metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[bis­­[μ2-1,4-bis­­(1,2,4-triazol-1-yl­meth­yl)benzene-κ2N4:N4′]bis­(nitrito-κO)cobalt(II)]

aScience College, Civil Aviation University of China, Tianjin 300300, People's Republic of China
*Correspondence e-mail: xzhu@cauc.edu.cn

(Received 22 September 2009; accepted 28 September 2009; online 19 December 2009)

The CoII atom in the title complex, [Co(NO2)2(C12H12N6)2]n, lies on an inversion center and is coordinated by four N atoms from the triazole rings of two symmetry-related pairs of 1,4-bis­(1,2,4-triazol-1-ylmeth­yl)benzene (bbtz) ligands and two O atoms from two symmetry-related monodentate nitrate ligands in a distorted octa­hedral geometry. The Co atoms are bridged by four bbtz ligands, forming a two-dimensional (4,4) network parallel to (102).

Related literature

The synthesis of the ligand 1,4-bis­(1,2,4-triazol-1-ylmeth­yl)-benzene (bbtz) was described by Peng et al. (2004[Peng, Y. F., Li, B. Z., Zzhou, J. H., Li, B. L. & Zhang, Y. (2004). Chin. J. Struct. Chem. 23, 985-988.]). Several bbtz complexes have been synthesized and structurally characterized, see: Li et al. (2005[Li, B. L., Peng, Y. F., Li, B. Z. & Zhang, Y. (2005). Chem. Commun. pp. 2333-2335.]); Wang et al. (2007[Wang, L.-Y., Peng, Y.-F., Zhang, Y.-P., Li, B.-L. & Zhang, Y. (2007). Acta Cryst. C63, m297-m299.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(NO2)2(C12H12N6)2]

  • Mr = 631.50

  • Monoclinic, P 21 /c

  • a = 8.3037 (13) Å

  • b = 20.376 (3) Å

  • c = 8.4261 (11) Å

  • β = 104.390 (4)°

  • V = 1380.9 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.68 mm−1

  • T = 193 K

  • 0.33 × 0.26 × 0.10 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Private communication to Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.806, Tmax = 0.935

  • 15379 measured reflections

  • 3152 independent reflections

  • 2768 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.098

  • S = 1.07

  • 3152 reflections

  • 197 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Selected geometric parameters (Å, °)

Co1—O1 2.1031 (15)
Co1—N6i 2.1418 (16)
Co1—N3 2.1530 (16)
O1ii—Co1—O1 180
O1—Co1—N6i 85.99 (6)
N6i—Co1—N6iii 180
O1—Co1—N3 93.70 (6)
N6i—Co1—N3 90.52 (6)
N3—Co1—N3ii 180
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x, -y+1, -z+1; (iii) [x-1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2000[Rigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound is isostructural with its azido NiII analog (Wang et al., 2007).

Fig. 1 shows the local coordination of the CoII atom. In the complex the CoII atom occupies an inversion center. The coordination geometry of the CoII atom is a distorted octahedron. Each CoII atom is coordinated equatorial by four nitrogen atoms from the triazole rings of four bbtz ligands [Co1—N3, 2.1530 (16) Å; Co1—N6 (-x + 1, y - 1/2, -z + 1/2), 2.1418 (16) Å], and axially by two oxygen atoms from two symmetry-related nitrite anions [Co1—O1, 2.1031 (15) Å]. The bbtz ligands shows the trans-gauche conformation, similar to the uncoordinated bbtz molecule (Peng et al., 2004).

As illustrated in Fig.2, each bbtz ligand coordinated to the CoII atoms through its two triazole nitrogen atoms, thus acting as a bridging bidentate ligand to form a two-dimensional (4,4) network. As a consequence of the symmetry of the crystal structure, the edge lengths are equal, with a vaule of 14.4182 (14) Å. The square-grid sheets are stacked in an offset fashion parallel to the c direction. The off-set half-cell superposition of each pair of adjacent networks divides the voids into smaller rectangle. The nitrile anions of one sheet project into the holes of the next sheet. In the superposition structure, the sheets are arranged in the sequence···A—B—A—B··· (Fig.3).

Related literature top

The synthesis of the ligand 1,4-bis(1,2,4-triazol-1-ylmethyl)-benzene (bbtz) was described by Peng et al. (2004). Several bbtz complexes have been synthesized and structurally characterized, see: Li et al. (2005; Wang et al. (2007).

Experimental top

A H2O/MeOH solution (20 ml, 1:1 v/v) of Co(ClO4)2.6H2O (0.50 mmol) and NaNO2 (2.0 mmol) was added to one leg of a "H-shaped" tube, and a H2O/MeOH solution (20 ml, 1:1 v/v) of bbtz (0.240 g, 1.00 mmol) was added to the other leg of the tube. After several weeks, the well shaped red single crystals were obtained. Found: C, 45.57; H, 3.79; N, 30.94%. Calcd. for C24H24CoN14O4: C, 45.65; H, 3.83; N, 31.06%.

Refinement top

H atom were placed in idealized positions and refined as riding, with C—H distances of 0.95 (triazole and benzene) and 0.99Å (methyl), and with Uiso(H) = 1.2 times Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2000); cell refinement: CrystalClear (Rigaku, 2000); data reduction: CrystalClear (Rigaku, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The coordination environment of the CoII atom in the title compound. Ellipsoids are drawn at the 30% probability level. [Symmetry codes # -x, -y + 1, -z + 1; $ -x + 1, y - 1/2, -z + 1/2; * x - 1, -y + 3/2, z + 1/2]. The hydrogen atoms have been omitted for clarity.
[Figure 2] Fig. 2. View of the two-dimensional (4,4) network of the title compound along the c direction.
[Figure 3] Fig. 3. The cell packing of the title compound.
Poly[bis[µ2-1,4-bis(1,2,4-triazol-1-ylmethyl)benzene- κ2N4:N4']bis(nitrito-κO)cobalt(II)] top
Crystal data top
[Co(NO2)2(C12H12N6)2]F(000) = 650
Mr = 631.50Dx = 1.519 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.3037 (13) ÅCell parameters from 5616 reflections
b = 20.376 (3) Åθ = 3.1–27.5°
c = 8.4261 (11) ŵ = 0.68 mm1
β = 104.390 (4)°T = 193 K
V = 1380.9 (3) Å3Block, red
Z = 20.33 × 0.26 × 0.10 mm
Data collection top
Rigaku Mercury CCD
diffractometer
3152 independent reflections
Radiation source: fine-focus sealed tube2768 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
h = 1010
Tmin = 0.806, Tmax = 0.935k = 2626
15379 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0436P)2 + 0.7485P]
where P = (Fo2 + 2Fc2)/3
3152 reflections(Δ/σ)max < 0.001
197 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
[Co(NO2)2(C12H12N6)2]V = 1380.9 (3) Å3
Mr = 631.50Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.3037 (13) ŵ = 0.68 mm1
b = 20.376 (3) ÅT = 193 K
c = 8.4261 (11) Å0.33 × 0.26 × 0.10 mm
β = 104.390 (4)°
Data collection top
Rigaku Mercury CCD
diffractometer
3152 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
2768 reflections with I > 2σ(I)
Tmin = 0.806, Tmax = 0.935Rint = 0.032
15379 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.07Δρmax = 0.28 e Å3
3152 reflectionsΔρmin = 0.29 e Å3
197 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.00000.50000.50000.02085 (12)
O10.25015 (18)0.50405 (7)0.6333 (2)0.0350 (4)
O20.48900 (19)0.54314 (9)0.7278 (2)0.0461 (4)
N10.1620 (2)0.57944 (8)0.0939 (2)0.0273 (4)
N20.0036 (2)0.58502 (11)0.0290 (2)0.0412 (5)
N30.0484 (2)0.54604 (8)0.2865 (2)0.0257 (3)
N40.8222 (2)0.83452 (8)0.2102 (2)0.0274 (4)
N50.9542 (2)0.80233 (9)0.1784 (2)0.0349 (4)
N60.93982 (19)0.90596 (8)0.08323 (19)0.0253 (3)
N70.3509 (2)0.54893 (10)0.6299 (2)0.0425 (5)
C10.3965 (2)0.65065 (10)0.0737 (2)0.0282 (4)
C20.5418 (3)0.63661 (11)0.1894 (3)0.0343 (5)
H2A0.56990.59230.21880.041*
C30.6470 (3)0.68667 (11)0.2632 (3)0.0339 (5)
H3A0.74710.67620.34190.041*
C40.6084 (3)0.75136 (10)0.2239 (2)0.0289 (4)
C50.4628 (3)0.76574 (11)0.1061 (3)0.0376 (5)
H5A0.43530.81010.07660.045*
C60.3576 (3)0.71570 (11)0.0315 (3)0.0364 (5)
H6A0.25850.72600.04880.044*
C70.2823 (3)0.59545 (11)0.0029 (3)0.0333 (5)
H7A0.22140.60820.11510.040*
H7B0.34940.55600.01120.040*
C80.7201 (3)0.80549 (11)0.3108 (3)0.0370 (5)
H8A0.65080.84030.34250.044*
H8B0.79390.78770.41250.044*
C90.0655 (3)0.56403 (12)0.1496 (3)0.0371 (5)
H9A0.18170.56180.14060.044*
C100.1907 (3)0.55662 (11)0.2456 (2)0.0312 (5)
H10A0.29790.54890.31530.037*
C111.0198 (3)0.84752 (10)0.1016 (3)0.0317 (5)
H11A1.11570.83970.06210.038*
C120.8157 (2)0.89541 (10)0.1543 (2)0.0269 (4)
H12A0.73440.92700.16350.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.01814 (19)0.02220 (19)0.0236 (2)0.00012 (13)0.00787 (14)0.00201 (14)
O10.0210 (7)0.0348 (8)0.0459 (9)0.0049 (6)0.0020 (6)0.0075 (7)
O20.0229 (8)0.0624 (11)0.0527 (10)0.0088 (7)0.0087 (7)0.0060 (9)
N10.0262 (9)0.0307 (9)0.0257 (8)0.0063 (7)0.0079 (7)0.0017 (7)
N20.0296 (10)0.0549 (13)0.0378 (10)0.0010 (9)0.0058 (8)0.0142 (9)
N30.0251 (8)0.0266 (8)0.0273 (8)0.0002 (6)0.0101 (6)0.0036 (7)
N40.0262 (8)0.0276 (8)0.0291 (9)0.0053 (7)0.0083 (7)0.0024 (7)
N50.0296 (9)0.0304 (9)0.0455 (11)0.0004 (7)0.0108 (8)0.0020 (8)
N60.0221 (8)0.0260 (8)0.0289 (8)0.0026 (6)0.0084 (6)0.0019 (7)
N70.0331 (10)0.0523 (12)0.0406 (11)0.0124 (9)0.0061 (8)0.0041 (9)
C10.0274 (10)0.0323 (11)0.0283 (10)0.0054 (8)0.0135 (8)0.0017 (8)
C20.0330 (11)0.0293 (11)0.0412 (12)0.0004 (9)0.0101 (9)0.0087 (9)
C30.0288 (11)0.0365 (11)0.0342 (11)0.0014 (9)0.0034 (9)0.0089 (9)
C40.0293 (10)0.0314 (10)0.0284 (10)0.0053 (8)0.0118 (8)0.0013 (8)
C50.0344 (12)0.0282 (11)0.0499 (14)0.0001 (9)0.0098 (10)0.0077 (10)
C60.0284 (11)0.0389 (12)0.0394 (12)0.0001 (9)0.0035 (9)0.0091 (10)
C70.0368 (12)0.0396 (12)0.0281 (10)0.0116 (9)0.0167 (9)0.0018 (9)
C80.0424 (13)0.0397 (12)0.0323 (11)0.0137 (10)0.0154 (10)0.0017 (10)
C90.0244 (11)0.0480 (13)0.0404 (12)0.0020 (9)0.0110 (9)0.0111 (10)
C100.0249 (10)0.0411 (12)0.0280 (10)0.0036 (8)0.0069 (8)0.0064 (9)
C110.0244 (10)0.0303 (10)0.0414 (12)0.0003 (8)0.0099 (9)0.0019 (9)
C120.0242 (10)0.0267 (10)0.0309 (10)0.0022 (8)0.0088 (8)0.0022 (8)
Geometric parameters (Å, º) top
Co1—O1i2.1031 (15)C1—C21.380 (3)
Co1—O12.1031 (15)C1—C61.389 (3)
Co1—N6ii2.1418 (16)C1—C71.509 (3)
Co1—N6iii2.1418 (16)C2—C31.385 (3)
Co1—N32.1530 (16)C2—H2A0.9500
Co1—N3i2.1530 (16)C3—C41.377 (3)
O1—N71.245 (2)C3—H3A0.9500
O2—N71.240 (2)C4—C51.391 (3)
N1—C101.325 (3)C4—C81.509 (3)
N1—N21.353 (2)C5—C61.387 (3)
N1—C71.475 (2)C5—H5A0.9500
N2—C91.319 (3)C6—H6A0.9500
N3—C101.328 (2)C7—H7A0.9900
N3—C91.348 (3)C7—H7B0.9900
N4—C121.324 (3)C8—H8A0.9900
N4—N51.360 (2)C8—H8B0.9900
N4—C81.465 (3)C9—H9A0.9500
N5—C111.319 (3)C10—H10A0.9500
N6—C121.331 (2)C11—H11A0.9500
N6—C111.353 (3)C12—H12A0.9500
N6—Co1iv2.1418 (16)
O1i—Co1—O1180.0C4—C3—C2120.9 (2)
O1i—Co1—N6ii94.01 (6)C4—C3—H3A119.6
O1—Co1—N6ii85.99 (6)C2—C3—H3A119.6
O1i—Co1—N6iii85.99 (6)C3—C4—C5118.83 (19)
O1—Co1—N6iii94.01 (6)C3—C4—C8120.3 (2)
N6ii—Co1—N6iii180.00 (8)C5—C4—C8120.85 (19)
O1i—Co1—N386.30 (6)C6—C5—C4120.4 (2)
O1—Co1—N393.70 (6)C6—C5—H5A119.8
N6ii—Co1—N390.52 (6)C4—C5—H5A119.8
N6iii—Co1—N389.48 (6)C5—C6—C1120.3 (2)
O1i—Co1—N3i93.70 (6)C5—C6—H6A119.8
O1—Co1—N3i86.30 (6)C1—C6—H6A119.8
N6ii—Co1—N3i89.48 (6)N1—C7—C1111.64 (17)
N6iii—Co1—N3i90.52 (6)N1—C7—H7A109.3
N3—Co1—N3i180.00 (8)C1—C7—H7A109.3
N7—O1—Co1126.67 (14)N1—C7—H7B109.3
C10—N1—N2109.92 (16)C1—C7—H7B109.3
C10—N1—C7128.82 (18)H7A—C7—H7B108.0
N2—N1—C7121.23 (17)N4—C8—C4112.87 (17)
C9—N2—N1102.28 (17)N4—C8—H8A109.0
C10—N3—C9102.35 (17)C4—C8—H8A109.0
C10—N3—Co1130.55 (14)N4—C8—H8B109.0
C9—N3—Co1126.63 (14)C4—C8—H8B109.0
C12—N4—N5110.21 (16)H8A—C8—H8B107.8
C12—N4—C8127.34 (18)N2—C9—N3115.02 (19)
N5—N4—C8122.01 (17)N2—C9—H9A122.5
C11—N5—N4102.19 (17)N3—C9—H9A122.5
C12—N6—C11102.66 (16)N3—C10—N1110.43 (18)
C12—N6—Co1iv124.14 (13)N3—C10—H10A124.8
C11—N6—Co1iv132.60 (13)N1—C10—H10A124.8
O2—N7—O1115.52 (19)N5—C11—N6114.82 (18)
C2—C1—C6119.04 (19)N5—C11—H11A122.6
C2—C1—C7119.60 (19)N6—C11—H11A122.6
C6—C1—C7121.36 (19)N4—C12—N6110.11 (17)
C1—C2—C3120.5 (2)N4—C12—H12A124.9
C1—C2—H2A119.7N6—C12—H12A124.9
C3—C2—H2A119.7
N6ii—Co1—O1—N7126.75 (19)C2—C1—C6—C50.6 (3)
N6iii—Co1—O1—N753.25 (19)C7—C1—C6—C5178.6 (2)
N3—Co1—O1—N736.48 (19)C10—N1—C7—C163.3 (3)
N3i—Co1—O1—N7143.52 (19)N2—N1—C7—C1119.1 (2)
C10—N1—N2—C90.5 (2)C2—C1—C7—N188.2 (2)
C7—N1—N2—C9177.54 (19)C6—C1—C7—N191.0 (2)
O1i—Co1—N3—C10165.51 (19)C12—N4—C8—C4115.1 (2)
O1—Co1—N3—C1014.49 (19)N5—N4—C8—C473.2 (3)
N6ii—Co1—N3—C1071.53 (19)C3—C4—C8—N4104.3 (2)
N6iii—Co1—N3—C10108.47 (19)C5—C4—C8—N477.4 (3)
O1i—Co1—N3—C95.24 (18)N1—N2—C9—N30.5 (3)
O1—Co1—N3—C9174.76 (18)C10—N3—C9—N20.3 (3)
N6ii—Co1—N3—C999.22 (18)Co1—N3—C9—N2173.14 (16)
N6iii—Co1—N3—C980.78 (18)C9—N3—C10—N10.0 (2)
C12—N4—N5—C110.5 (2)Co1—N3—C10—N1172.41 (13)
C8—N4—N5—C11173.46 (18)N2—N1—C10—N30.3 (3)
Co1—O1—N7—O2175.00 (14)C7—N1—C10—N3177.51 (18)
C6—C1—C2—C30.3 (3)N4—N5—C11—N60.4 (2)
C7—C1—C2—C3178.94 (19)C12—N6—C11—N50.1 (2)
C1—C2—C3—C40.6 (3)Co1iv—N6—C11—N5170.93 (14)
C2—C3—C4—C51.2 (3)N5—N4—C12—N60.5 (2)
C2—C3—C4—C8177.2 (2)C8—N4—C12—N6172.95 (18)
C3—C4—C5—C60.9 (3)C11—N6—C12—N40.2 (2)
C8—C4—C5—C6177.4 (2)Co1iv—N6—C12—N4172.27 (12)
C4—C5—C6—C10.0 (3)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y1/2, z+1/2; (iii) x1, y+3/2, z+1/2; (iv) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Co(NO2)2(C12H12N6)2]
Mr631.50
Crystal system, space groupMonoclinic, P21/c
Temperature (K)193
a, b, c (Å)8.3037 (13), 20.376 (3), 8.4261 (11)
β (°) 104.390 (4)
V3)1380.9 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.68
Crystal size (mm)0.33 × 0.26 × 0.10
Data collection
DiffractometerRigaku Mercury CCD
diffractometer
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.806, 0.935
No. of measured, independent and
observed [I > 2σ(I)] reflections
15379, 3152, 2768
Rint0.032
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.098, 1.07
No. of reflections3152
No. of parameters197
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.29

Computer programs: CrystalClear (Rigaku, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Co1—O12.1031 (15)Co1—N32.1530 (16)
Co1—N6i2.1418 (16)
O1ii—Co1—O1180.0O1—Co1—N393.70 (6)
O1—Co1—N6i85.99 (6)N6i—Co1—N390.52 (6)
N6i—Co1—N6iii180.00 (8)N3—Co1—N3ii180.00 (8)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y+1, z+1; (iii) x1, y+3/2, z+1/2.
 

Acknowledgements

This work was supported by the funds of the Civil Aviation University of China (grant No. 08CAUC-S03).

References

First citationJacobson, R. (1998). REQAB. Private communication to Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLi, B. L., Peng, Y. F., Li, B. Z. & Zhang, Y. (2005). Chem. Commun. pp. 2333–2335.  Web of Science CSD CrossRef Google Scholar
First citationPeng, Y. F., Li, B. Z., Zzhou, J. H., Li, B. L. & Zhang, Y. (2004). Chin. J. Struct. Chem. 23, 985–988.  CAS Google Scholar
First citationRigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, L.-Y., Peng, Y.-F., Zhang, Y.-P., Li, B.-L. & Zhang, Y. (2007). Acta Cryst. C63, m297–m299.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds