metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[hexa­aqua­bis­(μ3-terephthalato)(μ2-terephthalato)diytterbium(III)]

aSchool of Chemistry and Environment, South China Normal University, Guangzhou 510631, People's Republic of China
*Correspondence e-mail: fengsun1974@yahoo.com.cn

(Received 15 November 2009; accepted 1 December 2009; online 9 December 2009)

In the title two-dimensional coordination polymer, [Yb2(C8H4O4)3(H2O)6]n, the unique YbIII ion is eight-coordinated in a distorted dodeca­hedral coordination geometry by three water O atoms and five O atoms from carboxyl­ate groups belonging to four different terephthalate ligands. One of the terephthalate ligands is located around an inversion center. The coordination polymers are parallel to (121) and are connected by O—H⋯O hydrogen bonds into a three-dimensional framework.

Related literature

For the isostructural erbium(III) and lutetium(III) complexes, see: Daiguebonne et al. (2006[ Daiguebonne, C., Kerbellec, N., Bernot, K., Gerault, Y., Deluzet, A. & Guillou, O. (2006). Inorg. Chem. 45, 5399-5406.]); Xie et al. (2008[ Xie, S.-L., Xie, B.-Q., Tang, X.-Y., Wang, N. & Yue, S.-T. (2008). Z. Anorg. Allg. Chem. 634, 842-844.]).

[Scheme 1]

Experimental

Crystal data
  • [Yb2(C8H4O4)3(H2O)6]

  • Mr = 473.26

  • Triclinic, [P \overline 1]

  • a = 7.8413 (7) Å

  • b = 9.5545 (8) Å

  • c = 10.6561 (9) Å

  • α = 68.827 (1)°

  • β = 71.024 (1)°

  • γ = 75.206 (1)°

  • V = 695.34 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 6.77 mm−1

  • T = 296 K

  • 0.21 × 0.18 × 0.17 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[ Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.251, Tmax = 0.316

  • 3564 measured reflections

  • 2444 independent reflections

  • 2323 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.020

  • wR(F2) = 0.048

  • S = 1.04

  • 2444 reflections

  • 217 parameters

  • 9 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.82 e Å−3

  • Δρmin = −0.73 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯O2Wi 0.81 (4) 2.35 (3) 3.123 (5) 158 (6)
O1W—H1W⋯O3 0.81 (4) 2.52 (4) 3.104 (5) 130 (4)
O1W—H2W⋯O5ii 0.82 (4) 1.91 (5) 2.714 (4) 170 (5)
O2W—H3W⋯O1iii 0.82 (5) 1.97 (5) 2.771 (4) 167 (5)
O2W—H4W⋯O1iv 0.82 (3) 2.17 (3) 2.900 (5) 149 (5)
O3W—H5W⋯O6v 0.82 (3) 2.08 (2) 2.846 (4) 156 (4)
O3W—H6W⋯O1iv 0.82 (4) 1.95 (4) 2.746 (4) 165 (5)
Symmetry codes: (i) -x, -y+1, -z+2; (ii) -x+1, -y+1, -z+2; (iii) -x, -y+1, -z+1; (iv) x, y-1, z+1; (v) -x+1, -y, -z+2.

Data collection: APEX2 (Bruker, 2004[ Bruker (2004). APEX2 and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[ Bruker (2004). APEX2 and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[ Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[ Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[ Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Terephthalic acid as a dicarboxylate ligand may exhibit various coordination modes with transition metals or lanthanide ions that result in one-, two- or three-dimensional metal-organic frameworks (MOFs). As an extension of this research we report here the structure of the title two-dimensional coordination polymer of YbIII which is isostructural with LuIII and ErIII complexes (Daiguebonne et al., 2006; Xie et al., 2008) .

The asymmetric unit of the title compound (Fig. 1) contains one YbIII ion, one and a half of terephthalate ligand, and three coordinated water molecules. The YbIII ion is eight-coordinate with a dodecahedral coordination polyhedron made of three oxygen atoms from three coordination water molecules and five oxygen atoms from carboxylate groups of four different terephthalate ligands.

The coordination polymers are joined by O—H···O hydrogen bonds between coordinated water molecules and carboxylate groups of terephthalate ligands (Table 1).

Related literature top

Forthe isostructural erbium(III) and lutetium(III) complexes, see: Daiguebonne et al. (2006); Xie et al. (2008).

Experimental top

A mixture of AgNO3(0.057 g, 0.33 mmol), Yb2O3(0.116 g, 0.33 mmol), 2-pyrazinecarboxylic acid(0.165 g, 1.33 mmol), terephthalic acid (0.166 g, 1.0 mmol), H2O(7 ml), and HClO4(0.257 mmol)(pH 2) was sealed in a 20 ml Teflon-lined reaction vessel at 443 K for 6 days and then slowly cooled to room temperature. The product was collected by filtration, washed with water and air-dried. Colorless block crystals were suitable for X-ray analysis were obtained.

Refinement top

H atoms bonded to C atoms were positioned geometrically and refined as riding, with C—H = 0.93 Å and Uiso(H) = 1.2 Ueq(C). H atoms of the water molecules were found from difference Fourier maps and refined with restraints imposed on the O-H and H···H distances [O—H = 0.82 (1) Å and H···H = 1.29 (1) Å] and displacement parameters set to 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP view of the asymmetric unit of the title compound with displacement ellipsoids drawn at the 30% probability level. Symmetry codes: (A) 1 - x, -y, 3 - z.;(B) -x, 1 - y, 2 - z; (C) 1 - x, 1 - y, 1 - z.
[Figure 2] Fig. 2. A view of the three-dimensional structure of the title compound. Hydrogen atoms are omitted for clarity.
Poly[hexaaquabis(µ3-terephthalato)(µ2-terephthalato)diytterbium(III)] top
Crystal data top
[Yb2(C8H4O4)3(H2O)6]Z = 2
Mr = 473.26F(000) = 452
Triclinic, P1Dx = 2.260 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.8413 (7) ÅCell parameters from 2800 reflections
b = 9.5545 (8) Åθ = 2.6–27.8°
c = 10.6561 (9) ŵ = 6.77 mm1
α = 68.827 (1)°T = 296 K
β = 71.024 (1)°Block, colorless
γ = 75.206 (1)°0.21 × 0.18 × 0.17 mm
V = 695.34 (10) Å3
Data collection top
Bruker APEXII area-detector
diffractometer
2444 independent reflections
Radiation source: fine-focus sealed tube2323 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
Detector resolution: 0 pixels mm-1θmax = 25.2°, θmin = 2.1°
ϕ and ω scanh = 97
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1011
Tmin = 0.251, Tmax = 0.316l = 1211
3564 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.048H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0237P)2 + 0.8814P]
where P = (Fo2 + 2Fc2)/3
2444 reflections(Δ/σ)max = 0.003
217 parametersΔρmax = 0.82 e Å3
9 restraintsΔρmin = 0.73 e Å3
Crystal data top
[Yb2(C8H4O4)3(H2O)6]γ = 75.206 (1)°
Mr = 473.26V = 695.34 (10) Å3
Triclinic, P1Z = 2
a = 7.8413 (7) ÅMo Kα radiation
b = 9.5545 (8) ŵ = 6.77 mm1
c = 10.6561 (9) ÅT = 296 K
α = 68.827 (1)°0.21 × 0.18 × 0.17 mm
β = 71.024 (1)°
Data collection top
Bruker APEXII area-detector
diffractometer
2444 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2323 reflections with I > 2σ(I)
Tmin = 0.251, Tmax = 0.316Rint = 0.015
3564 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0209 restraints
wR(F2) = 0.048H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.82 e Å3
2444 reflectionsΔρmin = 0.73 e Å3
217 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Yb10.26626 (2)0.294523 (19)1.006579 (16)0.01940 (7)
C10.2794 (6)0.7548 (5)0.1682 (4)0.0244 (9)
C20.2113 (6)0.6900 (5)0.3233 (4)0.0231 (9)
C30.3017 (8)0.5574 (6)0.3942 (5)0.0546 (17)
H30.39990.50390.34440.066*
C40.2506 (8)0.5012 (6)0.5381 (5)0.0501 (15)
H40.31170.40940.58390.060*
C50.1094 (6)0.5813 (5)0.6133 (4)0.0238 (9)
C60.0601 (5)0.5283 (5)0.7702 (4)0.0210 (8)
C70.0173 (7)0.7138 (6)0.5423 (5)0.0465 (14)
H70.07910.76900.59170.056*
C80.0665 (7)0.7660 (6)0.3982 (5)0.0435 (13)
H80.00010.85400.35190.052*
C90.3969 (5)0.1538 (5)1.2422 (4)0.0221 (9)
C100.4506 (6)0.0733 (5)1.3751 (4)0.0243 (9)
C110.5442 (8)0.1424 (5)1.4211 (5)0.0406 (13)
H110.57540.23801.36780.049*
C120.4091 (8)0.0693 (6)1.4544 (5)0.0411 (13)
H120.34860.11711.42340.049*
O10.1745 (4)0.8546 (4)0.1024 (3)0.0324 (7)
O20.4422 (4)0.7076 (4)0.1137 (3)0.0361 (8)
O30.0475 (4)0.6148 (4)0.8340 (3)0.0317 (7)
O40.1368 (5)0.3988 (3)0.8290 (3)0.0336 (7)
O50.4165 (4)0.2898 (3)1.1772 (3)0.0276 (7)
O60.3249 (4)0.0831 (3)1.1957 (3)0.0271 (7)
O1W0.3026 (5)0.5482 (4)0.9349 (4)0.0387 (8)
H1W0.221 (4)0.617 (4)0.914 (6)0.058*
H2W0.393 (4)0.589 (5)0.908 (6)0.058*
O2W0.0025 (5)0.1676 (4)1.0747 (4)0.0358 (8)
H3W0.038 (7)0.168 (5)1.013 (4)0.054*
H4W0.030 (8)0.0778 (19)1.115 (5)0.054*
O3W0.3438 (5)0.0930 (3)0.9110 (3)0.0329 (7)
H5W0.451 (2)0.065 (5)0.877 (5)0.049*
H6W0.303 (5)0.014 (3)0.957 (5)0.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Yb10.02266 (11)0.02072 (11)0.01111 (10)0.00012 (7)0.00580 (7)0.00153 (7)
C10.027 (2)0.026 (2)0.021 (2)0.0095 (19)0.0056 (18)0.0052 (18)
C20.026 (2)0.028 (2)0.015 (2)0.0081 (18)0.0059 (16)0.0031 (17)
C30.064 (4)0.049 (3)0.019 (2)0.029 (3)0.001 (2)0.006 (2)
C40.065 (4)0.039 (3)0.017 (2)0.027 (3)0.008 (2)0.002 (2)
C50.026 (2)0.023 (2)0.018 (2)0.0040 (18)0.0057 (17)0.0023 (17)
C60.023 (2)0.022 (2)0.018 (2)0.0043 (17)0.0086 (17)0.0035 (17)
C70.036 (3)0.053 (3)0.019 (2)0.024 (2)0.002 (2)0.003 (2)
C80.034 (3)0.050 (3)0.018 (2)0.019 (2)0.005 (2)0.003 (2)
C90.021 (2)0.027 (2)0.015 (2)0.0004 (17)0.0046 (16)0.0045 (18)
C100.030 (2)0.023 (2)0.018 (2)0.0013 (18)0.0117 (17)0.0023 (17)
C110.070 (4)0.028 (3)0.029 (3)0.019 (2)0.028 (2)0.007 (2)
C120.066 (4)0.036 (3)0.033 (3)0.020 (3)0.034 (3)0.003 (2)
O10.0370 (18)0.0362 (18)0.0199 (15)0.0057 (15)0.0127 (14)0.0009 (14)
O20.0302 (18)0.046 (2)0.0226 (16)0.0030 (15)0.0006 (13)0.0083 (15)
O30.0330 (17)0.0383 (19)0.0170 (15)0.0030 (14)0.0030 (13)0.0094 (14)
O40.054 (2)0.0251 (17)0.0212 (16)0.0009 (15)0.0202 (15)0.0014 (13)
O50.0352 (17)0.0276 (17)0.0182 (15)0.0074 (13)0.0135 (13)0.0027 (13)
O60.0391 (18)0.0250 (16)0.0196 (15)0.0059 (13)0.0179 (13)0.0003 (13)
O1W0.0313 (18)0.0267 (18)0.052 (2)0.0055 (14)0.0105 (17)0.0049 (16)
O2W0.0395 (19)0.0379 (19)0.0327 (19)0.0096 (16)0.0140 (15)0.0074 (15)
O3W0.0388 (19)0.0277 (17)0.0296 (18)0.0009 (14)0.0077 (15)0.0096 (14)
Geometric parameters (Å, º) top
Yb1—O2i2.227 (3)C6—O41.261 (5)
Yb1—O42.231 (3)C7—C81.384 (6)
Yb1—O3ii2.233 (3)C7—H70.9300
Yb1—O1W2.327 (3)C8—H80.9300
Yb1—O3W2.352 (3)C9—O51.255 (5)
Yb1—O62.354 (3)C9—O61.280 (5)
Yb1—O2W2.438 (3)C9—C101.487 (5)
Yb1—O52.450 (3)C10—C121.376 (6)
Yb1—C92.773 (4)C10—C111.389 (6)
C1—O11.252 (5)C11—C12iii1.378 (6)
C1—O21.259 (5)C11—H110.9300
C1—C21.502 (5)C12—C11iii1.378 (6)
C2—C81.364 (6)C12—H120.9300
C2—C31.370 (6)O2—Yb1i2.227 (3)
C3—C41.385 (6)O3—Yb1ii2.233 (3)
C3—H30.9300O1W—H1W0.81 (4)
C4—C51.373 (6)O1W—H2W0.82 (4)
C4—H40.9300O2W—H3W0.82 (5)
C5—C71.376 (6)O2W—H4W0.82 (3)
C5—C61.507 (5)O3W—H5W0.82 (3)
C6—O31.238 (5)O3W—H6W0.82 (4)
O2i—Yb1—O498.80 (12)C5—C4—C3119.9 (4)
O2i—Yb1—O3ii144.25 (12)C5—C4—H4120.1
O4—Yb1—O3ii98.76 (12)C3—C4—H4120.1
O2i—Yb1—O1W76.69 (12)C4—C5—C7118.6 (4)
O4—Yb1—O1W77.10 (12)C4—C5—C6120.8 (4)
O3ii—Yb1—O1W77.26 (12)C7—C5—C6120.5 (4)
O2i—Yb1—O3W73.41 (12)O3—C6—O4123.7 (4)
O4—Yb1—O3W79.48 (11)O3—C6—C5118.9 (4)
O3ii—Yb1—O3W140.62 (12)O4—C6—C5117.3 (4)
O1W—Yb1—O3W138.30 (12)C5—C7—C8120.8 (4)
O2i—Yb1—O694.87 (11)C5—C7—H7119.6
O4—Yb1—O6148.87 (11)C8—C7—H7119.6
O3ii—Yb1—O685.72 (11)C2—C8—C7120.8 (4)
O1W—Yb1—O6133.53 (11)C2—C8—H8119.6
O3W—Yb1—O677.85 (11)C7—C8—H8119.6
O2i—Yb1—O2W143.67 (12)O5—C9—O6119.7 (4)
O4—Yb1—O2W74.76 (12)O5—C9—C10121.4 (4)
O3ii—Yb1—O2W71.38 (12)O6—C9—C10118.8 (4)
O1W—Yb1—O2W133.46 (12)O5—C9—Yb162.0 (2)
O3W—Yb1—O2W70.26 (12)O6—C9—Yb157.76 (19)
O6—Yb1—O2W77.66 (11)C10—C9—Yb1174.7 (3)
O2i—Yb1—O577.29 (11)C12—C10—C11118.9 (4)
O4—Yb1—O5156.47 (11)C12—C10—C9121.2 (4)
O3ii—Yb1—O574.22 (11)C11—C10—C9119.9 (4)
O1W—Yb1—O579.44 (11)C12iii—C11—C10120.0 (4)
O3W—Yb1—O5120.37 (11)C12iii—C11—H11120.0
O6—Yb1—O554.27 (9)C10—C11—H11120.0
O2W—Yb1—O5121.90 (10)C10—C12—C11iii121.1 (4)
O2i—Yb1—C986.23 (11)C10—C12—H12119.5
O4—Yb1—C9174.57 (12)C11iii—C12—H12119.5
O3ii—Yb1—C978.02 (11)C1—O2—Yb1i161.1 (3)
O1W—Yb1—C9106.19 (13)C6—O3—Yb1ii162.9 (3)
O3W—Yb1—C9100.18 (12)C6—O4—Yb1137.1 (3)
O6—Yb1—C927.39 (11)C9—O5—Yb191.1 (2)
O2W—Yb1—C999.99 (11)C9—O6—Yb194.8 (2)
O5—Yb1—C926.89 (11)Yb1—O1W—H1W121 (3)
O1—C1—O2124.3 (4)Yb1—O1W—H2W132 (3)
O1—C1—C2118.7 (4)H1W—O1W—H2W105 (5)
O2—C1—C2116.9 (4)Yb1—O2W—H3W118 (4)
C8—C2—C3118.3 (4)Yb1—O2W—H4W109 (4)
C8—C2—C1121.2 (4)H3W—O2W—H4W105 (5)
C3—C2—C1120.3 (4)Yb1—O3W—H5W119 (4)
C2—C3—C4121.6 (5)Yb1—O3W—H6W119 (4)
C2—C3—H3119.2H5W—O3W—H6W104 (4)
C4—C3—H3119.2
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+2; (iii) x+1, y, z+3.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O2Wii0.81 (4)2.35 (3)3.123 (5)158 (6)
O1W—H1W···O30.81 (4)2.52 (4)3.104 (5)130 (4)
O1W—H2W···O5iv0.82 (4)1.91 (5)2.714 (4)170 (5)
O2W—H3W···O1v0.82 (5)1.97 (5)2.771 (4)167 (5)
O2W—H4W···O1vi0.82 (3)2.17 (3)2.900 (5)149 (5)
O3W—H5W···O6vii0.82 (3)2.08 (2)2.846 (4)156 (4)
O3W—H6W···O1vi0.82 (4)1.95 (4)2.746 (4)165 (5)
Symmetry codes: (ii) x, y+1, z+2; (iv) x+1, y+1, z+2; (v) x, y+1, z+1; (vi) x, y1, z+1; (vii) x+1, y, z+2.

Experimental details

Crystal data
Chemical formula[Yb2(C8H4O4)3(H2O)6]
Mr473.26
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.8413 (7), 9.5545 (8), 10.6561 (9)
α, β, γ (°)68.827 (1), 71.024 (1), 75.206 (1)
V3)695.34 (10)
Z2
Radiation typeMo Kα
µ (mm1)6.77
Crystal size (mm)0.21 × 0.18 × 0.17
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.251, 0.316
No. of measured, independent and
observed [I > 2σ(I)] reflections
3564, 2444, 2323
Rint0.015
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.048, 1.04
No. of reflections2444
No. of parameters217
No. of restraints9
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.82, 0.73

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O2Wi0.81 (4)2.35 (3)3.123 (5)158 (6)
O1W—H1W···O30.81 (4)2.52 (4)3.104 (5)130 (4)
O1W—H2W···O5ii0.82 (4)1.91 (5)2.714 (4)170 (5)
O2W—H3W···O1iii0.82 (5)1.97 (5)2.771 (4)167 (5)
O2W—H4W···O1iv0.82 (3)2.17 (3)2.900 (5)149 (5)
O3W—H5W···O6v0.82 (3)2.08 (2)2.846 (4)156 (4)
O3W—H6W···O1iv0.82 (4)1.95 (4)2.746 (4)165 (5)
Symmetry codes: (i) x, y+1, z+2; (ii) x+1, y+1, z+2; (iii) x, y+1, z+1; (iv) x, y1, z+1; (v) x+1, y, z+2.
 

Acknowledgements

The author acknowledges South China Normal University for supporting this work.

References

First citation Bruker (2004). APEX2 and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citation Daiguebonne, C., Kerbellec, N., Bernot, K., Gerault, Y., Deluzet, A. & Guillou, O. (2006). Inorg. Chem. 45, 5399–5406.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citation Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citation Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef IUCr Journals Google Scholar
First citation Xie, S.-L., Xie, B.-Q., Tang, X.-Y., Wang, N. & Yue, S.-T. (2008). Z. Anorg. Allg. Chem. 634, 842–844.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds