organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 1| January 2010| Pages o212-o213

7-(4-Meth­oxy­phen­yl)-5-methyl-9-phenyl-7H-pyrrolo[2′,3′:4,5]pyrimido[1,6-d]tetrazole

aBhavan's Sheth R.A. College of Science, Ahmedabd, Gujarat 380 001, India, bM. G. Science Institute, Navrangpura, Ahmedabad, Gujarat 380 009, India, and cDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: jjasinski@keene.edu

(Received 25 October 2009; accepted 13 December 2009; online 19 December 2009)

The title compound, C20H16N6O, is composed of a tetra­zolo ring and a 4-methoxy­phenyl and a benzene-substituted pyrrole ring at the 7 and 9 positions fused to a pyrimidine ring in a nearly planar fashion [maximum deviation of 0.018 (1) Å for the fused ring system]. A methyl group at the 5 position is also in the plane of the hetero cyclic system. The dihedral angle between the mean planes of the benzene and 4-methoxy­phenyl rings is 40.4 (2)°. The dihedral angles between the mean planes of the pyrimidine and the benzene and 4-methoxy­phenyl rings are 15.6 (5)° and 52.6 (7)°, respectively. A weak intra­molecular C—H⋯N hydrogen bond inter­action, which forms an S(7) graph-set motif, helps to establish the relative conformations of the tetrazolo and benzene rings. In the crystal, weak inter­molecular C—H⋯O, C—H⋯π and ππ stacking inter­actions [centroid–centroid distances = 3.5270 (16), 3.5113 (16), 3.7275 (17) and 3.7866 (17) Å] link the mol­ecules into a two-dimensional array obliquely parallel to (101) and propagating along the b axis.

Related literature

For the biological activity of fused tetra­zolopyrimidines, see: Wilkinson (1992[Wilkinson, J. A. (1992). Chem. Rev. 92, 505-519.]); Omer et al. (1991[Omer, A., Mohson, M., Shams, A. & Labouta, I. A. (1991). J. Pharm. Sci. 5, 213-218.]); Schram et al. (1975[Schram, K. L., Manning, S. J. & Townsend, L. B. (1975). J. Heterocycl. Chem.12, 1021-1023.]). Fused pyrimidines with a halogen at the 2- or 4- position seem to be more labile towards a nucleophilic substitution reaction with reagents such as piperadine, piperazine, morpholine, hydrazine and azides, forming potent bi- and triheterocycles, see: Dave & Shah (2000[Dave, C. G. & Shah, R. D. (2000). J. Heterocycl. Chem. 7, 757-761.], 2002[Dave, C. G. & Shah, R. D. (2002). Molecules, 7, 534-543.]); Peinador et al. (1992[Peinador, C., Ojea, V. & Quintela, J. M. (1992). J. Heterocycl. Chem. 29, 1698-1702.]); Schneller & Clough (1992[Schneller, S. W. & Clough, F. W. (1992). J. Heterocycl. Chem. 11, 975-977.]); Shishoo & Jain (1992[Shishoo, C. J. & Jain, S. K. (1992). J. Heterocycl Chem. 29, 883-893.]). For the importance of the reduction of tetra­zolopyrimidines via azido­lysis in the development of synthetically important 4-amino­pyrimidines, see: Shishoo & Jain (1992[Shishoo, C. J. & Jain, S. K. (1992). J. Heterocycl Chem. 29, 883-893.]); Hand & Backer (1984[Hand, E. S. & Backer, D. C. (1984). Can. J. Chem. 62, 2570-2577.]). For nucleophilic substitution reactions in pyrrolo[2,3-e] pyrimidines, see: Dave & Shah (2002[Dave, C. G. & Shah, R. D. (2002). Molecules, 7, 534-543.]); Ali & Swealan (1992[Ali, A. S. & Swealan, S. A. (1992). Egypt J. Pharm. Sci. 33, 473-477.]). For related structures, see: Jotani & Baldaniya (2007[Jotani, M. M. & Baldaniya, B. B. (2007). Acta Cryst. E63, o1937-o1939.], 2008[Jotani, M. M. & Baldaniya, B. B. (2008). Acta Cryst. E64, o739.]); Hou et al. (2009[Hou, Z.-H., Zhou, N.-B., He, B.-H. & Li, X.-F. (2009). Acta Cryst. E65, o375.]); Baldaniya & Jotani (2008[Baldaniya, B. B. & Jotani, M. M. (2008). Anal. Sci. X-Ray Struct. Online 24, x217-x218.]); Malone et al. (1997[Malone, J. F., Murray, C. M., Charlton, M. H., Docherty, R. & Lavery, A. J. (1997). J. Chem. Soc. Faraday Trans. pp. 3429-3436.]). For the synthesis, see: Shah (2009[Shah, R. D. (2009). Unpublished results.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For tetrazolo ring formation, see: Bourgurgnon et al. (1975[Bourgurgnon, J., Gougeon, E., Queguiner, G. & Pastor, B. (1975). Bull. Soc. Chim. Fr. 3-4, 815-819.]); Robba et al. (1975[Robba, M., Lecomte, J. M. & Cugnon de, M. (1975). J. Heterocycl. Chem. 12, 525-527.]).

[Scheme 1]

Experimental

Crystal data
  • C20H16N6O

  • Mr = 356.39

  • Monoclinic, P 21 /n

  • a = 13.738 (2) Å

  • b = 7.032 (3) Å

  • c = 19.4350 (3) Å

  • β = 110.217 (2)°

  • V = 1761.9 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.47 × 0.35 × 0.2 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.96, Tmax = 0.98

  • 42323 measured reflections

  • 5137 independent reflections

  • 3694 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.129

  • S = 1.04

  • 5137 reflections

  • 247 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯N6 0.95 2.38 3.2159 (18) 146
C12—H12⋯O1i 0.95 2.57 3.3902 (17) 144
C7—H7BCg4ii 0.96 2.90 3.620 (2) 132
C7—H7CCg4iii 0.96 2.69 3.554 (2) 150
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1; (iii) -x+1, -y+2, -z+1. Cg4 is the centroid of the C8–C13. ring.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR2004 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-32 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Fused tetrazolopyrimidines are important to the activities of a variety of biological substances (Willkinson, 1992; Omer et al., 1991; Schram et al., 1975). Moreover, fused pyrimidines having a halogen at the 2- or 4- position seem to be more labile towards a nucleophilic substitution reaction with reagents such as piperadine, piperazine, morpholine, hydrazine and azides to form potent bi and triheterocycles (Dave & Shah, 2002; Peinador et al., 1992; Schneller & Clough, 1992; Shishoo & Jain, 1992). The reduction of tetrazolopyrimidines via azidolysis studies have been shown to be to attractive to development of synthetically important 4-aminopyrimidines (Shishoo & Jain, 1992; Hand & Backer, 1984). The treatment of sodium azide with 4-chloropyrrolo[2,3-e] pyrimidine can result the formation of either an azido group or tetrazole ring upon a fused pyrimidine ring. Such nucleophilic substitution reactions have rarely been attempted in pyrrolo[2,3-e] pyrimidines (Dave & Shah, 2002; Ali & Swealan, 1992). In view of the importance of these molecules, a crystal structure of the title compound, C20H16N6O, (I) has been determined.

The title compound, C20H16N6O, (I), is composed of a tetrazolo ring and a 4-methoxyphenyl and benzene substituted pyrrole ring at the 7 and 9 position fused to a pyrimidine ring in a nearly planar fashion (Fig. 1). The r.m.s.deviation of atoms of the fused ring from the mean plane through the heterotricyclic system is 0.0085 Å, with a maximum deviation of -0.018 (1) and 0.013 (1) Å for atoms C2 and C3 respectively. Bond lengths and angles for the fused pyrrole and tetrazole rings in (I) are normal and similar to that observed for a related structure. The dihedral angles between the mean planes of fused pyrimidine and tetrazole rings with that of the pyrrole ring are 1.26 (6) ° and 1.13 (7)°, respectively. A methyl group at the 5 position is also in the plane of the pyrimidine ring. The dihedral angle between the mean planes of the benzene and 4-methoxyphenyl rings is 40.4 (2)°. The angles between the mean planes of the pyrimidine and the benzene and 4-methoxyphenyl rings are 15.6 (5)° and 52.6 (7)°, respectively. A weak intramolecular C13–H13···N6 hydrogen bond interaction, which forms an S(7) graph set, helps stabilize the separation angle between the tetrazolo and benzene rings. Weak intermolecular C12–H12···O1 (Fig. 2), C–H···π-ring (C7–H7B(H7C)···Cg4 [= 3.620 (2) (3.554 (2) Å; 1 - x, 1 - y, 1 - z (1 - x, 2 - y, 1 - z); where Cg4 = C8–C13 ring centroid; Table 1] and ππ [Cg1···Cg2; = 3.5270 (16)Å & 3.5113 (16) Å,1 - x, 1 - y, 1 - x & 1 - x, 2 - y, 1 - z; Cg2···Cg3; = 3.7275 (17) Å, 1 - x, 2 - y, 1 - z; Cg3···Cg1; = 3.7866 (17) Å, 1 - x, 1 - y, 1 - z; where Cg1 = N1/C1–C4, Cg2 = N3–N6/C6, Cg3 = N2/C1–C5] stacking interactions (Fig. 3) help to link the molecules into a 2-D array obliquely parallel to (101) and propagating along the b axis.

Related literature top

For the biological activity of fused tetrazolopyrimidines, see: Wilkinson (1992); Omer et al. (1991); Schram et al. (1975). Fused pyrimidines with a halogen at the 2- or 4- position seem to be more labile towards a nucleophilic substitution reaction with reagents such as piperadine, piperazine, morpholine, hydrazine and azides, forming potent bi and triheterocycles, see: Dave & Shah (2000, 2002); Peinador et al. (1992); Schneller & Clough (1992); Shishoo & Jain (1992). For the importance of the reduction of tetrazolopyrimidines via azidolysis in the development of synthetically important 4-aminopyrimidines, see: Shishoo & Jain (1992); Hand & Backer (1984). For nucleophilic substitution reactions in pyrrolo[2,3-e] pyrimidines, see: Dave & Shah (2002); Ali & Swealan (1992). For related structures, see: Jotani & Baldaniya (2007, 2008); Hou et al. (2009); Baldaniya & Jotani (2008); Malone et al. (1997). For the synthesis, see: Shah (2009). For hydrogen-bond motifs, see: Bernstein et al. (1995). For tetrazolo ring formation, see: Bourgurgnon et al. (1975); Robba et al. (1975).

Experimental top

The title compound was synthesized according to method of Shah (2009). A mixture of sodium azide (0.011 mole), ammonium chloride (0.011 mole) and 2-methyl-5-phenyl-7-(4-methoxyphenyl)-4-chloro-7H-pyrrolo[2,3-d]pyrimidine (0.01 mole) in DMSO (20 ml) was stirred for for 2 h at 363 K to obtain the title compound (I). Colorless platlike single crystals, suitable for X-ray diffraction were grown from a solution of 1,4-dioxane.

Refinement top

All of the H atoms were placed in their calculated positions and then refined using the riding model with C—H = 0.95–0.98 Å, and with Uiso(H) = 1.18–1.50Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR2004 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-32 and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom labelling scheme and 50% probability displacement ellipsoids. The dashed line represents a weak intramolecular C–H···N hydrogen bond interaction.
[Figure 2] Fig. 2. Crystal packing of (I), showing weak intramolecular C–H···N and intermolecular C–H···O hydrogen bond interactions as dashed lines.
[Figure 3] Fig. 3. The molecular packing of (I), showing ππ stacking interactions as dashed lines forming chains of molecules along [1 0 1] plane if the unit cell.
7-(4-Methoxyphenyl)-5-methyl-9-phenyl-7H- pyrrolo[2',3':4,5]pyrimido[1,6-d]tetrazole top
Crystal data top
C20H16N6OF(000) = 744
Mr = 356.39Dx = 1.344 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5176 reflections
a = 13.738 (2) Åθ = 2.2–31.3°
b = 7.032 (3) ŵ = 0.09 mm1
c = 19.4350 (3) ÅT = 293 K
β = 110.217 (2)°Plate, yellow
V = 1761.9 (8) Å30.47 × 0.35 × 0.2 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5137 independent reflections
Radiation source: fine-focus sealed tube3694 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω and ϕ scanθmax = 30.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1919
Tmin = 0.96, Tmax = 0.98k = 49
42323 measured reflectionsl = 2727
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.129 w = 1/[σ2(Fo2) + (0.0656P)2 + 0.2469P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
5137 reflectionsΔρmax = 0.29 e Å3
247 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0104 (12)
Crystal data top
C20H16N6OV = 1761.9 (8) Å3
Mr = 356.39Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.738 (2) ŵ = 0.09 mm1
b = 7.032 (3) ÅT = 293 K
c = 19.4350 (3) Å0.47 × 0.35 × 0.2 mm
β = 110.217 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5137 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
3694 reflections with I > 2σ(I)
Tmin = 0.96, Tmax = 0.98Rint = 0.030
42323 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 1.04Δρmax = 0.29 e Å3
5137 reflectionsΔρmin = 0.20 e Å3
247 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.49323 (7)0.66669 (14)0.35550 (5)0.0364 (2)
N20.64444 (8)0.71967 (13)0.46114 (6)0.0390 (2)
N30.60830 (8)0.78499 (13)0.56626 (5)0.0387 (2)
N40.63253 (10)0.82763 (16)0.63905 (6)0.0503 (3)
N50.54477 (10)0.84057 (18)0.64892 (6)0.0553 (3)
N60.46241 (9)0.80796 (15)0.58676 (5)0.0461 (3)
O10.67511 (8)0.63011 (14)0.14173 (5)0.0557 (3)
C10.54006 (9)0.70521 (14)0.42843 (6)0.0342 (2)
C20.46308 (9)0.72839 (14)0.45931 (6)0.0322 (2)
C30.36448 (9)0.70460 (14)0.40206 (6)0.0331 (2)
C40.38831 (9)0.66682 (16)0.34039 (6)0.0372 (2)
H40.33830.64370.29330.045*
C50.67850 (10)0.75945 (15)0.53047 (7)0.0400 (3)
C60.50261 (9)0.77276 (14)0.53513 (6)0.0350 (2)
C70.79065 (11)0.7757 (2)0.57366 (8)0.0538 (3)
H7A0.83070.76510.54080.081*
H7B0.81090.67350.61020.081*
H7C0.80440.89910.59860.081*
C80.25890 (9)0.71760 (15)0.40362 (6)0.0348 (2)
C90.17475 (10)0.73306 (18)0.33836 (7)0.0437 (3)
H90.18670.73610.29310.052*
C100.07452 (11)0.7441 (2)0.33822 (8)0.0531 (3)
H100.01830.75400.29310.064*
C110.05569 (11)0.7407 (2)0.40303 (9)0.0572 (4)
H110.01340.74930.40300.069*
C120.13717 (12)0.7249 (2)0.46801 (9)0.0559 (4)
H120.12420.72170.51290.067*
C130.23768 (11)0.71372 (18)0.46865 (7)0.0444 (3)
H130.29320.70320.51410.053*
C140.54240 (9)0.65119 (16)0.30183 (6)0.0352 (2)
C150.50818 (9)0.76648 (17)0.24049 (6)0.0409 (3)
H150.45330.85420.23480.049*
C160.55355 (10)0.75407 (18)0.18782 (7)0.0437 (3)
H160.52940.83200.14540.052*
C170.63448 (9)0.62818 (17)0.19641 (6)0.0397 (3)
C180.66942 (9)0.51457 (18)0.25825 (7)0.0430 (3)
H180.72540.42910.26460.052*
C190.62275 (9)0.52564 (17)0.31077 (6)0.0413 (3)
H190.64610.44670.35300.050*
C200.75810 (14)0.5043 (3)0.14708 (10)0.0782 (6)
H20A0.81680.53240.19180.117*
H20B0.77950.52070.10430.117*
H20C0.73540.37280.14880.117*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0378 (5)0.0443 (5)0.0276 (5)0.0018 (4)0.0121 (4)0.0010 (4)
N20.0382 (5)0.0396 (5)0.0362 (5)0.0018 (4)0.0092 (4)0.0011 (4)
N30.0492 (6)0.0345 (4)0.0271 (5)0.0023 (4)0.0064 (4)0.0001 (3)
N40.0663 (8)0.0509 (6)0.0272 (5)0.0076 (5)0.0080 (5)0.0035 (4)
N50.0717 (8)0.0613 (7)0.0300 (6)0.0110 (6)0.0139 (5)0.0068 (5)
N60.0620 (7)0.0495 (6)0.0284 (5)0.0074 (5)0.0175 (5)0.0042 (4)
O10.0641 (6)0.0690 (6)0.0459 (5)0.0180 (5)0.0340 (5)0.0111 (4)
C10.0401 (6)0.0329 (5)0.0285 (5)0.0015 (4)0.0105 (4)0.0016 (4)
C20.0406 (6)0.0288 (4)0.0272 (5)0.0002 (4)0.0118 (4)0.0018 (4)
C30.0388 (6)0.0327 (5)0.0278 (5)0.0006 (4)0.0115 (4)0.0016 (4)
C40.0365 (6)0.0436 (6)0.0298 (5)0.0000 (4)0.0095 (5)0.0017 (4)
C50.0437 (7)0.0334 (5)0.0373 (6)0.0010 (4)0.0069 (5)0.0014 (4)
C60.0458 (6)0.0289 (5)0.0293 (5)0.0020 (4)0.0115 (5)0.0017 (4)
C70.0451 (7)0.0510 (7)0.0520 (8)0.0023 (5)0.0001 (6)0.0040 (6)
C80.0407 (6)0.0320 (5)0.0326 (6)0.0005 (4)0.0137 (5)0.0007 (4)
C90.0426 (7)0.0532 (7)0.0346 (6)0.0003 (5)0.0124 (5)0.0012 (5)
C100.0404 (7)0.0647 (8)0.0496 (8)0.0015 (6)0.0096 (6)0.0037 (6)
C110.0430 (8)0.0684 (9)0.0646 (10)0.0028 (6)0.0244 (7)0.0089 (7)
C120.0543 (8)0.0711 (9)0.0512 (8)0.0043 (7)0.0297 (7)0.0068 (6)
C130.0464 (7)0.0536 (7)0.0349 (6)0.0008 (5)0.0161 (5)0.0016 (5)
C140.0369 (6)0.0420 (5)0.0277 (5)0.0006 (4)0.0124 (4)0.0023 (4)
C150.0381 (6)0.0512 (6)0.0327 (6)0.0103 (5)0.0113 (5)0.0035 (5)
C160.0448 (7)0.0550 (7)0.0312 (6)0.0087 (5)0.0129 (5)0.0090 (5)
C170.0416 (6)0.0474 (6)0.0337 (6)0.0020 (5)0.0174 (5)0.0000 (4)
C180.0451 (7)0.0448 (6)0.0426 (7)0.0110 (5)0.0195 (5)0.0049 (5)
C190.0472 (7)0.0433 (6)0.0348 (6)0.0075 (5)0.0158 (5)0.0069 (4)
C200.0943 (13)0.0825 (11)0.0864 (12)0.0367 (10)0.0674 (11)0.0245 (9)
Geometric parameters (Å, º) top
N1—C11.3661 (14)C8—C91.3942 (17)
N1—C41.3680 (15)C9—C101.3783 (18)
N1—C141.4294 (14)C9—H90.9500
N2—C51.2951 (16)C10—C111.371 (2)
N2—C11.3567 (15)C10—H100.9500
N3—C61.3691 (16)C11—C121.372 (2)
N3—N41.3699 (14)C11—H110.9500
N3—C51.3819 (17)C12—C131.379 (2)
N4—N51.2879 (17)C12—H120.9500
N5—N61.3591 (16)C13—H130.9500
N6—C61.3254 (15)C14—C191.3768 (16)
O1—C171.3606 (13)C14—C151.3828 (16)
O1—C201.4183 (17)C15—C161.3730 (17)
C1—C21.3942 (16)C15—H150.9500
C2—C61.4178 (15)C16—C171.3854 (17)
C2—C31.4351 (15)C16—H160.9500
C3—C41.3730 (15)C17—C181.3835 (16)
C3—C81.4640 (16)C18—C191.3825 (16)
C4—H40.9500C18—H180.9500
C5—C71.4824 (18)C19—H190.9500
C7—H7A0.9800C20—H20A0.9800
C7—H7B0.9800C20—H20B0.9800
C7—H7C0.9800C20—H20C0.9800
C8—C131.3920 (17)
C1—N1—C4107.82 (9)C10—C9—H9119.3
C1—N1—C14126.90 (10)C8—C9—H9119.3
C4—N1—C14124.89 (9)C11—C10—C9120.20 (14)
C5—N2—C1116.55 (11)C11—C10—H10119.9
C6—N3—N4108.19 (10)C9—C10—H10119.9
C6—N3—C5125.97 (10)C10—C11—C12119.60 (13)
N4—N3—C5125.83 (11)C10—C11—H11120.2
N5—N4—N3105.27 (10)C12—C11—H11120.2
N4—N5—N6112.98 (11)C11—C12—C13120.58 (13)
C6—N6—N5105.53 (11)C11—C12—H12119.7
C17—O1—C20118.22 (10)C13—C12—H12119.7
N2—C1—N1122.92 (10)C12—C13—C8120.93 (13)
N2—C1—C2128.74 (10)C12—C13—H13119.5
N1—C1—C2108.33 (10)C8—C13—H13119.5
C1—C2—C6113.45 (10)C19—C14—C15120.24 (10)
C1—C2—C3107.80 (9)C19—C14—N1121.15 (10)
C6—C2—C3138.71 (11)C15—C14—N1118.61 (10)
C4—C3—C2104.68 (10)C16—C15—C14119.92 (11)
C4—C3—C8124.54 (10)C16—C15—H15120.0
C2—C3—C8130.77 (10)C14—C15—H15120.0
N1—C4—C3111.35 (10)C15—C16—C17120.19 (11)
N1—C4—H4124.3C15—C16—H16119.9
C3—C4—H4124.3C17—C16—H16119.9
N2—C5—N3119.19 (11)O1—C17—C18124.85 (11)
N2—C5—C7122.47 (12)O1—C17—C16115.35 (10)
N3—C5—C7118.33 (11)C18—C17—C16119.78 (11)
N6—C6—N3108.03 (10)C19—C18—C17119.91 (11)
N6—C6—C2135.87 (11)C19—C18—H18120.0
N3—C6—C2116.10 (10)C17—C18—H18120.0
C5—C7—H7A109.5C14—C19—C18119.94 (11)
C5—C7—H7B109.5C14—C19—H19120.0
H7A—C7—H7B109.5C18—C19—H19120.0
C5—C7—H7C109.5O1—C20—H20A109.5
H7A—C7—H7C109.5O1—C20—H20B109.5
H7B—C7—H7C109.5H20A—C20—H20B109.5
C13—C8—C9117.35 (11)O1—C20—H20C109.5
C13—C8—C3122.51 (11)H20A—C20—H20C109.5
C9—C8—C3120.13 (10)H20B—C20—H20C109.5
C10—C9—C8121.33 (12)
C6—N3—N4—N50.45 (12)C5—N3—C6—C20.47 (15)
C5—N3—N4—N5179.34 (10)C1—C2—C6—N6179.44 (12)
N3—N4—N5—N60.33 (14)C3—C2—C6—N61.9 (2)
N4—N5—N6—C60.08 (14)C1—C2—C6—N30.34 (13)
C5—N2—C1—N1179.05 (10)C3—C2—C6—N3177.88 (11)
C5—N2—C1—C20.35 (17)C4—C3—C8—C13165.29 (11)
C4—N1—C1—N2178.52 (10)C2—C3—C8—C1315.64 (17)
C14—N1—C1—N25.42 (17)C4—C3—C8—C914.18 (16)
C4—N1—C1—C20.41 (12)C2—C3—C8—C9164.89 (11)
C14—N1—C1—C2173.51 (10)C13—C8—C9—C100.00 (17)
N2—C1—C2—C60.04 (16)C3—C8—C9—C10179.50 (11)
N1—C1—C2—C6178.89 (9)C8—C9—C10—C110.3 (2)
N2—C1—C2—C3178.25 (10)C9—C10—C11—C120.5 (2)
N1—C1—C2—C30.60 (11)C10—C11—C12—C130.4 (2)
C1—C2—C3—C40.54 (11)C11—C12—C13—C80.2 (2)
C6—C2—C3—C4178.17 (12)C9—C8—C13—C120.05 (17)
C1—C2—C3—C8178.67 (10)C3—C8—C13—C12179.54 (11)
C6—C2—C3—C81.0 (2)C1—N1—C14—C1955.88 (16)
C1—N1—C4—C30.06 (13)C4—N1—C14—C19132.14 (12)
C14—N1—C4—C3173.33 (10)C1—N1—C14—C15123.61 (12)
C2—C3—C4—N10.30 (12)C4—N1—C14—C1548.36 (16)
C8—C3—C4—N1178.97 (9)C19—C14—C15—C160.85 (18)
C1—N2—C5—N30.24 (15)N1—C14—C15—C16179.66 (11)
C1—N2—C5—C7178.70 (10)C14—C15—C16—C170.88 (19)
C6—N3—C5—N20.17 (16)C20—O1—C17—C181.4 (2)
N4—N3—C5—N2179.92 (10)C20—O1—C17—C16179.88 (14)
C6—N3—C5—C7179.15 (10)C15—C16—C17—O1178.74 (12)
N4—N3—C5—C71.10 (16)C15—C16—C17—C180.1 (2)
N5—N6—C6—N30.22 (12)O1—C17—C18—C19179.42 (12)
N5—N6—C6—C2179.99 (12)C16—C17—C18—C190.70 (19)
N4—N3—C6—N60.42 (12)C15—C14—C19—C180.04 (18)
C5—N3—C6—N6179.37 (10)N1—C14—C19—C18179.52 (11)
N4—N3—C6—C2179.74 (9)C17—C18—C19—C140.73 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···N60.952.383.2159 (18)146
C12—H12···O1i0.952.573.3902 (17)144
C7—H7B···Cg4ii0.962.903.620 (2)132
C7—H7C···Cg4iii0.962.693.554 (2)150
Symmetry codes: (i) x1/2, y+3/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC20H16N6O
Mr356.39
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)13.738 (2), 7.032 (3), 19.4350 (3)
β (°) 110.217 (2)
V3)1761.9 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.47 × 0.35 × 0.2
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.96, 0.98
No. of measured, independent and
observed [I > 2σ(I)] reflections
42323, 5137, 3694
Rint0.030
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.129, 1.04
No. of reflections5137
No. of parameters247
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.20

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SIR2004 (Burla et al., 2003), SHELXL97 (Sheldrick, 2008), ORTEP-32 and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···N60.952.383.2159 (18)146.4
C12—H12···O1i0.952.573.3902 (17)144.1
C7—H7B···Cg4ii0.962.903.620 (2)132
C7—H7C···Cg4iii0.962.693.554 (2)150
Symmetry codes: (i) x1/2, y+3/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x+1, y+2, z+1.
 

Acknowledgements

The authors thank Department of Science and Technology (DST) and the SAIF, IIT Madras, Chennai, India, for the intensity data collection.

References

First citationAli, A. S. & Swealan, S. A. (1992). Egypt J. Pharm. Sci. 33, 473–477.  CAS Google Scholar
First citationBaldaniya, B. B. & Jotani, M. M. (2008). Anal. Sci. X-Ray Struct. Online 24, x217–x218.  CSD CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBourgurgnon, J., Gougeon, E., Queguiner, G. & Pastor, B. (1975). Bull. Soc. Chim. Fr. 3-4, 815–819.  Google Scholar
First citationBruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationDave, C. G. & Shah, R. D. (2000). J. Heterocycl. Chem. 7, 757–761.  CrossRef Google Scholar
First citationDave, C. G. & Shah, R. D. (2002). Molecules, 7, 534–543.  Web of Science CrossRef Google Scholar
First citationHand, E. S. & Backer, D. C. (1984). Can. J. Chem. 62, 2570–2577.  CrossRef CAS Web of Science Google Scholar
First citationHou, Z.-H., Zhou, N.-B., He, B.-H. & Li, X.-F. (2009). Acta Cryst. E65, o375.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJotani, M. M. & Baldaniya, B. B. (2007). Acta Cryst. E63, o1937–o1939.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJotani, M. M. & Baldaniya, B. B. (2008). Acta Cryst. E64, o739.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMalone, J. F., Murray, C. M., Charlton, M. H., Docherty, R. & Lavery, A. J. (1997). J. Chem. Soc. Faraday Trans. pp. 3429–3436.  CrossRef Web of Science Google Scholar
First citationOmer, A., Mohson, M., Shams, A. & Labouta, I. A. (1991). J. Pharm. Sci. 5, 213–218.  Google Scholar
First citationPeinador, C., Ojea, V. & Quintela, J. M. (1992). J. Heterocycl. Chem. 29, 1698–1702.  CrossRef Google Scholar
First citationRobba, M., Lecomte, J. M. & Cugnon de, M. (1975). J. Heterocycl. Chem. 12, 525–527.  CrossRef CAS Google Scholar
First citationSchneller, S. W. & Clough, F. W. (1992). J. Heterocycl. Chem. 11, 975–977.  CrossRef Google Scholar
First citationSchram, K. L., Manning, S. J. & Townsend, L. B. (1975). J. Heterocycl. Chem.12, 1021–1023.  Google Scholar
First citationShah, R. D. (2009). Unpublished results.  Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShishoo, C. J. & Jain, S. K. (1992). J. Heterocycl Chem. 29, 883–893.  CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWilkinson, J. A. (1992). Chem. Rev. 92, 505–519.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 1| January 2010| Pages o212-o213
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds