organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

7-Chloro­indoline-2,3-dione

aCollege of Food Science and Light Industry, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China, and bCollege of Chemistry, Chemical Engineering and Biotechnology, Donghua University, North Renmin Road No. 2999 Songjiang, Shanghai 201620, People's Republic of China
*Correspondence e-mail: sunjie5516@126.com

(Received 16 November 2009; accepted 30 November 2009; online 4 December 2009)

There are two mol­ecules in the asymmetric unit of the title compound, C8H4ClNO2. In the crystal, they are linked by N—H⋯O hydrogen bonds, generating centrosymmetric, tetra­meric assemblies. A C—H⋯O inter­action also occurs.

Related literature

For general background to oxyphenastatin derivatives and further synthetic details, see: Uddin et al. (2007[Uddin, M. K., Reignier, S. G., Coulter, T., Montalbetti, C., Granas, C., Butcher, S., Krog-Jensen, C. & Felding, J. (2007). Bioorg Med. Chem. Lett. 17, 2854-2857.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C8H4ClNO2

  • Mr = 181.57

  • Triclinic, [P \overline 1]

  • a = 7.2450 (14) Å

  • b = 8.6080 (17) Å

  • c = 12.470 (3) Å

  • α = 86.95 (3)°

  • β = 78.02 (3)°

  • γ = 84.89 (3)°

  • V = 757.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.45 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.876, Tmax = 0.956

  • 2988 measured reflections

  • 2749 independent reflections

  • 2051 reflections with I > 2σ(I)

  • Rint = 0.047

  • 3 standard reflections every 200 reflections

  • intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.160

  • S = 1.01

  • 2749 reflections

  • 217 parameters

  • 13 restraints

  • H-atom parameters constrained

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O4i 0.86 2.12 2.961 (4) 165
N2—H2B⋯O4i 0.86 2.10 2.923 (3) 160
C14—H14A⋯O2ii 0.93 2.46 3.385 (4) 172
Symmetry codes: (i) -x+1, -y+2, -z; (ii) x-1, y, z.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft. The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo,1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Related literature top

For general background to oxyphenastatin derivatives and further synthetic details, see: Uddin et al. (2007). For bond-length data, see: Allen et al. (1987).

Experimental top

85 g (0.06 mol) Sodium sulfate and 300 ml water was added into a 1000 ml three mouthed flask, mixed till the sodium sulfate dissolved, then a saturated solution of 18 g (0.11 mol) chloral hydrate was added. While stirring, the mixture of 12.7 g (0.1 mol) p-chloroaniline, 12 ml hydrochloric acid and 100 ml water was dropped to the reaction mixture causing white precipitation. Then 22 g (0.32 mol) hydroxylamine hydrochloride was added and the mixture was heated to 348 K. After 5 h, light yellow precipitation appeared, filtered and washed with water, dried and then added the yellow precipitation into concentrated sulfuric acid (50 ml) in batches at 353 K. Heated to 363 K and stirred for 30 minutes and dumped the mixture into ice water (1000 ml), stirred for 40 minutes, filtered and washed with water to neutral, dried and Yellow blocks of (I) were obtained by slow evaporation of an acetone solution (yield; 90%, m.p. 463 K).

Refinement top

H atoms were positioned geometrically, with N—H = 0.86Å and C—H = 0.93Å and refined as riding with Uiso(H) = xUeq(C,O,N), where x = 1.5 for NH H and x = 1.2 for all other H atoms.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989; data reduction: XCAD4(Harms & Wocadlo,1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial packing diagram of (I). Hydrogen bonds are shown as dashed lines.
7-chloroindoline-2,3-dione top
Crystal data top
C8H4ClNO2Z = 4
Mr = 181.57F(000) = 368
Triclinic, P1Dx = 1.593 Mg m3
Hall symbol: -P 1Melting point: 463K K
a = 7.2450 (14) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.6080 (17) ÅCell parameters from 25 reflections
c = 12.470 (3) Åθ = 9–13°
α = 86.95 (3)°µ = 0.45 mm1
β = 78.02 (3)°T = 293 K
γ = 84.89 (3)°Block, yellow
V = 757.2 (3) Å30.30 × 0.20 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
2051 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.047
Graphite monochromatorθmax = 25.3°, θmin = 1.7°
ω/2θ scansh = 08
Absorption correction: ψ scan
(North et al., 1968)
k = 1010
Tmin = 0.876, Tmax = 0.956l = 1414
2988 measured reflections3 standard reflections every 200 reflections
2749 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.160H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.1P)2 + 0.250P]
where P = (Fo2 + 2Fc2)/3
2749 reflections(Δ/σ)max < 0.001
217 parametersΔρmax = 0.63 e Å3
13 restraintsΔρmin = 0.29 e Å3
Crystal data top
C8H4ClNO2γ = 84.89 (3)°
Mr = 181.57V = 757.2 (3) Å3
Triclinic, P1Z = 4
a = 7.2450 (14) ÅMo Kα radiation
b = 8.6080 (17) ŵ = 0.45 mm1
c = 12.470 (3) ÅT = 293 K
α = 86.95 (3)°0.30 × 0.20 × 0.10 mm
β = 78.02 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2051 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.047
Tmin = 0.876, Tmax = 0.9563 standard reflections every 200 reflections
2988 measured reflections intensity decay: 1%
2749 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05513 restraints
wR(F2) = 0.160H-atom parameters constrained
S = 1.01Δρmax = 0.63 e Å3
2749 reflectionsΔρmin = 0.29 e Å3
217 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.28644 (18)0.90528 (12)0.43418 (10)0.0839 (4)
N10.4403 (4)0.6203 (3)0.28727 (19)0.0415 (6)
H1A0.45990.70990.25500.050*
O10.4519 (4)0.2163 (3)0.3096 (2)0.0731 (8)
O20.5909 (4)0.4581 (3)0.1488 (2)0.0662 (7)
C10.1629 (6)0.4991 (7)0.6003 (3)0.0780 (13)
H1B0.10190.46740.67020.094*
C20.1735 (5)0.6597 (6)0.5739 (3)0.0701 (11)
H2A0.12010.73280.62610.084*
C30.2638 (5)0.7090 (4)0.4697 (3)0.0541 (9)
C40.3423 (4)0.5985 (4)0.3954 (2)0.0393 (7)
C50.3300 (4)0.4400 (4)0.4231 (3)0.0462 (8)
C60.2399 (5)0.3892 (5)0.5258 (3)0.0636 (11)
H6A0.23210.28340.54350.076*
C70.4285 (5)0.3544 (4)0.3265 (3)0.0472 (8)
C80.5004 (4)0.4814 (4)0.2399 (3)0.0441 (7)
Cl20.12910 (13)0.66786 (10)0.12400 (7)0.0589 (3)
N20.3136 (3)0.9103 (3)0.04844 (19)0.0353 (5)
H2B0.37370.88320.00310.042*
O30.2217 (4)1.0991 (3)0.2813 (2)0.0618 (7)
O40.4995 (3)1.1009 (3)0.13853 (18)0.0533 (6)
C90.1833 (5)0.7602 (4)0.1086 (3)0.0486 (8)
H9A0.29480.72900.12350.058*
C100.0841 (4)0.8681 (4)0.1775 (3)0.0472 (8)
H10A0.12820.91110.23840.057*
C110.0833 (4)0.9115 (3)0.1544 (2)0.0403 (7)
C120.1483 (4)0.8492 (3)0.0617 (2)0.0352 (6)
C130.0469 (4)0.7416 (3)0.0075 (2)0.0414 (7)
C140.1181 (4)0.6972 (4)0.0167 (3)0.0446 (7)
H14A0.18660.62430.02900.053*
C150.3646 (4)1.0178 (4)0.1286 (2)0.0438 (7)
C160.2210 (4)1.0242 (4)0.2053 (3)0.0473 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1048 (9)0.0609 (6)0.0837 (8)0.0087 (6)0.0158 (6)0.0213 (5)
N10.0483 (14)0.0400 (13)0.0346 (13)0.0113 (11)0.0040 (11)0.0076 (10)
O10.102 (2)0.0405 (14)0.083 (2)0.0138 (13)0.0326 (17)0.0086 (13)
O20.0718 (17)0.0661 (16)0.0523 (15)0.0055 (13)0.0086 (13)0.0098 (12)
C10.049 (2)0.144 (4)0.040 (2)0.025 (2)0.0059 (17)0.025 (2)
C20.050 (2)0.116 (3)0.0408 (19)0.003 (2)0.0039 (16)0.010 (2)
C30.0449 (18)0.073 (2)0.0444 (18)0.0010 (16)0.0110 (15)0.0040 (16)
C40.0342 (15)0.0512 (17)0.0333 (15)0.0076 (12)0.0091 (12)0.0059 (13)
C50.0420 (16)0.0554 (19)0.0443 (17)0.0175 (14)0.0149 (14)0.0180 (14)
C60.054 (2)0.092 (3)0.049 (2)0.029 (2)0.0186 (18)0.033 (2)
C70.0547 (19)0.0435 (18)0.0501 (19)0.0152 (14)0.0237 (16)0.0084 (14)
C80.0424 (17)0.0451 (17)0.0440 (18)0.0062 (13)0.0062 (14)0.0011 (13)
Cl20.0661 (6)0.0547 (5)0.0548 (5)0.0123 (4)0.0093 (4)0.0095 (4)
N20.0392 (13)0.0354 (12)0.0323 (12)0.0086 (10)0.0088 (10)0.0054 (10)
O30.0607 (15)0.0807 (18)0.0447 (14)0.0069 (13)0.0190 (12)0.0044 (13)
O40.0564 (14)0.0499 (13)0.0496 (13)0.0119 (11)0.0020 (11)0.0135 (10)
C90.0388 (16)0.0509 (18)0.057 (2)0.0076 (14)0.0067 (15)0.0162 (16)
C100.0406 (17)0.0563 (19)0.0460 (18)0.0031 (15)0.0118 (14)0.0118 (15)
C110.0371 (15)0.0433 (16)0.0394 (16)0.0018 (12)0.0046 (13)0.0074 (13)
C120.0326 (14)0.0329 (14)0.0371 (15)0.0030 (11)0.0010 (12)0.0052 (11)
C130.0405 (16)0.0378 (15)0.0429 (17)0.0050 (12)0.0005 (13)0.0080 (13)
C140.0376 (16)0.0398 (16)0.0521 (18)0.0101 (12)0.0046 (14)0.0058 (13)
C150.0442 (17)0.0437 (16)0.0406 (16)0.0105 (14)0.0012 (14)0.0070 (13)
C160.0441 (18)0.0392 (16)0.055 (2)0.0014 (13)0.0017 (15)0.0040 (15)
Geometric parameters (Å, º) top
Cl1—C31.737 (4)Cl2—C131.749 (3)
N1—C81.358 (4)N2—C151.342 (4)
N1—C41.399 (4)N2—C121.393 (4)
N1—H1A0.8600N2—H2B0.8600
O1—C71.210 (4)O3—C161.116 (4)
O2—C81.205 (4)O4—C151.244 (4)
C1—C61.362 (6)C9—C101.377 (5)
C1—C21.410 (7)C9—C141.394 (5)
C1—H1B0.9300C9—H9A0.9300
C2—C31.391 (5)C10—C111.389 (4)
C2—H2A0.9300C10—H10A0.9300
C3—C41.366 (5)C11—C121.401 (4)
C4—C51.396 (4)C11—C161.478 (4)
C5—C61.379 (5)C12—C131.384 (4)
C5—C71.465 (5)C13—C141.382 (4)
C6—H6A0.9300C14—H14A0.9300
C7—C81.541 (4)C15—C161.548 (5)
C8—N1—C4111.1 (2)C15—N2—C12109.5 (2)
C8—N1—H1A124.5C15—N2—H2B125.2
C4—N1—H1A124.5C12—N2—H2B125.2
C6—C1—C2121.4 (3)C10—C9—C14120.5 (3)
C6—C1—H1B119.3C10—C9—H9A119.7
C2—C1—H1B119.3C14—C9—H9A119.7
C3—C2—C1120.0 (4)C9—C10—C11118.7 (3)
C3—C2—H2A120.0C9—C10—H10A120.6
C1—C2—H2A120.0C11—C10—H10A120.6
C4—C3—C2118.4 (4)C10—C11—C12120.8 (3)
C4—C3—Cl1119.7 (3)C10—C11—C16134.1 (3)
C2—C3—Cl1121.8 (3)C12—C11—C16105.0 (3)
C3—C4—C5120.7 (3)C13—C12—N2126.7 (3)
C3—C4—N1128.4 (3)C13—C12—C11120.1 (3)
C5—C4—N1110.9 (3)N2—C12—C11113.2 (2)
C6—C5—C4121.6 (4)C14—C13—C12118.9 (3)
C6—C5—C7131.6 (3)C14—C13—Cl2121.9 (2)
C4—C5—C7106.8 (3)C12—C13—Cl2119.2 (2)
C1—C6—C5117.9 (4)C13—C14—C9121.0 (3)
C1—C6—H6A121.1C13—C14—H14A119.5
C5—C6—H6A121.1C9—C14—H14A119.5
O1—C7—C5131.5 (3)O4—C15—N2126.6 (3)
O1—C7—C8123.4 (3)O4—C15—C16125.7 (3)
C5—C7—C8105.0 (3)N2—C15—C16107.7 (3)
O2—C8—N1128.3 (3)O3—C16—C11128.3 (3)
O2—C8—C7125.5 (3)O3—C16—C15127.2 (3)
N1—C8—C7106.2 (3)C11—C16—C15104.5 (3)
C6—C1—C2—C30.1 (6)C14—C9—C10—C110.8 (5)
C1—C2—C3—C40.7 (5)C9—C10—C11—C121.3 (4)
C1—C2—C3—Cl1178.2 (3)C9—C10—C11—C16177.5 (3)
C2—C3—C4—C50.8 (5)C15—N2—C12—C13176.5 (3)
Cl1—C3—C4—C5178.4 (2)C15—N2—C12—C111.6 (3)
C2—C3—C4—N1179.5 (3)C10—C11—C12—C130.8 (4)
Cl1—C3—C4—N11.9 (5)C16—C11—C12—C13178.0 (2)
C8—N1—C4—C3178.8 (3)C10—C11—C12—N2177.4 (2)
C8—N1—C4—C51.5 (4)C16—C11—C12—N20.2 (3)
C3—C4—C5—C60.4 (5)N2—C12—C13—C14178.0 (3)
N1—C4—C5—C6179.8 (3)C11—C12—C13—C140.1 (4)
C3—C4—C5—C7179.6 (3)N2—C12—C13—Cl21.0 (4)
N1—C4—C5—C70.6 (3)C11—C12—C13—Cl2179.0 (2)
C2—C1—C6—C50.3 (6)C12—C13—C14—C90.6 (4)
C4—C5—C6—C10.1 (5)Cl2—C13—C14—C9178.5 (2)
C7—C5—C6—C1178.8 (3)C10—C9—C14—C130.1 (5)
C6—C5—C7—O12.9 (6)C12—N2—C15—O4176.1 (3)
C4—C5—C7—O1178.1 (4)C12—N2—C15—C162.2 (3)
C6—C5—C7—C8178.7 (3)C10—C11—C16—O33.6 (6)
C4—C5—C7—C80.3 (3)C12—C11—C16—O3179.8 (3)
C4—N1—C8—O2178.7 (3)C10—C11—C16—C15175.6 (3)
C4—N1—C8—C71.6 (3)C12—C11—C16—C151.0 (3)
O1—C7—C8—O22.3 (5)O4—C15—C16—O32.9 (6)
C5—C7—C8—O2179.1 (3)N2—C15—C16—O3178.8 (3)
O1—C7—C8—N1177.4 (3)O4—C15—C16—C11176.3 (3)
C5—C7—C8—N11.2 (3)N2—C15—C16—C112.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4i0.862.122.961 (4)165
N2—H2B···O4i0.862.102.923 (3)160
C14—H14A···O2ii0.932.463.385 (4)172
Symmetry codes: (i) x+1, y+2, z; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC8H4ClNO2
Mr181.57
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.2450 (14), 8.6080 (17), 12.470 (3)
α, β, γ (°)86.95 (3), 78.02 (3), 84.89 (3)
V3)757.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.45
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.876, 0.956
No. of measured, independent and
observed [I > 2σ(I)] reflections
2988, 2749, 2051
Rint0.047
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.160, 1.01
No. of reflections2749
No. of parameters217
No. of restraints13
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.63, 0.29

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), CAD-4 Software (Enraf–Nonius, 1989, XCAD4(Harms & Wocadlo,1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4i0.862.122.961 (4)165
N2—H2B···O4i0.862.102.923 (3)160
C14—H14A···O2ii0.932.463.385 (4)172
Symmetry codes: (i) x+1, y+2, z; (ii) x1, y, z.
 

Acknowledgements

The authors thank the Center of Testing and Analysis of Nanjing University for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft. The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUddin, M. K., Reignier, S. G., Coulter, T., Montalbetti, C., Granas, C., Butcher, S., Krog-Jensen, C. & Felding, J. (2007). Bioorg Med. Chem. Lett. 17, 2854–2857.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds