organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4-Di­chloro­benzaldehyde

aUniversity of Virginia, Department of Molecular Physiology & Biological Physics, 1340 Jefferson Park Avenue, Charlottesville, VA 22908, USA
*Correspondence e-mail: wladek@iwonka.med.virginia.edu

(Received 4 December 2009; accepted 16 December 2009; online 24 December 2009)

In the crystal structure of the title compound, C7H4Cl2O, the mol­ecules form a network of weak C—H⋯O inter­actions involving the aldehyde O atom and the ortho-H atom on the benzene ring together with C—H⋯O inter­actions between the formyl groups. Together, these connect the mol­ecules into (10[\overline{1}]) layers, which are stabilized additionally by ππ stacking inter­actions of the benzene rings [centroid–centroid distance = 3.772 (1) Å]. The aldehyde group is twisted relative to the benzene ring by 7.94 (13)°.

Related literature

For applications of the title compound, see: Katagi (1988[Katagi, T. (1988). J. Agric. Food Chem. 36, 344-349.]); Wang et al. (2004[Wang, S.-X., Tan, Z.-C., Di, Y.-Y., Xu, F., Zhang, H.-T., Sun, L.-X. & Zhang, T. (2004). J. Chem. Thermodyn. 36, 393-399.]). For a related structure, see: Gawlicka-Chruszcz et al. (2006[Gawlicka-Chruszcz, A., Zheng, H., Hyacinth, M., Cymborowski, M., Sabat, M. & Minor, W. (2006). Z. Kristallogr. New Cryst. Struct. 221, 545-546.]).

[Scheme 1]

Experimental

Crystal data
  • C7H4Cl2O

  • Mr = 175.01

  • Monoclinic, P 21 /n

  • a = 13.100 (1) Å

  • b = 3.772 (1) Å

  • c = 15.332 (1) Å

  • β = 113.797 (2)°

  • V = 693.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.85 mm−1

  • T = 100 K

  • 0.40 × 0.10 × 0.10 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (Otwinowski et al., 2003[Otwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228-234.]) Tmin = 0.90, Tmax = 0.92

  • 6924 measured reflections

  • 3737 independent reflections

  • 3221 reflections with I > 2σ(I)

  • Rint = 0.063

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.114

  • S = 1.10

  • 3737 reflections

  • 107 parameters

  • All H-atom parameters refined

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O1i 0.946 (17) 2.533 (17) 3.4289 (11) 158.0 (14)
C6—H6⋯O1ii 0.950 (19) 2.512 (17) 3.2774 (11) 137.8 (12)
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x+1, -y-1, -z+1.

Data collection: HKL-2000 (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); cell refinement: HKL-2000; data reduction: HKL-2000; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and HKL-3000SM (Minor et al., 2006[Minor, W., Cymborowski, M., Otwinowski, Z. & Chruszcz, M. (2006). Acta Cryst. D62, 859-866.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and HKL-3000SM; molecular graphics: HKL-3000SM, ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and POV-RAY (The POV-RAY Team, 2004[The POV-RAY Team (2004). POV-RAY. http://www.povray.org/download/ .]); software used to prepare material for publication: HKL-3000SM.

Supporting information


Comment top

2,4-Dichlorobenzaldehyde is primarily used in the preparation of dyes, insecticides, herbicides, antiseptics and disinfectants (Wang et al., 2004). It is also used as an intermediate of organic synthesis of fungicide diniconazole (Katagi, 1988).

In the crystal structure of 2,4-dichlorobenzaldehyde (Fig. 1), the aldehyde group is twisted relative to the benzene ring with torsion angles C6—C1—C7—O1 and C2—C1—C7—O1 being -7.94 (13)° and 170.86 (9)°. These torsion angles are significantly smaller in comparison to the corresponding angles in 2,6-dichlorobenzaldehyde (Gawlicka-Chruszcz et al., 2006) which are -27.3° and 152.6° respectively. Significantly bigger twist of the aldehyde group in the case of 2,6-dichlorobenzaldehyde is caused by presence of the chlorine atoms in ortho positions.

The change of the position of chlorine atom causes that interactions in which chlorine atoms are involved in 2,4-dichlorobenzaldehyde and 2,6-dichlorobenzaldehyde differ significantly. In the case of 2,6-dichlorobenzaldehyde Cl2 was involved in weak interaction with hydrogen atom from neighboring benzene ring, while in 2,4-dichlorobenzaldehyde structure such interactions are not observed for any of the chlorine atoms. However, in the case of 2,4-dichlorobenzaldehyde, the chlorine atoms from neighboring molecules form short contacts with Cl1···Cl2 (1/2 + x,1/2 - y,1/2 + z) distance being 3.442Å (Fig. 2).

The weak O···H—C interactions (Table 1) between the aldehyde oxygen and the benzene hydrogen atoms connect molecules to form layers, which are additionally stabilized by stacking of benzene rings (Fig. 2). The oxygen atom from the aldehyde group plays a central role in the formation of weak interactions, and O1···H6—C6 (1 - x,-1 - y,1 - z) and O1···H7—C7 (1,5 - x,-1/2 + y,1.5 - z) distances are 2.51Å and 2.53Å respectively.

Related literature top

For applications of the title compound, see: Katagi (1988); Wang et al. (2004). For a related structure, see: Gawlicka-Chruszcz et al. (2006).

Experimental top

2,4-dichlorobenzaldehyde was purchased from ALDRICH (99% purity, lot 08722CD). The compound was provided in crystalline form.

Refinement top

All hydrogen atoms were localized using the difference density Fourier map. Their positions and isotropic displacement parameters were refined.

Computing details top

Data collection: HKL-2000 (Otwinowski & Minor, 1997); cell refinement: HKL-2000 (Otwinowski & Minor, 1997); data reduction: HKL-2000 (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) and HKL-3000SM (Minor et al., 2006); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and HKL-3000SM (Minor et al., 2006); molecular graphics: HKL-3000SM (Minor et al., 2006), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 (Farrugia, 1997), Mercury (Macrae et al., 2006) and POV-RAY (The POV-RAY Team, 2004); software used to prepare material for publication: HKL-3000SM.

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the reported structure. Displacement ellipsoids are drawn at the 50% probability level and hydrogen atoms are drawn as grey spheres of an arbitrary radius.
[Figure 2] Fig. 2. The molecular packing of 2,4-dichlorobenzaldehyde. Weak interactions, in which the oxygen atom participates, are shown as blue, dashed lines.
2,4-Dichlorobenzaldehyde top
Crystal data top
C7H4Cl2OF(000) = 352
Mr = 175.01Dx = 1.677 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71074 Å
Hall symbol: -P 2ynCell parameters from 31891 reflections
a = 13.100 (1) Åθ = 1.0–37.8°
b = 3.772 (1) ŵ = 0.85 mm1
c = 15.332 (1) ÅT = 100 K
β = 113.797 (2)°Block, colorless
V = 693.2 (3) Å30.40 × 0.10 × 0.10 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3737 independent reflections
Radiation source: fine-focus sealed tube3221 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
Detector resolution: 10 pixels mm-1θmax = 37.8°, θmin = 1.0°
ω scansh = 2222
Absorption correction: multi-scan
(Otwinowski et al., 2003)
k = 66
Tmin = 0.90, Tmax = 0.92l = 2624
6924 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: difference Fourier map
wR(F2) = 0.114All H-atom parameters refined
S = 1.10 w = 1/[σ2(Fo2) + (0.0708P)2 + 0.0197P]
where P = (Fo2 + 2Fc2)/3
3737 reflections(Δ/σ)max = 0.001
107 parametersΔρmax = 0.67 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
C7H4Cl2OV = 693.2 (3) Å3
Mr = 175.01Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.100 (1) ŵ = 0.85 mm1
b = 3.772 (1) ÅT = 100 K
c = 15.332 (1) Å0.40 × 0.10 × 0.10 mm
β = 113.797 (2)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3737 independent reflections
Absorption correction: multi-scan
(Otwinowski et al., 2003)
3221 reflections with I > 2σ(I)
Tmin = 0.90, Tmax = 0.92Rint = 0.063
6924 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.114All H-atom parameters refined
S = 1.10Δρmax = 0.67 e Å3
3737 reflectionsΔρmin = 0.41 e Å3
107 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl20.138241 (15)0.17792 (6)0.579292 (15)0.02422 (7)
Cl10.558151 (16)0.15135 (6)0.840216 (14)0.02526 (7)
C10.49878 (6)0.1166 (2)0.66074 (6)0.01968 (13)
C30.35318 (6)0.1385 (2)0.70157 (6)0.02006 (14)
C20.46410 (6)0.0484 (2)0.72565 (5)0.01980 (13)
C60.41880 (6)0.1866 (2)0.56890 (6)0.02060 (14)
C50.30765 (6)0.0964 (2)0.54240 (6)0.02080 (13)
C40.27652 (6)0.0634 (2)0.60987 (5)0.01992 (13)
O10.64561 (5)0.4059 (2)0.63526 (5)0.02975 (14)
C70.61622 (6)0.2245 (2)0.68671 (6)0.02340 (14)
H30.3319 (13)0.260 (4)0.7450 (12)0.038 (3)*
H50.2576 (13)0.150 (4)0.4813 (13)0.042 (4)*
H60.4423 (13)0.293 (5)0.5239 (12)0.046 (4)*
H70.6686 (14)0.131 (4)0.7449 (13)0.041 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl20.01697 (10)0.02944 (12)0.02558 (11)0.00285 (6)0.00789 (8)0.00236 (6)
Cl10.02130 (11)0.02926 (12)0.02104 (11)0.00059 (6)0.00422 (8)0.00518 (6)
C10.0165 (3)0.0207 (3)0.0213 (3)0.0005 (2)0.0071 (2)0.0007 (2)
C30.0190 (3)0.0209 (3)0.0206 (3)0.0003 (2)0.0083 (3)0.0003 (2)
C20.0182 (3)0.0203 (3)0.0195 (3)0.0014 (2)0.0062 (2)0.0017 (2)
C60.0189 (3)0.0226 (3)0.0206 (3)0.0002 (2)0.0082 (2)0.0008 (2)
C50.0185 (3)0.0229 (3)0.0195 (3)0.0007 (2)0.0061 (2)0.0008 (2)
C40.0168 (3)0.0209 (3)0.0215 (3)0.0001 (2)0.0071 (2)0.0016 (2)
O10.0214 (3)0.0378 (3)0.0304 (3)0.0045 (2)0.0108 (2)0.0046 (3)
C70.0178 (3)0.0266 (3)0.0251 (3)0.0001 (3)0.0080 (3)0.0013 (3)
Geometric parameters (Å, º) top
Cl2—C41.7327 (7)C3—H30.939 (17)
Cl1—C21.7343 (8)C6—C51.3869 (11)
C1—C21.3961 (11)C6—H60.950 (19)
C1—C61.3999 (11)C5—C41.3930 (11)
C1—C71.4820 (11)C5—H50.923 (18)
C3—C41.3877 (11)O1—C71.2180 (11)
C3—C21.3893 (11)C7—H70.946 (17)
C2—C1—C6118.32 (7)C1—C6—H6118.6 (9)
C2—C1—C7122.14 (7)C6—C5—C4118.43 (7)
C6—C1—C7119.53 (7)C6—C5—H5118.4 (10)
C4—C3—C2118.11 (7)C4—C5—H5123.2 (10)
C4—C3—H3121.2 (10)C3—C4—C5122.11 (7)
C2—C3—H3120.6 (10)C3—C4—Cl2118.26 (6)
C3—C2—C1121.73 (7)C5—C4—Cl2119.62 (6)
C3—C2—Cl1116.99 (6)O1—C7—C1123.05 (8)
C1—C2—Cl1121.28 (6)O1—C7—H7121.4 (10)
C5—C6—C1121.30 (7)C1—C7—H7115.5 (10)
C5—C6—H6120.0 (9)
C4—C3—C2—C10.72 (12)C1—C6—C5—C40.68 (12)
C4—C3—C2—Cl1179.11 (6)C2—C3—C4—C50.19 (12)
C6—C1—C2—C30.90 (12)C2—C3—C4—Cl2179.59 (6)
C7—C1—C2—C3177.92 (8)C6—C5—C4—C30.88 (12)
C6—C1—C2—Cl1178.92 (6)C6—C5—C4—Cl2179.73 (6)
C7—C1—C2—Cl12.26 (11)C2—C1—C7—O1170.86 (9)
C2—C1—C6—C50.18 (12)C6—C1—C7—O17.94 (13)
C7—C1—C6—C5178.67 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O1i0.946 (17)2.533 (17)3.4289 (11)158.0 (14)
C6—H6···O1ii0.950 (19)2.512 (17)3.2774 (11)137.8 (12)
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x+1, y1, z+1.

Experimental details

Crystal data
Chemical formulaC7H4Cl2O
Mr175.01
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)13.100 (1), 3.772 (1), 15.332 (1)
β (°) 113.797 (2)
V3)693.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.85
Crystal size (mm)0.40 × 0.10 × 0.10
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(Otwinowski et al., 2003)
Tmin, Tmax0.90, 0.92
No. of measured, independent and
observed [I > 2σ(I)] reflections
6924, 3737, 3221
Rint0.063
(sin θ/λ)max1)0.862
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.114, 1.10
No. of reflections3737
No. of parameters107
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.67, 0.41

Computer programs: HKL-2000 (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008) and HKL-3000SM (Minor et al., 2006), SHELXL97 (Sheldrick, 2008) and HKL-3000SM (Minor et al., 2006), HKL-3000SM (Minor et al., 2006), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 (Farrugia, 1997), Mercury (Macrae et al., 2006) and POV-RAY (The POV-RAY Team, 2004), HKL-3000SM.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O1i0.946 (17)2.533 (17)3.4289 (11)158.0 (14)
C6—H6···O1ii0.950 (19)2.512 (17)3.2774 (11)137.8 (12)
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x+1, y1, z+1.
 

Acknowledgements

This work was supported by contract GI11496 from HKL Research, Inc.

References

First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGawlicka-Chruszcz, A., Zheng, H., Hyacinth, M., Cymborowski, M., Sabat, M. & Minor, W. (2006). Z. Kristallogr. New Cryst. Struct. 221, 545–546.  CAS Google Scholar
First citationKatagi, T. (1988). J. Agric. Food Chem. 36, 344–349.  CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMinor, W., Cymborowski, M., Otwinowski, Z. & Chruszcz, M. (2006). Acta Cryst. D62, 859–866.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOtwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228–234.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThe POV-RAY Team (2004). POV-RAY. http://www.povray.org/download/Google Scholar
First citationWang, S.-X., Tan, Z.-C., Di, Y.-Y., Xu, F., Zhang, H.-T., Sun, L.-X. & Zhang, T. (2004). J. Chem. Thermodyn. 36, 393–399.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds