (8)
H15A0.51070.55900.06170.066*
H15B0.58000.64030.06280.066*
C160.46391 (19)0.66849 (18)0.1732 (4)0.0430 (6)
H16A0.40670.66010.08880.052*
H16B0.44860.65160.28380.052*
C170.4896 (2)0.7628 (2)0.1783 (4)0.0492 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br0.04080 (17)0.03133 (16)0.03975 (18)0.00006 (10)0.01018 (12)0.00063 (10)
O10.0628 (16)0.0726 (18)0.136 (3)0.0271 (14)0.0274 (17)0.0028 (18)
O20.0607 (14)0.0372 (11)0.097 (2)0.0081 (10)0.0028 (13)0.0153 (12)
O1W0.0458 (12)0.102 (2)0.0635 (16)0.0124 (13)0.0056 (11)0.0374 (15)
N10.0266 (9)0.0221 (8)0.0263 (10)0.0014 (7)0.0009 (7)0.0013 (7)
C10.0300 (11)0.0264 (11)0.0259 (11)0.0015 (9)0.0005 (9)0.0053 (9)
C20.0355 (13)0.0415 (14)0.0380 (14)0.0016 (10)0.0105 (11)0.0069 (11)
C30.0325 (11)0.0237 (11)0.0238 (11)0.0012 (8)0.0033 (9)0.0004 (8)
C40.0450 (14)0.0296 (12)0.0366 (14)0.0056 (10)0.0100 (11)0.0002 (10)
C50.0439 (14)0.0343 (12)0.0244 (12)0.0008 (10)0.0004 (10)0.0014 (10)
C60.0317 (11)0.0205 (10)0.0225 (11)0.0018 (8)0.0015 (9)0.0015 (8)
C70.0334 (11)0.0232 (11)0.0319 (13)0.0025 (9)0.0003 (9)0.0005 (9)
C80.0302 (11)0.0282 (11)0.0394 (14)0.0014 (9)0.0051 (10)0.0082 (10)
C90.0348 (12)0.0313 (12)0.0306 (13)0.0075 (9)0.0089 (10)0.0065 (10)
C100.0347 (12)0.0244 (11)0.0239 (11)0.0050 (9)0.0010 (9)0.0006 (9)
C110.0275 (10)0.0210 (10)0.0243 (11)0.0008 (8)0.0015 (8)0.0045 (8)
C120.0327 (11)0.0234 (11)0.0374 (13)0.0030 (9)0.0020 (10)0.0040 (10)
C130.0330 (12)0.0330 (12)0.0332 (13)0.0007 (9)0.0018 (10)0.0069 (10)
C140.0352 (13)0.0426 (14)0.0381 (14)0.0067 (11)0.0023 (11)0.0017 (11)
C150.0538 (18)0.0570 (18)0.0493 (18)0.0244 (15)0.0087 (14)0.0133 (15)
C160.0363 (13)0.0373 (14)0.0526 (17)0.0073 (11)0.0014 (12)0.0026 (12)
C170.0405 (15)0.0418 (15)0.062 (2)0.0031 (12)0.0019 (13)0.0028 (14)
Geometric parameters (Å, º) top
O1—C171.198 (4)C7—C81.394 (4)
O2—C171.330 (4)C7—H7A0.9500
O2—H2O0.8400C8—C91.389 (4)
O1W—H1W10.812 (19)C8—H8A0.9500
O1W—H1W20.817 (19)C9—C101.394 (3)
N1—C11.302 (3)C9—H9A0.9500
N1—C111.440 (3)C10—C111.381 (3)
N1—C121.476 (3)C10—H10A0.9500
C1—C21.476 (3)C12—C131.528 (3)
C1—C31.516 (3)C12—H12A0.9900
C2—H2A0.9800C12—H12B0.9900
C2—H2B0.9800C13—C141.524 (3)
C2—H2C0.9800C13—H13A0.9900
C3—C61.507 (3)C13—H13B0.9900
C3—C51.536 (3)C14—C151.518 (4)
C3—C41.545 (3)C14—H14A0.9900
C4—H4A0.9800C14—H14B0.9900
C4—H4B0.9800C15—C161.526 (4)
C4—H4C0.9800C15—H15A0.9900
C5—H5A0.9800C15—H15B0.9900
C5—H5B0.9800C16—C171.493 (4)
C5—H5C0.9800C16—H16A0.9900
C6—C111.382 (3)C16—H16B0.9900
C6—C71.382 (3)
C17—O2—H2O109.5C8—C9—H9A119.4
H1W1—O1W—H1W2104 (3)C10—C9—H9A119.4
C1—N1—C11111.00 (19)C11—C10—C9115.8 (2)
C1—N1—C12127.9 (2)C11—C10—H10A122.1
C11—N1—C12120.96 (19)C9—C10—H10A122.1
N1—C1—C2125.4 (2)C10—C11—C6124.3 (2)
N1—C1—C3110.6 (2)C10—C11—N1127.7 (2)
C2—C1—C3124.0 (2)C6—C11—N1108.0 (2)
C1—C2—H2A109.5N1—C12—C13110.80 (19)
C1—C2—H2B109.5N1—C12—H12A109.5
H2A—C2—H2B109.5C13—C12—H12A109.5
C1—C2—H2C109.5N1—C12—H12B109.5
H2A—C2—H2C109.5C13—C12—H12B109.5
H2B—C2—H2C109.5H12A—C12—H12B108.1
C6—C3—C1101.18 (18)C14—C13—C12114.4 (2)
C6—C3—C5112.9 (2)C14—C13—H13A108.7
C1—C3—C5111.86 (19)C12—C13—H13A108.7
C6—C3—C4111.20 (19)C14—C13—H13B108.7
C1—C3—C4109.1 (2)C12—C13—H13B108.7
C5—C3—C4110.3 (2)H13A—C13—H13B107.6
C3—C4—H4A109.5C15—C14—C13112.6 (2)
C3—C4—H4B109.5C15—C14—H14A109.1
H4A—C4—H4B109.5C13—C14—H14A109.1
C3—C4—H4C109.5C15—C14—H14B109.1
H4A—C4—H4C109.5C13—C14—H14B109.1
H4B—C4—H4C109.5H14A—C14—H14B107.8
C3—C5—H5A109.5C14—C15—C16113.2 (3)
C3—C5—H5B109.5C14—C15—H15A108.9
H5A—C5—H5B109.5C16—C15—H15A108.9
C3—C5—H5C109.5C14—C15—H15B108.9
H5A—C5—H5C109.5C16—C15—H15B108.9
H5B—C5—H5C109.5H15A—C15—H15B107.7
C11—C6—C7119.3 (2)C17—C16—C15114.2 (3)
C11—C6—C3109.15 (19)C17—C16—H16A108.7
C7—C6—C3131.6 (2)C15—C16—H16A108.7
C6—C7—C8118.1 (2)C17—C16—H16B108.7
C6—C7—H7A120.9C15—C16—H16B108.7
C8—C7—H7A120.9H16A—C16—H16B107.6
C9—C8—C7121.3 (2)O1—C17—O2120.4 (3)
C9—C8—H8A119.4O1—C17—C16124.5 (3)
C7—C8—H8A119.4O2—C17—C16115.1 (3)
C8—C9—C10121.3 (2)
C11—N1—C1—C2179.2 (2)C8—C9—C10—C110.5 (3)
C12—N1—C1—C24.5 (4)C9—C10—C11—C60.7 (3)
C11—N1—C1—C31.0 (2)C9—C10—C11—N1179.0 (2)
C12—N1—C1—C3175.3 (2)C7—C6—C11—C100.2 (3)
N1—C1—C3—C61.7 (2)C3—C6—C11—C10180.0 (2)
C2—C1—C3—C6178.4 (2)C7—C6—C11—N1178.82 (19)
N1—C1—C3—C5122.2 (2)C3—C6—C11—N11.4 (2)
C2—C1—C3—C558.0 (3)C1—N1—C11—C10178.8 (2)
N1—C1—C3—C4115.6 (2)C12—N1—C11—C104.6 (3)
C2—C1—C3—C464.3 (3)C1—N1—C11—C60.3 (2)
C1—C3—C6—C111.9 (2)C12—N1—C11—C6176.90 (19)
C5—C3—C6—C11121.6 (2)C1—N1—C12—C1399.2 (3)
C4—C3—C6—C11113.9 (2)C11—N1—C12—C1376.8 (3)
C1—C3—C6—C7178.4 (2)N1—C12—C13—C1464.4 (3)
C5—C3—C6—C758.7 (3)C12—C13—C14—C15174.0 (2)
C4—C3—C6—C765.8 (3)C13—C14—C15—C16179.9 (3)
C11—C6—C7—C80.4 (3)C14—C15—C16—C1794.4 (4)
C3—C6—C7—C8179.3 (2)C15—C16—C17—O18.5 (5)
C6—C7—C8—C90.5 (4)C15—C16—C17—O2172.8 (3)
C7—C8—C9—C100.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O1W0.841.822.637 (4)166
O1W—H1W1···Br0.81 (2)2.43 (2)3.240 (2)175 (5)
O1W—H1W2···Bri0.82 (2)2.47 (2)3.262 (3)165 (5)
C4—H4B···Cg2ii0.992.883.828 (3)162
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC17H24NO2+·Br·H2O
Mr372.30
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)14.4528 (3), 15.3367 (2), 8.0810 (2)
β (°) 99.437 (2)
V3)1766.98 (6)
Z4
Radiation typeCu Kα
µ (mm1)3.27
Crystal size (mm)0.55 × 0.18 × 0.12
Data collection
DiffractometerOxford Diffraction Gemini R
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.296, 0.676
No. of measured, independent and
observed [I > 2σ(I)] reflections
13155, 3504, 3049
Rint0.033
(sin θ/λ)max1)0.623
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.098, 1.06
No. of reflections3504
No. of parameters209
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.52, 0.43

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O1W0.841.822.637 (4)165.6
O1W—H1W1···Br0.812 (19)2.431 (19)3.240 (2)175 (5)
O1W—H1W2···Bri0.817 (19)2.47 (2)3.262 (3)165 (5)
C4—H4B···Cg2ii0.992.883.828 (3)162
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+3/2, z+1/2.
 

Acknowledgements

AW and YH acknowledges support from by DOE-CETBR grant No. DE-FG02-03ER63580 and NSF–RISE Award No. HRD-0627276. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

References

First citationArmitage, B. & O'Brien, D. F. (1992). J. Am. Chem. Soc. 114, 7396–7403.  CrossRef CAS Web of Science Google Scholar
First citationBengtsson, M., Karlsson, H. J., Westman, G. & Kubista, M. (2003). Nucleic Acids Res. 31, e45/1.  Web of Science CrossRef Google Scholar
First citationHirons, G. T., Fawcett, J. J. & Crissman, H. A. (1994). Cytometry, 15, 129–140.  CrossRef CAS PubMed Web of Science Google Scholar
First citationJung, M. E. & Kim, W. (2006). Bio. Med. Chem. 14, 92–97.  Web of Science CrossRef CAS Google Scholar
First citationKurihara, K., Toyoshima, Y. & Sukigara, M. (1977). J. Phys. Chem. 81, 1833–1837.  CrossRef CAS Web of Science Google Scholar
First citationMenger, F. M. & Pertusati, P. (2008). J. Org. Chem. 73, 2939–2942.  Web of Science PubMed Google Scholar
First citationOxford Diffraction (2007). CrysAlis Pro and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationReers, M., Smith, T. W. & Chen, L. B. (1991). Biochemistry, 30, 4480–4486.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSchmidt, J. R. & Polik, W. F. (2007). WebMO Pro, Version 8.0.010e; WebMO, LLC: Holland, MI, USA, available from http://www.webmo.net.  Google Scholar
First citationSchwartz, H. E. & Ulfelder, K. J. (1992). Anal. Chem. 64, 1737–1740.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhu, H., Clark, S. M., Benson, S. C., Rye, H. S., Glazer, A. N. & Mathies, R. A. (1994). Anal. Chem. 66, 1941–1948.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 1| January 2010| Pages o171-o172
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds