organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,3-Bis(bromo­meth­yl)-1,4-di­phenyl­benzene

aDepartment of Chemistry and Materials Science Program, University of New Hampshire, Durham, NH 03824-3598, USA
*Correspondence e-mail: glen.miller@unh.edu

(Received 28 September 2009; accepted 25 November 2009; online 4 December 2009)

In the title compound, C20H16Br2, the terminal phenyl groups are twisted away from the central ring by approximately 55 and −125° (average of four dihedral angles each), respectively. The crystal structure is stabilized by a combination of inter­molecular and intra­molecular inter­actions including inter­molecular ππ stacking inter­actions [C atoms of closest contact = 3.423 (5) Å].

Related literature

For the synthesis of terphenyls, see: Ames (1958[Ames, G. R. (1958). Chem. Rev. 58, 895-923.]). For the synthesis and applications of the title compound, see: Bredow et al. (1970[Bredow, K. V, Jaeschke, A., Schmid, H. G., Friebolin, H. & Kabuss, S. (1970). Org. Magn. Reson. 2, 543-555.]); Geng et al. (2002[Geng, Y., Katsis, D., Culligan, S. W., Ou, J. J., Chen, S. H. & Rothberg, L. J. (2002). Chem. Mater. 14, 463-470.]); Martin & Segura (1999[Martin, N. & Segura, J. L. (1999). Chem. Rev. 99, 3199-3246.]). For related structures, see: Baudour et al. (1986[Baudour, J. L., Toupet, L., Délugeard, Y. & Ghémid, S. (1986). Acta Cryst. C42, 1211-1217.]); Baker et al. (1993[Baker, K. N., Fratini, A. V., Resch, T., Knachel, H. C., Adams, W. W., Socci, E. P. & Farmer, B. L. (1993). Polymer, 34, 1571-1587.]).

[Scheme 1]

Experimental

Crystal data
  • C20H16Br2

  • Mr = 416.15

  • Monoclinic, P 21 /c

  • a = 8.8589 (10) Å

  • b = 11.5859 (13) Å

  • c = 16.655 (2) Å

  • β = 102.393 (4)°

  • V = 1669.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.85 mm−1

  • T = 296 K

  • 0.50 × 0.50 × 0.05 mm

Data collection
  • Bruker SMART X2S diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). GIS, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.195, Tmax = 0.794

  • 10674 measured reflections

  • 2955 independent reflections

  • 2395 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.117

  • S = 0.90

  • 2955 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.84 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯Br19 0.93 2.93 3.644 (4) 134
C20—H20A⋯Br19 0.97 2.80 3.563 (4) 136
C14—H14⋯Br20 0.93 2.96 3.704 (4) 139
C19—H19A⋯Br20 0.97 2.80 3.552 (4) 135
C19—H19B⋯Br20i 0.97 2.98 3.632 (4) 126
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: GIS (Bruker, 2007[Bruker (2007). GIS, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). GIS, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

For a review on the synthesis of substituted terphenyls see Ames (1958). For the synthesis of the title compound, see Bredow et al. (1970). The title compound has been utilized as a reagent in the synthesis of spiro-configured terfluorenes (Geng et al., 2002) and is a potentially useful precursor to an o-quinodimethane derivative (Martin & Segura, 1999). For related crystal structures, see Baudour et al. (1986); Baker et al. (1993).

We define the three rings of the terphenyl moiety as α, β and γ (Figure 1). Thus, terminal ring α contains C7 – C12, central ring β contains C1 – C6, and terminal ring γ contains C13 – C18. The rotations of ring α and ring γ relative to central ring β are approximately 55 ° and -125 °, respectively.

The rotations of ring α and ring γ are influenced by nearly equivalent sets of intramolecular C–H···π and C–H···Br interactions (Tables 1–2) as illustrated in Figure 2. Each γ ring also engages in a stabilizing, intermolecular ππ stacking interaction (C14···C16, 3.423 (5) Å) with another γ ring, as illustrated in Figure 3. The spacing between ππ stacking γ rings is nearly identical to the 3.435 Å interlayer spacing in graphite suggesting a relatively strong ππ stacking interaction. Likewise, interacting pairs of γ rings lie in near perfect parallel orientations with respect to each other (Figure 3).

There are 3 intermolecular and 4 intramolecular interactions involving Br atoms (Table 2). The intermolecular interactions consist of one significant Br–C interaction (Br19···C6, 3.470 (3) Å), one significant Br–H interaction (Br20···H19B, 2.9788 (5) Å), and one relatively weak Br–Br interaction (Br19···Br20, 3.7743 (7) Å). With regards to intramolecular interactions involving bromine, each bromine atom (i.e., Br19 and Br20) interacts with one methylene hydrogen (Br19···H20A, 2.7993 (5) Å; Br20···H19A, 2.7965 (6) Å) and one aryl hydrogen (Br19···H12, 2.9348 (5) Å; Br20···H14, 2.9559 (6) Å). Both can be viewed as halogen variations of traditional H-bonding, the first set shorter and stronger presumably due to the greater acidity associated with a proton on a benzylic bromide as compared to an aryl proton. An MM2 calculated structure for the title compound (not parameterized for Br···H interactions) indicates much longer Br···H distances (Br19,20···H19A,20 A, 3.14 Å; Br19,20···H12,14 3.79 Å) suggesting that Br···H-bonding in the crystal is both real and stabilizing.

Several intermolecular C–H···π interactions are also observed in the crystal structure (Table 1) but all have H···π distances greater than 3 Å and appear to be relatively weak.

Related literature top

For the synthesis of terphenyls, see: Ames (1958). For the synthesis and applications of the title compound, see: Bredow et al. (1970); Geng et al. (2002); Martin & Segura (1999). For related structures, see: Baudour et al. (1986); Baker et al. (1993).

Experimental top

The title compound was prepared via the published method (Bredow et al., 1970) as illustrated in Figure 4. 1H NMR (400 MHz, CDCl3) δ 4.72 (s, 4H), 7.27 (s, 2H), 7.40–7.54 (m, 10H); 13C NMR (100 MHz, CDCl3) δ 29.2 (CH2), 128.0 (CH), 128.6 (CH), 129.2 (CH), 131.0 (CH), 135.1 (C), 140.4 (C), 143.7 (C). An X-ray grade crystal was grown from slow evaporation of a saturated chloroform solution.

Computing details top

Data collection: GIS (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure showing the crystallographic labeling scheme and displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radii.
[Figure 2] Fig. 2. Perspective view of the title compound showing five nearly equivalent sets of intramolecular interactions involving the α and γ rings (see Comment section and Tables 1–2).
[Figure 3] Fig. 3. Perspective view of long range packing in the crystal structure including relatively weak intermolecular Br—Br and relatively strong intermolecular π-π stacking interactions.
[Figure 4] Fig. 4. Synthesis of the title compound, 2,3-bis(bromomethyl)-1,4-diphenylbenzene.
2,3-Bis(bromomethyl)-1,4-diphenylbenzene top
Crystal data top
C20H16Br2F(000) = 824
Mr = 416.15Dx = 1.656 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4281 reflections
a = 8.8589 (10) Åθ = 2.4–24.7°
b = 11.5859 (13) ŵ = 4.85 mm1
c = 16.655 (2) ÅT = 296 K
β = 102.393 (4)°Plate, colourless
V = 1669.6 (3) Å30.50 × 0.50 × 0.05 mm
Z = 4
Data collection top
Bruker SMART X2S
diffractometer
2955 independent reflections
Radiation source: micro-focus sealed tube2395 reflections with I > 2σ(I)
Doubly curved silicon crystal monochromatorRint = 0.033
ω scansθmax = 25.1°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 910
Tmin = 0.195, Tmax = 0.794k = 1213
10674 measured reflectionsl = 1918
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H-atom parameters constrained
S = 0.90 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
2955 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.84 e Å3
Crystal data top
C20H16Br2V = 1669.6 (3) Å3
Mr = 416.15Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.8589 (10) ŵ = 4.85 mm1
b = 11.5859 (13) ÅT = 296 K
c = 16.655 (2) Å0.50 × 0.50 × 0.05 mm
β = 102.393 (4)°
Data collection top
Bruker SMART X2S
diffractometer
2955 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
2395 reflections with I > 2σ(I)
Tmin = 0.195, Tmax = 0.794Rint = 0.033
10674 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 0.90Δρmax = 0.48 e Å3
2955 reflectionsΔρmin = 0.84 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7911 (4)0.0211 (3)0.11822 (18)0.0261 (7)
C20.6744 (3)0.1014 (3)0.12258 (18)0.0251 (7)
C30.6754 (3)0.2110 (3)0.08567 (18)0.0251 (7)
C40.7904 (4)0.2404 (3)0.04258 (19)0.0269 (7)
C50.9077 (4)0.1602 (3)0.04184 (19)0.0296 (7)
H50.98680.17870.01530.035*
C60.9090 (4)0.0545 (3)0.0793 (2)0.0292 (7)
H60.99030.00390.07880.035*
C70.7963 (4)0.0981 (3)0.15312 (19)0.0298 (7)
C80.9294 (4)0.1362 (3)0.2071 (2)0.0408 (9)
H81.01370.08690.22190.049*
C90.9371 (5)0.2470 (4)0.2389 (3)0.0522 (11)
H91.02680.27160.27470.063*
C100.8145 (5)0.3204 (3)0.2184 (3)0.0533 (11)
H100.81950.39400.24100.064*
C110.6828 (5)0.2845 (3)0.1635 (3)0.0530 (11)
H110.59990.33480.14830.064*
C120.6736 (4)0.1744 (3)0.1314 (2)0.0419 (9)
H120.58430.15110.09470.050*
C130.7925 (4)0.3495 (3)0.0039 (2)0.0312 (7)
C140.7961 (4)0.4578 (3)0.0321 (2)0.0380 (8)
H140.79280.46360.08740.046*
C150.8044 (5)0.5578 (4)0.0128 (3)0.0512 (11)
H150.80630.62940.01250.061*
C160.8098 (5)0.5512 (4)0.0940 (3)0.0532 (11)
H160.81500.61810.12410.064*
C170.8075 (5)0.4442 (4)0.1311 (3)0.0562 (12)
H170.81180.43920.18630.067*
C180.7989 (4)0.3441 (4)0.0863 (2)0.0429 (9)
H180.79740.27260.11190.051*
C190.5527 (4)0.0732 (3)0.16939 (19)0.0300 (7)
H19A0.53690.13950.20220.036*
H19B0.58830.00970.20660.036*
C200.5528 (4)0.2970 (3)0.0926 (2)0.0333 (8)
H20A0.45400.25810.08660.040*
H20B0.54410.35380.04910.040*
Br190.35394 (4)0.03039 (4)0.09650 (2)0.04810 (18)
Br200.60479 (5)0.37511 (4)0.20073 (3)0.05089 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0308 (17)0.0256 (18)0.0219 (15)0.0022 (13)0.0056 (13)0.0038 (12)
C20.0217 (15)0.0319 (19)0.0210 (14)0.0010 (13)0.0028 (12)0.0052 (13)
C30.0240 (15)0.0283 (18)0.0218 (15)0.0003 (13)0.0027 (12)0.0034 (12)
C40.0296 (17)0.0271 (18)0.0241 (15)0.0016 (13)0.0057 (12)0.0037 (13)
C50.0287 (16)0.0316 (19)0.0311 (17)0.0014 (14)0.0126 (13)0.0036 (14)
C60.0271 (16)0.0308 (18)0.0319 (17)0.0046 (13)0.0110 (13)0.0033 (14)
C70.0372 (18)0.0271 (18)0.0269 (16)0.0037 (14)0.0111 (14)0.0048 (13)
C80.046 (2)0.037 (2)0.038 (2)0.0043 (17)0.0047 (16)0.0014 (16)
C90.069 (3)0.041 (2)0.044 (2)0.014 (2)0.0068 (19)0.0061 (18)
C100.081 (3)0.027 (2)0.056 (3)0.010 (2)0.025 (2)0.0103 (19)
C110.064 (3)0.029 (2)0.070 (3)0.0084 (19)0.023 (2)0.0034 (19)
C120.044 (2)0.034 (2)0.047 (2)0.0011 (17)0.0089 (17)0.0009 (17)
C130.0262 (16)0.038 (2)0.0300 (17)0.0017 (14)0.0061 (13)0.0065 (14)
C140.040 (2)0.033 (2)0.044 (2)0.0044 (15)0.0148 (16)0.0038 (16)
C150.046 (2)0.036 (2)0.076 (3)0.0051 (18)0.023 (2)0.011 (2)
C160.043 (2)0.054 (3)0.064 (3)0.0082 (19)0.015 (2)0.030 (2)
C170.051 (3)0.080 (4)0.036 (2)0.001 (2)0.0060 (18)0.025 (2)
C180.047 (2)0.048 (2)0.0323 (19)0.0016 (18)0.0066 (16)0.0047 (17)
C190.0283 (16)0.0346 (19)0.0274 (16)0.0030 (14)0.0068 (13)0.0023 (14)
C200.0291 (17)0.033 (2)0.0388 (18)0.0063 (14)0.0089 (14)0.0034 (15)
Br190.0284 (2)0.0633 (3)0.0510 (3)0.00986 (16)0.00496 (17)0.00181 (18)
Br200.0586 (3)0.0429 (3)0.0588 (3)0.00343 (18)0.0298 (2)0.01598 (18)
Geometric parameters (Å, º) top
C1—C61.397 (5)C11—C121.378 (5)
C1—C21.403 (5)C11—H110.9300
C1—C71.496 (5)C12—H120.9300
C2—C31.412 (4)C13—C141.388 (5)
C2—C191.496 (5)C13—C181.387 (5)
C3—C41.408 (4)C14—C151.389 (5)
C3—C201.497 (4)C14—H140.9300
C4—C51.396 (5)C15—C161.366 (6)
C4—C131.485 (5)C15—H150.9300
C5—C61.373 (5)C16—C171.384 (6)
C5—H50.9300C16—H160.9300
C6—H60.9300C17—C181.390 (6)
C7—C81.392 (5)C17—H170.9300
C7—C121.387 (5)C18—H180.9300
C8—C91.385 (5)C19—Br191.976 (3)
C8—H80.9300C19—H19A0.9700
C9—C101.364 (6)C19—H19B0.9700
C9—H90.9300C20—Br201.979 (3)
C10—C111.382 (6)C20—H20A0.9700
C10—H100.9300C20—H20B0.9700
C6—C1—C2118.2 (3)C7—C12—C11120.7 (4)
C6—C1—C7118.2 (3)C7—C12—H12119.7
C2—C1—C7123.6 (3)C11—C12—H12119.7
C1—C2—C3120.0 (3)C14—C13—C18117.8 (3)
C1—C2—C19120.2 (3)C14—C13—C4123.1 (3)
C3—C2—C19119.7 (3)C18—C13—C4119.0 (3)
C2—C3—C4120.8 (3)C13—C14—C15121.3 (4)
C2—C3—C20119.5 (3)C13—C14—H14119.4
C4—C3—C20119.7 (3)C15—C14—H14119.4
C3—C4—C5117.6 (3)C16—C15—C14120.3 (4)
C3—C4—C13124.3 (3)C16—C15—H15119.9
C5—C4—C13118.0 (3)C14—C15—H15119.9
C6—C5—C4121.6 (3)C15—C16—C17119.5 (4)
C6—C5—H5119.2C15—C16—H16120.2
C4—C5—H5119.2C17—C16—H16120.2
C5—C6—C1121.6 (3)C18—C17—C16120.3 (4)
C5—C6—H6119.2C18—C17—H17119.8
C1—C6—H6119.2C16—C17—H17119.8
C8—C7—C12118.3 (3)C17—C18—C13120.8 (4)
C8—C7—C1119.6 (3)C17—C18—H18119.6
C12—C7—C1122.0 (3)C13—C18—H18119.6
C7—C8—C9120.4 (4)C2—C19—Br19112.4 (2)
C7—C8—H8119.8C2—C19—H19A109.1
C9—C8—H8119.8Br19—C19—H19A109.1
C10—C9—C8120.7 (4)C2—C19—H19B109.1
C10—C9—H9119.6Br19—C19—H19B109.1
C8—C9—H9119.6H19A—C19—H19B107.8
C9—C10—C11119.4 (4)C3—C20—Br20110.1 (2)
C9—C10—H10120.3C3—C20—H20A109.6
C11—C10—H10120.3Br20—C20—H20A109.6
C10—C11—C12120.4 (4)C3—C20—H20B109.6
C10—C11—H11119.8Br20—C20—H20B109.6
C12—C11—H11119.8H20A—C20—H20B108.2
C6—C1—C2—C32.2 (4)C7—C8—C9—C100.3 (6)
C7—C1—C2—C3178.0 (3)C8—C9—C10—C111.6 (6)
C6—C1—C2—C19175.1 (3)C9—C10—C11—C121.6 (6)
C7—C1—C2—C194.8 (4)C8—C7—C12—C111.0 (5)
C1—C2—C3—C41.5 (4)C1—C7—C12—C11178.9 (3)
C19—C2—C3—C4178.8 (3)C10—C11—C12—C70.2 (6)
C1—C2—C3—C20178.4 (3)C3—C4—C13—C1458.9 (4)
C19—C2—C3—C201.1 (4)C5—C4—C13—C14122.9 (4)
C2—C3—C4—C53.6 (4)C3—C4—C13—C18124.3 (3)
C20—C3—C4—C5176.3 (3)C5—C4—C13—C1853.9 (4)
C2—C3—C4—C13174.6 (3)C18—C13—C14—C150.5 (5)
C20—C3—C4—C135.5 (5)C4—C13—C14—C15177.3 (3)
C3—C4—C5—C62.1 (4)C13—C14—C15—C160.2 (6)
C13—C4—C5—C6176.2 (3)C14—C15—C16—C170.2 (6)
C4—C5—C6—C11.6 (5)C15—C16—C17—C180.4 (6)
C2—C1—C6—C53.7 (5)C16—C17—C18—C130.0 (6)
C7—C1—C6—C5176.4 (3)C14—C13—C18—C170.4 (5)
C6—C1—C7—C853.1 (4)C4—C13—C18—C17177.3 (3)
C2—C1—C7—C8126.8 (3)C1—C2—C19—Br19103.0 (3)
C6—C1—C7—C12124.8 (4)C3—C2—C19—Br1979.7 (3)
C2—C1—C7—C1255.3 (4)C2—C3—C20—Br2080.7 (3)
C12—C7—C8—C91.0 (5)C4—C3—C20—Br2099.2 (3)
C1—C7—C8—C9179.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···Br190.932.933.644 (4)134
C20—H20A···Br190.972.803.563 (4)136
C14—H14···Br200.932.963.704 (4)139
C19—H19A···Br200.972.803.552 (4)135
C19—H19B···Br20i0.972.983.632 (4)126
Symmetry code: (i) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC20H16Br2
Mr416.15
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)8.8589 (10), 11.5859 (13), 16.655 (2)
β (°) 102.393 (4)
V3)1669.6 (3)
Z4
Radiation typeMo Kα
µ (mm1)4.85
Crystal size (mm)0.50 × 0.50 × 0.05
Data collection
DiffractometerBruker SMART X2S
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.195, 0.794
No. of measured, independent and
observed [I > 2σ(I)] reflections
10674, 2955, 2395
Rint0.033
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.117, 0.90
No. of reflections2955
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.84

Computer programs: GIS (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···Br190.932.933.644 (4)134
C20—H20A···Br190.972.803.563 (4)136
C14—H14···Br200.932.963.704 (4)139
C19—H19A···Br200.972.803.552 (4)135
C19—H19B···Br20i0.972.983.632 (4)126
Symmetry code: (i) x+1, y1/2, z+1/2.
C–H···π interaction geometry (Å, °) top
For atom numbers, see Figure 1 in supplementary materials
C–H···πC–HH···πC···πC–H···πRing Involved
* C5-H5···C180.932.846 (4)3.023 (5)91.9 (2)γ
* C6-H6···C80.932.826 (4)3.046 (5)94.7 (2)α
* C8-H8···C60.932.870 (3)3.046 (5)91.9 (2)α
* C18-H18···C50.932.852 (3)3.023 (5)91.5 (2)γ
* C19-H19B···C70.972.540 (4)2.987 (5)108.0 (2)α
* C19-H19B···C120.972.664 (4)3.173 (5)113.1 (2)α
* C20-H20B···C130.972.541 (4)2.988 (5)108.1 (2)γ
* C20-H20B···C140.972.605 (4)3.172 (5)117.6 (2)γ
# C6-H6···C50.933.041 (4)3.782 (5)137.8 (2)β
# C6-H6···C60.933.032 (4)3.606 (5)121.4 (2)β
# C9-H9···C50.933.088 (3)3.772 (6)131.8 (3)α
# C19-H19B···C170.973.018 (4)3.600 (5)119.8 (2)γ
* indicates an intramolecular interaction; # indicates an intermolecular interaction
 

Acknowledgements

The authors thank the National Science Foundation for support of this work through the EPSCoR Research Infrastructure Improvement program (NSF 0432060) and the Center for High-rate Nanomanufacturing (NSF EEC-0425826).

References

First citationAmes, G. R. (1958). Chem. Rev. 58, 895–923.  CrossRef CAS Web of Science Google Scholar
First citationBaker, K. N., Fratini, A. V., Resch, T., Knachel, H. C., Adams, W. W., Socci, E. P. & Farmer, B. L. (1993). Polymer, 34, 1571–1587.  CSD CrossRef CAS Web of Science Google Scholar
First citationBaudour, J. L., Toupet, L., Délugeard, Y. & Ghémid, S. (1986). Acta Cryst. C42, 1211–1217.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationBredow, K. V, Jaeschke, A., Schmid, H. G., Friebolin, H. & Kabuss, S. (1970). Org. Magn. Reson. 2, 543–555.  CrossRef Google Scholar
First citationBruker (2007). GIS, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGeng, Y., Katsis, D., Culligan, S. W., Ou, J. J., Chen, S. H. & Rothberg, L. J. (2002). Chem. Mater. 14, 463–470.  Web of Science CSD CrossRef CAS Google Scholar
First citationMartin, N. & Segura, J. L. (1999). Chem. Rev. 99, 3199–3246.  PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds