organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Benzoyl-3,3-di­nitro­azetidine

aSchool of Chemistry and Chemical Engineering, Yulin University, Yulin 719000 Shaanxi, People's Republic of China, and bSchool of Chemical Engineering, Northwest University, Xi'an 710069 Shaanxi, People's Republic of China
*Correspondence e-mail: donghuhai@qq.com

(Received 19 November 2009; accepted 28 November 2009; online 4 December 2009)

In the title gem-dinitro­azetidine derivative, C10H9N3O5, the azetidine ring is almost planar, the maximum value of the endocyclic torsion angle being 0.92 (14)°. The gem-dinitro groups are mutually perpendicular and the dihedral angle between the azetidine and benzene rings is 46.70 (10)°

Related literature

For energetic materials based on 3,3-dinitro­azetidine, see: Archibald et al. (1990[ Archibald, T. G., Gilardi, R., Baum, K. & George, C. (1990). J. Org. Chem. 55, 2920-2924.]); Gao et al. (2009[ Gao, R., Ma, H. X., Yan, B., Song, J. R. & Wang, Y. H. (2009). Chem. J. Chin. Univ. 30, 577-582.]); Hiskey & Coburn (1994a[ Hiskey, M. A. & Coburn, M. D. (1994a). US Patent 5 336 784.],b[ Hiskey, M. A. & Coburn, M. D. (1994b). Chem. Abstr. 121, 300750s.]); Ma, Yan, Li, Guan et al. (2009[ Ma, H. X., Yan, B., Li, Z. N., Guan, Y. L., Song, J. R., Xu, K. Z. & Hu, R. Z. (2009). J. Hazard. Mater. 169, 1068-1073.]); Ma, Yan, Li, Song & Hu (2009[ Ma, H. X., Yan, B., Li, Z. N., Song, J. R. & Hu, R. Z. (2009). J. Therm. Anal. Calorim. 95, 437-444.]); Ma, Yan, Song et al. (2009[ Ma, H. X., Yan, B., Song, J. R., Lü, X. Q. & Wang, L. J. (2009). Chem. J. Chin. Univ. 30, 371-381.]).

[Scheme 1]

Experimental

Crystal data
  • C10H9N3O5

  • Mr = 251.20

  • Monoclinic, P 21 /c

  • a = 13.176 (4) Å

  • b = 6.2344 (19) Å

  • c = 13.522 (4) Å

  • β = 92.612 (6)°

  • V = 1109.6 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 296 K

  • 0.39 × 0.27 × 0.15 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000[ Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.]) Tmin = 0.954, Tmax = 0.981

  • 5306 measured reflections

  • 1975 independent reflections

  • 1210 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.096

  • S = 0.98

  • 1975 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: SMART (Bruker, 2003[ Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[ Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[ Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[ Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[ Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Dinitro- and trinitro-derivatives of azetidine are of interest because they contain strained ring system. This makes them good candidates for energetic materials (propellants or explosives). Initial reports on the synthesis of 1,3,3-trinitroazetidine (TNAZ) included the synthesis of 3,3-dinitroazetidine (DNAZ) in the synthesis pathway (Archibald et al., 1990). However, later on less expensive synthesis of DNAZ was reported (Hiskey et al., 1994a,b). Starting from DNAZ as a substrate a variety of solid energetic compounds can be prepared (Gao et al., 2009; Ma, Yan, Li, Guan et al., 2009; Ma, Yan, Li, Song & Hu, 2009; Ma, Yan, Song et al., 2009). This paper reports synthesis and crystal structure of the title DNAZ derivate.

Related literature top

For energetic materials based on 3,3-dinitroazetidine, see: Archibald et al. (1990); Gao et al. (2009); Hiskey & Coburn (1994a,b); Ma, Yan, Li, Guan et al. (2009); Ma, Yan, Li, Song & Hu (2009); Ma, Yan, Song et al. (2009).

Experimental top

A solution of DNAZ (0.40 g, 2.72 mmol), benzoyl chloride (0.35 ml, 2.99 mmol) and NaHCO3 (0.23 g, 2.72 mmol) in dichloromethane (20.0 ml) was stirred under reflux for 16 h. The reaction mixture was concentrated in vacuo, acetone (30.0 ml) was added, and the mixture was stirred for 30 min, standing, filtered. The solid product was washed with ethanol and purified by recrystallization from dichloromethane to give the pure colorless compound in 81.7% yield. The title compound (52 mg,0.2 mmol) was dissolved in chloroform (10 ml). Colorless crystals were isolated after several days. Elemental analysis calculated for C10H9N3O5: C 47.81, N 16.73, H 3.61%; found: C 47.29, N 16.88, H 3.63%. IR (KBr, cm-1): 3057, 2961, 1640, 1578, 1526, 1335, 1304, 706. 1H NMR (CDCl3): (δdelta/p.p.m.) 7.649 (2H), 7.581 (4H), 7.489 (2H), 5.025 (4H).

Refinement top

All H atoms were placed at calculated idealized positions and refined using a riding model, with C—H distances in the range 0.93–0.97 Å.

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are drawn as spheres of arbitrary radius.
1-benzoyl-3,3-dinitroazetidine top
Crystal data top
C10H9N3O5F(000) = 520
Mr = 251.20Dx = 1.504 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 862 reflections
a = 13.176 (4) Åθ = 3.0–21.2°
b = 6.2344 (19) ŵ = 0.12 mm1
c = 13.522 (4) ÅT = 296 K
β = 92.612 (6)°Block, colorless
V = 1109.6 (6) Å30.39 × 0.27 × 0.15 mm
Z = 4
Data collection top
Bruker SMART APEXII
diffractometer
1975 independent reflections
Radiation source: fine-focus sealed tube1210 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
phi and ω scansθmax = 25.1°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
h = 1515
Tmin = 0.954, Tmax = 0.981k = 77
5306 measured reflectionsl = 1511
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0493P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max = 0.001
1975 reflectionsΔρmax = 0.15 e Å3
164 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.014 (2)
Crystal data top
C10H9N3O5V = 1109.6 (6) Å3
Mr = 251.20Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.176 (4) ŵ = 0.12 mm1
b = 6.2344 (19) ÅT = 296 K
c = 13.522 (4) Å0.39 × 0.27 × 0.15 mm
β = 92.612 (6)°
Data collection top
Bruker SMART APEXII
diffractometer
1975 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
1210 reflections with I > 2σ(I)
Tmin = 0.954, Tmax = 0.981Rint = 0.028
5306 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 0.98Δρmax = 0.15 e Å3
1975 reflectionsΔρmin = 0.16 e Å3
164 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N30.68948 (11)0.3359 (2)0.80874 (11)0.0468 (4)
O50.75063 (10)0.01052 (19)0.84162 (10)0.0599 (4)
O10.75527 (11)0.6527 (2)0.99733 (12)0.0775 (5)
O20.61765 (11)0.8369 (2)1.01338 (11)0.0705 (5)
O30.44932 (11)0.6147 (2)0.89476 (11)0.0713 (5)
O40.52323 (10)0.8514 (2)0.80573 (12)0.0702 (5)
C60.91631 (15)0.0829 (3)0.71825 (16)0.0579 (6)
H60.92930.00780.77190.070*
C70.98541 (16)0.0983 (3)0.64582 (19)0.0692 (6)
H71.04510.01880.65100.083*
C80.96726 (16)0.2296 (3)0.56602 (18)0.0654 (6)
H81.01450.23980.51720.078*
C90.87872 (16)0.3464 (3)0.55826 (16)0.0601 (6)
H90.86580.43510.50380.072*
C100.80912 (15)0.3321 (3)0.63113 (14)0.0509 (5)
H100.74940.41150.62550.061*
C50.82730 (13)0.2012 (3)0.71215 (14)0.0439 (5)
C40.75447 (13)0.1743 (3)0.79194 (14)0.0444 (5)
C30.69359 (15)0.5702 (3)0.79507 (14)0.0498 (5)
H3A0.66290.61950.73260.060*
H3B0.76070.63140.80720.060*
C10.62456 (13)0.5904 (3)0.88225 (13)0.0419 (5)
C20.62480 (14)0.3459 (3)0.89365 (14)0.0489 (5)
H2B0.65750.29560.95510.059*
H2A0.55860.28010.88210.059*
N10.66923 (14)0.7057 (3)0.97243 (13)0.0541 (5)
N20.52333 (12)0.6935 (3)0.85921 (13)0.0513 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N30.0634 (10)0.0315 (8)0.0468 (10)0.0014 (7)0.0156 (8)0.0040 (7)
O50.0819 (10)0.0343 (7)0.0641 (9)0.0015 (6)0.0103 (8)0.0088 (7)
O10.0730 (10)0.0680 (10)0.0889 (13)0.0016 (8)0.0258 (9)0.0058 (8)
O20.0914 (11)0.0603 (9)0.0607 (10)0.0037 (8)0.0135 (9)0.0178 (8)
O30.0565 (9)0.0876 (12)0.0710 (11)0.0034 (8)0.0172 (8)0.0072 (9)
O40.0717 (10)0.0584 (9)0.0800 (11)0.0119 (7)0.0017 (8)0.0189 (8)
C60.0657 (13)0.0471 (12)0.0611 (14)0.0105 (10)0.0041 (12)0.0029 (10)
C70.0581 (13)0.0652 (14)0.0848 (18)0.0108 (11)0.0108 (13)0.0071 (13)
C80.0668 (14)0.0598 (13)0.0712 (17)0.0057 (11)0.0222 (12)0.0085 (12)
C90.0764 (14)0.0533 (13)0.0513 (13)0.0010 (11)0.0115 (11)0.0033 (10)
C100.0579 (11)0.0497 (12)0.0453 (12)0.0058 (9)0.0050 (10)0.0012 (10)
C50.0536 (11)0.0324 (10)0.0454 (12)0.0006 (8)0.0004 (9)0.0043 (9)
C40.0553 (11)0.0320 (10)0.0454 (11)0.0013 (9)0.0008 (9)0.0019 (9)
C30.0641 (12)0.0355 (10)0.0511 (12)0.0046 (8)0.0147 (10)0.0054 (9)
C10.0495 (11)0.0356 (9)0.0407 (11)0.0024 (8)0.0038 (9)0.0001 (8)
C20.0604 (11)0.0393 (10)0.0477 (12)0.0017 (9)0.0101 (9)0.0022 (9)
N10.0679 (12)0.0413 (10)0.0528 (11)0.0070 (9)0.0002 (10)0.0038 (8)
N20.0565 (11)0.0492 (10)0.0482 (10)0.0039 (9)0.0035 (8)0.0039 (8)
Geometric parameters (Å, º) top
N3—C41.348 (2)C8—H80.9300
N3—C21.462 (2)C9—C101.379 (3)
N3—C31.474 (2)C9—H90.9300
O5—C41.224 (2)C10—C51.378 (3)
O1—N11.2134 (19)C10—H100.9300
O2—N11.2133 (18)C5—C41.486 (2)
O3—N21.2109 (19)C3—C11.527 (2)
O4—N21.2212 (19)C3—H3A0.9700
C6—C71.371 (3)C3—H3B0.9700
C6—C51.385 (2)C1—N21.500 (2)
C6—H60.9300C1—N11.511 (2)
C7—C81.367 (3)C1—C21.532 (2)
C7—H70.9300C2—H2B0.9700
C8—C91.375 (3)C2—H2A0.9700
C4—N3—C2124.17 (15)N3—C3—C187.62 (12)
C4—N3—C3133.82 (14)N3—C3—H3A114.0
C2—N3—C394.70 (12)C1—C3—H3A114.0
C7—C6—C5120.6 (2)N3—C3—H3B114.0
C7—C6—H6119.7C1—C3—H3B114.0
C5—C6—H6119.7H3A—C3—H3B111.2
C8—C7—C6120.5 (2)N2—C1—N1105.88 (14)
C8—C7—H7119.7N2—C1—C3115.48 (15)
C6—C7—H7119.7N1—C1—C3116.01 (15)
C7—C8—C9119.7 (2)N2—C1—C2116.42 (14)
C7—C8—H8120.2N1—C1—C2113.13 (15)
C9—C8—H8120.2C3—C1—C289.82 (12)
C8—C9—C10120.0 (2)N3—C2—C187.84 (12)
C8—C9—H9120.0N3—C2—H2B114.0
C10—C9—H9120.0C1—C2—H2B114.0
C5—C10—C9120.60 (18)N3—C2—H2A114.0
C5—C10—H10119.7C1—C2—H2A114.0
C9—C10—H10119.7H2B—C2—H2A111.2
C10—C5—C6118.61 (18)O2—N1—O1126.33 (18)
C10—C5—C4123.34 (16)O2—N1—C1118.88 (17)
C6—C5—C4118.01 (18)O1—N1—C1114.78 (17)
O5—C4—N3119.23 (17)O3—N2—O4125.66 (17)
O5—C4—C5122.48 (16)O3—N2—C1117.90 (16)
N3—C4—C5118.29 (15)O4—N2—C1116.44 (16)
C5—C6—C7—C80.5 (3)N3—C3—C1—N1116.69 (15)
C6—C7—C8—C90.3 (3)N3—C3—C1—C20.88 (14)
C7—C8—C9—C100.5 (3)C4—N3—C2—C1154.51 (16)
C8—C9—C10—C50.0 (3)C3—N3—C2—C10.92 (14)
C9—C10—C5—C60.7 (3)N2—C1—C2—N3117.73 (15)
C9—C10—C5—C4178.42 (16)N1—C1—C2—N3119.27 (16)
C7—C6—C5—C100.9 (3)C3—C1—C2—N30.88 (14)
C7—C6—C5—C4178.79 (17)N2—C1—N1—O26.0 (2)
C2—N3—C4—O510.7 (3)C3—C1—N1—O2135.59 (16)
C3—N3—C4—O5152.76 (19)C2—C1—N1—O2122.61 (16)
C2—N3—C4—C5170.27 (16)N2—C1—N1—O1174.84 (15)
C3—N3—C4—C528.2 (3)C3—C1—N1—O145.3 (2)
C10—C5—C4—O5152.40 (18)C2—C1—N1—O156.5 (2)
C6—C5—C4—O525.3 (3)N1—C1—N2—O392.40 (18)
C10—C5—C4—N326.6 (2)C3—C1—N2—O3137.76 (16)
C6—C5—C4—N3155.63 (16)C2—C1—N2—O334.3 (2)
C4—N3—C3—C1150.25 (19)N1—C1—N2—O487.52 (18)
C2—N3—C3—C10.92 (14)C3—C1—N2—O442.3 (2)
N3—C3—C1—N2118.56 (15)C2—C1—N2—O4145.79 (16)

Experimental details

Crystal data
Chemical formulaC10H9N3O5
Mr251.20
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)13.176 (4), 6.2344 (19), 13.522 (4)
β (°) 92.612 (6)
V3)1109.6 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.39 × 0.27 × 0.15
Data collection
DiffractometerBruker SMART APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.954, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
5306, 1975, 1210
Rint0.028
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.096, 0.98
No. of reflections1975
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.16

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

We thank the National Natural Science Foundation of China (No. 20603026) and the Natural Science Foundation of Shaanxi Province, China (No. 2009JQ2002) for generously supporting this study.

References

First citation Archibald, T. G., Gilardi, R., Baum, K. & George, C. (1990). J. Org. Chem. 55, 2920–2924.  CSD CrossRef CAS Web of Science Google Scholar
First citation Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citation Gao, R., Ma, H. X., Yan, B., Song, J. R. & Wang, Y. H. (2009). Chem. J. Chin. Univ. 30, 577–582.  CAS Google Scholar
First citation Hiskey, M. A. & Coburn, M. D. (1994a). US Patent 5 336 784.  Google Scholar
First citation Hiskey, M. A. & Coburn, M. D. (1994b). Chem. Abstr. 121, 300750s.  Google Scholar
First citation Ma, H. X., Yan, B., Li, Z. N., Guan, Y. L., Song, J. R., Xu, K. Z. & Hu, R. Z. (2009). J. Hazard. Mater. 169, 1068–1073.  Web of Science CrossRef PubMed CAS Google Scholar
First citation Ma, H. X., Yan, B., Li, Z. N., Song, J. R. & Hu, R. Z. (2009). J. Therm. Anal. Calorim. 95, 437–444.  Web of Science CrossRef CAS Google Scholar
First citation Ma, H. X., Yan, B., Song, J. R., Lü, X. Q. & Wang, L. J. (2009). Chem. J. Chin. Univ. 30, 371–381.  Google Scholar
First citation Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.  Google Scholar
First citation Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds