organic compounds
1-Benzoyl-3,3-dinitroazetidine
aSchool of Chemistry and Chemical Engineering, Yulin University, Yulin 719000 Shaanxi, People's Republic of China, and bSchool of Chemical Engineering, Northwest University, Xi'an 710069 Shaanxi, People's Republic of China
*Correspondence e-mail: donghuhai@qq.com
In the title gem-dinitroazetidine derivative, C10H9N3O5, the azetidine ring is almost planar, the maximum value of the endocyclic torsion angle being 0.92 (14)°. The gem-dinitro groups are mutually perpendicular and the dihedral angle between the azetidine and benzene rings is 46.70 (10)°
Related literature
For energetic materials based on 3,3-dinitroazetidine, see: Archibald et al. (1990); Gao et al. (2009); Hiskey & Coburn (1994a,b); Ma, Yan, Li, Guan et al. (2009); Ma, Yan, Li, Song & Hu (2009); Ma, Yan, Song et al. (2009).
Experimental
Crystal data
|
Data collection: SMART (Bruker, 2003); cell SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536809051290/gk2242sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809051290/gk2242Isup2.hkl
A solution of DNAZ (0.40 g, 2.72 mmol), benzoyl chloride (0.35 ml, 2.99 mmol) and NaHCO3 (0.23 g, 2.72 mmol) in dichloromethane (20.0 ml) was stirred under reflux for 16 h. The reaction mixture was concentrated in vacuo, acetone (30.0 ml) was added, and the mixture was stirred for 30 min, standing, filtered. The solid product was washed with ethanol and purified by recrystallization from dichloromethane to give the pure colorless compound in 81.7% yield. The title compound (52 mg,0.2 mmol) was dissolved in chloroform (10 ml). Colorless crystals were isolated after several days. Elemental analysis calculated for C10H9N3O5: C 47.81, N 16.73, H 3.61%; found: C 47.29, N 16.88, H 3.63%. IR (KBr, cm-1): 3057, 2961, 1640, 1578, 1526, 1335, 1304, 706. 1H NMR (CDCl3): (δdelta/p.p.m.) 7.649 (2H), 7.581 (4H), 7.489 (2H), 5.025 (4H).
All H atoms were placed at calculated idealized positions and refined using a riding model, with C—H distances in the range 0.93–0.97 Å.
Data collection: SMART (Bruker, 2003); cell
SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C10H9N3O5 | F(000) = 520 |
Mr = 251.20 | Dx = 1.504 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 862 reflections |
a = 13.176 (4) Å | θ = 3.0–21.2° |
b = 6.2344 (19) Å | µ = 0.12 mm−1 |
c = 13.522 (4) Å | T = 296 K |
β = 92.612 (6)° | Block, colorless |
V = 1109.6 (6) Å3 | 0.39 × 0.27 × 0.15 mm |
Z = 4 |
Bruker SMART APEXII diffractometer | 1975 independent reflections |
Radiation source: fine-focus sealed tube | 1210 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.028 |
phi and ω scans | θmax = 25.1°, θmin = 3.0° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2000) | h = −15→15 |
Tmin = 0.954, Tmax = 0.981 | k = −7→7 |
5306 measured reflections | l = −15→11 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.035 | H-atom parameters constrained |
wR(F2) = 0.096 | w = 1/[σ2(Fo2) + (0.0493P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.98 | (Δ/σ)max = 0.001 |
1975 reflections | Δρmax = 0.15 e Å−3 |
164 parameters | Δρmin = −0.16 e Å−3 |
0 restraints | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.014 (2) |
C10H9N3O5 | V = 1109.6 (6) Å3 |
Mr = 251.20 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 13.176 (4) Å | µ = 0.12 mm−1 |
b = 6.2344 (19) Å | T = 296 K |
c = 13.522 (4) Å | 0.39 × 0.27 × 0.15 mm |
β = 92.612 (6)° |
Bruker SMART APEXII diffractometer | 1975 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2000) | 1210 reflections with I > 2σ(I) |
Tmin = 0.954, Tmax = 0.981 | Rint = 0.028 |
5306 measured reflections |
R[F2 > 2σ(F2)] = 0.035 | 0 restraints |
wR(F2) = 0.096 | H-atom parameters constrained |
S = 0.98 | Δρmax = 0.15 e Å−3 |
1975 reflections | Δρmin = −0.16 e Å−3 |
164 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N3 | 0.68948 (11) | 0.3359 (2) | 0.80874 (11) | 0.0468 (4) | |
O5 | 0.75063 (10) | 0.01052 (19) | 0.84162 (10) | 0.0599 (4) | |
O1 | 0.75527 (11) | 0.6527 (2) | 0.99733 (12) | 0.0775 (5) | |
O2 | 0.61765 (11) | 0.8369 (2) | 1.01338 (11) | 0.0705 (5) | |
O3 | 0.44932 (11) | 0.6147 (2) | 0.89476 (11) | 0.0713 (5) | |
O4 | 0.52323 (10) | 0.8514 (2) | 0.80573 (12) | 0.0702 (5) | |
C6 | 0.91631 (15) | 0.0829 (3) | 0.71825 (16) | 0.0579 (6) | |
H6 | 0.9293 | −0.0078 | 0.7719 | 0.070* | |
C7 | 0.98541 (16) | 0.0983 (3) | 0.64582 (19) | 0.0692 (6) | |
H7 | 1.0451 | 0.0188 | 0.6510 | 0.083* | |
C8 | 0.96726 (16) | 0.2296 (3) | 0.56602 (18) | 0.0654 (6) | |
H8 | 1.0145 | 0.2398 | 0.5172 | 0.078* | |
C9 | 0.87872 (16) | 0.3464 (3) | 0.55826 (16) | 0.0601 (6) | |
H9 | 0.8658 | 0.4351 | 0.5038 | 0.072* | |
C10 | 0.80912 (15) | 0.3321 (3) | 0.63113 (14) | 0.0509 (5) | |
H10 | 0.7494 | 0.4115 | 0.6255 | 0.061* | |
C5 | 0.82730 (13) | 0.2012 (3) | 0.71215 (14) | 0.0439 (5) | |
C4 | 0.75447 (13) | 0.1743 (3) | 0.79194 (14) | 0.0444 (5) | |
C3 | 0.69359 (15) | 0.5702 (3) | 0.79507 (14) | 0.0498 (5) | |
H3A | 0.6629 | 0.6195 | 0.7326 | 0.060* | |
H3B | 0.7607 | 0.6314 | 0.8072 | 0.060* | |
C1 | 0.62456 (13) | 0.5904 (3) | 0.88225 (13) | 0.0419 (5) | |
C2 | 0.62480 (14) | 0.3459 (3) | 0.89365 (14) | 0.0489 (5) | |
H2B | 0.6575 | 0.2956 | 0.9551 | 0.059* | |
H2A | 0.5586 | 0.2801 | 0.8821 | 0.059* | |
N1 | 0.66923 (14) | 0.7057 (3) | 0.97243 (13) | 0.0541 (5) | |
N2 | 0.52333 (12) | 0.6935 (3) | 0.85921 (13) | 0.0513 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
N3 | 0.0634 (10) | 0.0315 (8) | 0.0468 (10) | 0.0014 (7) | 0.0156 (8) | 0.0040 (7) |
O5 | 0.0819 (10) | 0.0343 (7) | 0.0641 (9) | 0.0015 (6) | 0.0103 (8) | 0.0088 (7) |
O1 | 0.0730 (10) | 0.0680 (10) | 0.0889 (13) | −0.0016 (8) | −0.0258 (9) | 0.0058 (8) |
O2 | 0.0914 (11) | 0.0603 (9) | 0.0607 (10) | −0.0037 (8) | 0.0135 (9) | −0.0178 (8) |
O3 | 0.0565 (9) | 0.0876 (12) | 0.0710 (11) | 0.0034 (8) | 0.0172 (8) | 0.0072 (9) |
O4 | 0.0717 (10) | 0.0584 (9) | 0.0800 (11) | 0.0119 (7) | −0.0017 (8) | 0.0189 (8) |
C6 | 0.0657 (13) | 0.0471 (12) | 0.0611 (14) | 0.0105 (10) | 0.0041 (12) | 0.0029 (10) |
C7 | 0.0581 (13) | 0.0652 (14) | 0.0848 (18) | 0.0108 (11) | 0.0108 (13) | −0.0071 (13) |
C8 | 0.0668 (14) | 0.0598 (13) | 0.0712 (17) | −0.0057 (11) | 0.0222 (12) | −0.0085 (12) |
C9 | 0.0764 (14) | 0.0533 (13) | 0.0513 (13) | 0.0010 (11) | 0.0115 (11) | 0.0033 (10) |
C10 | 0.0579 (11) | 0.0497 (12) | 0.0453 (12) | 0.0058 (9) | 0.0050 (10) | −0.0012 (10) |
C5 | 0.0536 (11) | 0.0324 (10) | 0.0454 (12) | −0.0006 (8) | 0.0004 (9) | −0.0043 (9) |
C4 | 0.0553 (11) | 0.0320 (10) | 0.0454 (11) | −0.0013 (9) | −0.0008 (9) | −0.0019 (9) |
C3 | 0.0641 (12) | 0.0355 (10) | 0.0511 (12) | 0.0046 (8) | 0.0147 (10) | 0.0054 (9) |
C1 | 0.0495 (11) | 0.0356 (9) | 0.0407 (11) | 0.0024 (8) | 0.0038 (9) | 0.0001 (8) |
C2 | 0.0604 (11) | 0.0393 (10) | 0.0477 (12) | −0.0017 (9) | 0.0101 (9) | 0.0022 (9) |
N1 | 0.0679 (12) | 0.0413 (10) | 0.0528 (11) | −0.0070 (9) | 0.0002 (10) | 0.0038 (8) |
N2 | 0.0565 (11) | 0.0492 (10) | 0.0482 (10) | 0.0039 (9) | 0.0035 (8) | −0.0039 (8) |
N3—C4 | 1.348 (2) | C8—H8 | 0.9300 |
N3—C2 | 1.462 (2) | C9—C10 | 1.379 (3) |
N3—C3 | 1.474 (2) | C9—H9 | 0.9300 |
O5—C4 | 1.224 (2) | C10—C5 | 1.378 (3) |
O1—N1 | 1.2134 (19) | C10—H10 | 0.9300 |
O2—N1 | 1.2133 (18) | C5—C4 | 1.486 (2) |
O3—N2 | 1.2109 (19) | C3—C1 | 1.527 (2) |
O4—N2 | 1.2212 (19) | C3—H3A | 0.9700 |
C6—C7 | 1.371 (3) | C3—H3B | 0.9700 |
C6—C5 | 1.385 (2) | C1—N2 | 1.500 (2) |
C6—H6 | 0.9300 | C1—N1 | 1.511 (2) |
C7—C8 | 1.367 (3) | C1—C2 | 1.532 (2) |
C7—H7 | 0.9300 | C2—H2B | 0.9700 |
C8—C9 | 1.375 (3) | C2—H2A | 0.9700 |
C4—N3—C2 | 124.17 (15) | N3—C3—C1 | 87.62 (12) |
C4—N3—C3 | 133.82 (14) | N3—C3—H3A | 114.0 |
C2—N3—C3 | 94.70 (12) | C1—C3—H3A | 114.0 |
C7—C6—C5 | 120.6 (2) | N3—C3—H3B | 114.0 |
C7—C6—H6 | 119.7 | C1—C3—H3B | 114.0 |
C5—C6—H6 | 119.7 | H3A—C3—H3B | 111.2 |
C8—C7—C6 | 120.5 (2) | N2—C1—N1 | 105.88 (14) |
C8—C7—H7 | 119.7 | N2—C1—C3 | 115.48 (15) |
C6—C7—H7 | 119.7 | N1—C1—C3 | 116.01 (15) |
C7—C8—C9 | 119.7 (2) | N2—C1—C2 | 116.42 (14) |
C7—C8—H8 | 120.2 | N1—C1—C2 | 113.13 (15) |
C9—C8—H8 | 120.2 | C3—C1—C2 | 89.82 (12) |
C8—C9—C10 | 120.0 (2) | N3—C2—C1 | 87.84 (12) |
C8—C9—H9 | 120.0 | N3—C2—H2B | 114.0 |
C10—C9—H9 | 120.0 | C1—C2—H2B | 114.0 |
C5—C10—C9 | 120.60 (18) | N3—C2—H2A | 114.0 |
C5—C10—H10 | 119.7 | C1—C2—H2A | 114.0 |
C9—C10—H10 | 119.7 | H2B—C2—H2A | 111.2 |
C10—C5—C6 | 118.61 (18) | O2—N1—O1 | 126.33 (18) |
C10—C5—C4 | 123.34 (16) | O2—N1—C1 | 118.88 (17) |
C6—C5—C4 | 118.01 (18) | O1—N1—C1 | 114.78 (17) |
O5—C4—N3 | 119.23 (17) | O3—N2—O4 | 125.66 (17) |
O5—C4—C5 | 122.48 (16) | O3—N2—C1 | 117.90 (16) |
N3—C4—C5 | 118.29 (15) | O4—N2—C1 | 116.44 (16) |
C5—C6—C7—C8 | −0.5 (3) | N3—C3—C1—N1 | 116.69 (15) |
C6—C7—C8—C9 | −0.3 (3) | N3—C3—C1—C2 | 0.88 (14) |
C7—C8—C9—C10 | 0.5 (3) | C4—N3—C2—C1 | 154.51 (16) |
C8—C9—C10—C5 | 0.0 (3) | C3—N3—C2—C1 | 0.92 (14) |
C9—C10—C5—C6 | −0.7 (3) | N2—C1—C2—N3 | 117.73 (15) |
C9—C10—C5—C4 | −178.42 (16) | N1—C1—C2—N3 | −119.27 (16) |
C7—C6—C5—C10 | 0.9 (3) | C3—C1—C2—N3 | −0.88 (14) |
C7—C6—C5—C4 | 178.79 (17) | N2—C1—N1—O2 | 6.0 (2) |
C2—N3—C4—O5 | 10.7 (3) | C3—C1—N1—O2 | 135.59 (16) |
C3—N3—C4—O5 | 152.76 (19) | C2—C1—N1—O2 | −122.61 (16) |
C2—N3—C4—C5 | −170.27 (16) | N2—C1—N1—O1 | −174.84 (15) |
C3—N3—C4—C5 | −28.2 (3) | C3—C1—N1—O1 | −45.3 (2) |
C10—C5—C4—O5 | 152.40 (18) | C2—C1—N1—O1 | 56.5 (2) |
C6—C5—C4—O5 | −25.3 (3) | N1—C1—N2—O3 | −92.40 (18) |
C10—C5—C4—N3 | −26.6 (2) | C3—C1—N2—O3 | 137.76 (16) |
C6—C5—C4—N3 | 155.63 (16) | C2—C1—N2—O3 | 34.3 (2) |
C4—N3—C3—C1 | −150.25 (19) | N1—C1—N2—O4 | 87.52 (18) |
C2—N3—C3—C1 | −0.92 (14) | C3—C1—N2—O4 | −42.3 (2) |
N3—C3—C1—N2 | −118.56 (15) | C2—C1—N2—O4 | −145.79 (16) |
Experimental details
Crystal data | |
Chemical formula | C10H9N3O5 |
Mr | 251.20 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 296 |
a, b, c (Å) | 13.176 (4), 6.2344 (19), 13.522 (4) |
β (°) | 92.612 (6) |
V (Å3) | 1109.6 (6) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.12 |
Crystal size (mm) | 0.39 × 0.27 × 0.15 |
Data collection | |
Diffractometer | Bruker SMART APEXII diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2000) |
Tmin, Tmax | 0.954, 0.981 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5306, 1975, 1210 |
Rint | 0.028 |
(sin θ/λ)max (Å−1) | 0.597 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.035, 0.096, 0.98 |
No. of reflections | 1975 |
No. of parameters | 164 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.15, −0.16 |
Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Acknowledgements
We thank the National Natural Science Foundation of China (No. 20603026) and the Natural Science Foundation of Shaanxi Province, China (No. 2009JQ2002) for generously supporting this study.
References
Archibald, T. G., Gilardi, R., Baum, K. & George, C. (1990). J. Org. Chem. 55, 2920–2924. CSD CrossRef CAS Web of Science Google Scholar
Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Gao, R., Ma, H. X., Yan, B., Song, J. R. & Wang, Y. H. (2009). Chem. J. Chin. Univ. 30, 577–582. CAS Google Scholar
Hiskey, M. A. & Coburn, M. D. (1994a). US Patent 5 336 784. Google Scholar
Hiskey, M. A. & Coburn, M. D. (1994b). Chem. Abstr. 121, 300750s. Google Scholar
Ma, H. X., Yan, B., Li, Z. N., Guan, Y. L., Song, J. R., Xu, K. Z. & Hu, R. Z. (2009). J. Hazard. Mater. 169, 1068–1073. Web of Science CrossRef PubMed CAS Google Scholar
Ma, H. X., Yan, B., Li, Z. N., Song, J. R. & Hu, R. Z. (2009). J. Therm. Anal. Calorim. 95, 437–444. Web of Science CrossRef CAS Google Scholar
Ma, H. X., Yan, B., Song, J. R., Lü, X. Q. & Wang, L. J. (2009). Chem. J. Chin. Univ. 30, 371–381. Google Scholar
Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Dinitro- and trinitro-derivatives of azetidine are of interest because they contain strained ring system. This makes them good candidates for energetic materials (propellants or explosives). Initial reports on the synthesis of 1,3,3-trinitroazetidine (TNAZ) included the synthesis of 3,3-dinitroazetidine (DNAZ) in the synthesis pathway (Archibald et al., 1990). However, later on less expensive synthesis of DNAZ was reported (Hiskey et al., 1994a,b). Starting from DNAZ as a substrate a variety of solid energetic compounds can be prepared (Gao et al., 2009; Ma, Yan, Li, Guan et al., 2009; Ma, Yan, Li, Song & Hu, 2009; Ma, Yan, Song et al., 2009). This paper reports synthesis and crystal structure of the title DNAZ derivate.