organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-tert-Butyl­phen­yl)-5-p-tolyl-1,3,4-oxa­diazole

aSchool of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: biaokingseu@yahoo.cn

(Received 18 November 2009; accepted 27 November 2009; online 4 December 2009)

In the title compound, C19H20N2O, the dihedral angles between the 1,3,4-oxadiazole ring and the pendant 4-tert-butyl­phenyl and 4-methyl­phenyl rings are 12.53 (17) and 2.14 (17)°, respectively. In the crystal, mol­ecules are linked by C—H⋯N hydrogen bonds, forming chains.

Related literature

For background to the applications of 1,3,4-oxadiazo­les, see: Jin et al. (2004[Jin, S. H., Kim, M. Y. & Kim, J. Y. (2004). J. Am. Chem. Soc. 126, 2474-2480.]).

[Scheme 1]

Experimental

Crystal data
  • C19H20N2O

  • Mr = 292.37

  • Monoclinic, P 21 /c

  • a = 9.886 (9) Å

  • b = 10.613 (9) Å

  • c = 16.093 (13) Å

  • β = 99.14 (2)°

  • V = 1667 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 298 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.813, Tmax = 1.000

  • 17627 measured reflections

  • 3791 independent reflections

  • 3032 reflections with I > 2σ(I)

  • Rint = 0.063

Refinement
  • R[F2 > 2σ(F2)] = 0.109

  • wR(F2) = 0.223

  • S = 1.15

  • 3791 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10A⋯N2i 0.93 2.59 3.456 (5) 155
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Related literature top

For background to the applications of 1,3,4-oxadiazoles, see: Jin et al. (2004).

Experimental top

To a 100 ml three-neck flask, 4-tert-Butylbenzoic acid methyl ester (19.2 g, 0.1 mol) and 30 ml ethanol were added, and heated to reflux, then hydronium (85%, 6 g, 0.1 mol) was dropped. The mixture was stirred at 353 K for 7 h under nitrogen. After finishing the reaction, the mixture was cooled to the room temperature, and dumped into ten folds of excess water to afford plenty of white solid, filtered and washed with water to yield 4-tert-butylbenzhydrazide (a) (15.6 g, yield = 81%).

4-Methyl benzoic acid (6.8 g, 0.1 mol)was added into a 50 ml three-neck flask, then heated to 313 K, and 10 ml (excessive) thionyl chloride was dropped slowly. The mixture was heated to 353 K, and refluxed for 7 h. After finishing the reaction, distilling residual thionyl chloride with rotary evaporator, getting slightly yellow liquid 4-methylbenzoyl chloride (b).

To a 500 ml single-neck flask, 15.6 g (0.08 mol, excessive) (a), 250 ml tetrahydrofuran, 7.7 g (0.05 mol) (b) and 1 ml pyridine were added. The mixture was refluxed for 12 h. After finishing the reaction, the residual tetrahydrofuran was distilled and the mixture was precipitated into ice-water, filtered and washed with water to afford white solid. The crude product was recrystallized with ethanol three times to yield white sheet crystal (c) (13.4 g, yield 84%). A mixture of (c) (13.4 g, 42.2 mmol) and POCl3 (250 ml) was stirred at 378 K for about 10 h, then poured into ice-water to yield slightly yellow crystals. The mixture was recrystallized with ethanol three times to afford colourless prisms of (I).

Refinement top

Positional parameters of all the H atoms were calculated geometrically and were allowed to ride on the C atoms to which they are bonded, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 30% probability level (H atoms have been omitted for clarity).
[Figure 2] Fig. 2. The packing of (I).
[Figure 3] Fig. 3. The formation of (I).
2-(4-tert-Butylphenyl)-5-p-tolyl-1,3,4-oxadiazole top
Crystal data top
C19H20N2OF(000) = 624
Mr = 292.37Dx = 1.165 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3230 reflections
a = 9.886 (9) Åθ = 2.8–27.4°
b = 10.613 (9) ŵ = 0.07 mm1
c = 16.093 (13) ÅT = 298 K
β = 99.14 (2)°Prism, colourless
V = 1667 (2) Å30.20 × 0.20 × 0.20 mm
Z = 4
Data collection top
Rigaku SCXmini
diffractometer
3791 independent reflections
Radiation source: fine-focus sealed tube3032 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
Detector resolution: 13.6612 pixels mm-1θmax = 27.4°, θmin = 3.2°
ω scansh = 1212
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1313
Tmin = 0.813, Tmax = 1.000l = 2020
17627 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.109Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.223H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.0626P)2 + 1.4014P]
where P = (Fo2 + 2Fc2)/3
3791 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C19H20N2OV = 1667 (2) Å3
Mr = 292.37Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.886 (9) ŵ = 0.07 mm1
b = 10.613 (9) ÅT = 298 K
c = 16.093 (13) Å0.20 × 0.20 × 0.20 mm
β = 99.14 (2)°
Data collection top
Rigaku SCXmini
diffractometer
3791 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
3032 reflections with I > 2σ(I)
Tmin = 0.813, Tmax = 1.000Rint = 0.063
17627 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.1090 restraints
wR(F2) = 0.223H-atom parameters constrained
S = 1.15Δρmax = 0.31 e Å3
3791 reflectionsΔρmin = 0.27 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3647 (3)0.1864 (3)0.12566 (17)0.0697 (9)
N20.4425 (3)0.2831 (3)0.15544 (17)0.0700 (9)
C10.0865 (5)0.0115 (4)0.2440 (3)0.0860 (13)
H1A0.14640.05480.26790.103*
H1B0.01600.02320.20230.103*
H1C0.04550.05110.28750.103*
C20.2791 (4)0.1677 (4)0.2699 (2)0.0789 (12)
H2A0.33080.22900.24430.095*
H2B0.33940.10250.29520.095*
H2C0.23580.20760.31230.095*
C30.0725 (4)0.2149 (4)0.1647 (3)0.0812 (12)
H3A0.12340.27680.13900.097*
H3B0.03130.25390.20840.097*
H3C0.00220.18010.12300.097*
C40.1693 (3)0.1097 (3)0.2024 (2)0.0553 (8)
C50.2384 (3)0.0420 (3)0.13559 (18)0.0466 (7)
C60.2082 (4)0.0674 (3)0.0497 (2)0.0576 (9)
H6A0.14820.13270.03130.069*
C70.2645 (4)0.0019 (3)0.0089 (2)0.0584 (9)
H7A0.24190.01710.06590.070*
C80.3550 (3)0.0996 (3)0.01657 (18)0.0451 (7)
C90.3904 (3)0.1238 (3)0.10244 (18)0.0497 (7)
H9A0.45370.18660.12090.060*
C100.3322 (3)0.0545 (3)0.16006 (18)0.0515 (8)
H10A0.35600.07290.21700.062*
C110.4060 (3)0.1801 (3)0.04533 (19)0.0483 (7)
C120.5233 (3)0.3273 (3)0.09054 (18)0.0489 (7)
C130.6256 (3)0.4270 (3)0.08675 (18)0.0467 (7)
C140.7057 (3)0.4607 (3)0.01123 (19)0.0564 (8)
H14A0.69240.42110.03840.068*
C150.8054 (4)0.5533 (3)0.0093 (2)0.0592 (9)
H15A0.85890.57420.04170.071*
C160.8265 (3)0.6151 (3)0.08216 (19)0.0487 (7)
C170.7452 (3)0.5817 (3)0.1574 (2)0.0524 (8)
H17A0.75760.62220.20690.063*
C180.6460 (3)0.4893 (3)0.16024 (19)0.0522 (8)
H18A0.59260.46850.21130.063*
C190.9346 (4)0.7153 (3)0.0792 (2)0.0638 (9)
H19A0.98030.72540.02230.077*
H19B1.00000.69090.11440.077*
H19C0.89270.79360.09900.077*
O10.5059 (2)0.26623 (19)0.01819 (12)0.0487 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.079 (2)0.080 (2)0.0463 (16)0.0276 (17)0.0004 (14)0.0102 (14)
N20.079 (2)0.078 (2)0.0500 (16)0.0269 (17)0.0014 (14)0.0158 (15)
C10.099 (3)0.074 (3)0.098 (3)0.001 (2)0.058 (3)0.005 (2)
C20.100 (3)0.080 (3)0.058 (2)0.001 (2)0.018 (2)0.014 (2)
C30.095 (3)0.078 (3)0.075 (3)0.030 (2)0.026 (2)0.006 (2)
C40.065 (2)0.0505 (18)0.0529 (18)0.0047 (16)0.0184 (16)0.0028 (15)
C50.0499 (17)0.0459 (17)0.0452 (16)0.0006 (14)0.0107 (13)0.0006 (13)
C60.069 (2)0.0522 (19)0.0529 (19)0.0228 (17)0.0126 (16)0.0095 (15)
C70.074 (2)0.058 (2)0.0426 (17)0.0145 (17)0.0085 (15)0.0071 (14)
C80.0458 (16)0.0447 (16)0.0448 (16)0.0008 (13)0.0071 (12)0.0006 (13)
C90.0479 (17)0.0523 (18)0.0476 (17)0.0092 (14)0.0039 (13)0.0010 (14)
C100.0572 (19)0.0575 (19)0.0382 (15)0.0067 (15)0.0027 (13)0.0037 (14)
C110.0484 (17)0.0494 (18)0.0464 (17)0.0052 (14)0.0054 (13)0.0013 (13)
C120.0515 (17)0.0518 (18)0.0428 (16)0.0034 (15)0.0058 (13)0.0090 (13)
C130.0454 (16)0.0481 (17)0.0459 (16)0.0006 (14)0.0048 (13)0.0048 (13)
C140.064 (2)0.063 (2)0.0417 (16)0.0039 (17)0.0091 (14)0.0118 (15)
C150.066 (2)0.062 (2)0.0460 (18)0.0082 (18)0.0000 (15)0.0004 (15)
C160.0491 (17)0.0425 (16)0.0549 (18)0.0034 (14)0.0091 (14)0.0007 (14)
C170.0590 (19)0.0486 (18)0.0507 (18)0.0023 (15)0.0120 (15)0.0084 (14)
C180.0584 (19)0.0527 (18)0.0436 (16)0.0038 (15)0.0021 (14)0.0046 (14)
C190.064 (2)0.057 (2)0.071 (2)0.0054 (17)0.0116 (18)0.0031 (17)
O10.0520 (12)0.0497 (12)0.0442 (11)0.0040 (10)0.0066 (9)0.0057 (9)
Geometric parameters (Å, º) top
N1—C111.294 (4)C8—C91.395 (4)
N1—N21.411 (4)C8—C111.462 (4)
N2—C121.298 (4)C9—C101.379 (4)
C1—C41.543 (5)C9—H9A0.9300
C1—H1A0.9599C10—H10A0.9300
C1—H1B0.9600C11—O11.365 (4)
C1—H1C0.9601C12—O11.367 (3)
C2—C41.536 (5)C12—C131.458 (4)
C2—H2A0.9601C13—C141.388 (4)
C2—H2B0.9600C13—C181.397 (4)
C2—H2C0.9601C14—C151.389 (4)
C3—C41.532 (5)C14—H14A0.9300
C3—H3A0.9599C15—C161.389 (4)
C3—H3B0.9599C15—H15A0.9300
C3—H3C0.9601C16—C171.389 (4)
C4—C51.540 (4)C16—C191.503 (4)
C5—C61.394 (4)C17—C181.382 (4)
C5—C101.396 (4)C17—H17A0.9300
C6—C71.381 (4)C18—H18A0.9300
C6—H6A0.9300C19—H19A0.9601
C7—C81.388 (4)C19—H19B0.9599
C7—H7A0.9302C19—H19C0.9599
C11—N1—N2105.9 (3)C10—C9—C8120.2 (3)
C12—N2—N1106.8 (3)C10—C9—H9A119.9
C4—C1—H1A109.5C8—C9—H9A119.9
C4—C1—H1B109.4C9—C10—C5122.1 (3)
H1A—C1—H1B109.5C9—C10—H10A118.9
C4—C1—H1C109.6C5—C10—H10A119.0
H1A—C1—H1C109.5N1—C11—O1112.5 (3)
H1B—C1—H1C109.5N1—C11—C8128.5 (3)
C4—C2—H2A109.4O1—C11—C8118.9 (3)
C4—C2—H2B109.4N2—C12—O1111.7 (3)
H2A—C2—H2B109.5N2—C12—C13129.1 (3)
C4—C2—H2C109.5O1—C12—C13119.3 (3)
H2A—C2—H2C109.5C14—C13—C18118.7 (3)
H2B—C2—H2C109.5C14—C13—C12121.2 (3)
C4—C3—H3A109.4C18—C13—C12120.0 (3)
C4—C3—H3B109.6C13—C14—C15120.4 (3)
H3A—C3—H3B109.5C13—C14—H14A119.8
C4—C3—H3C109.5C15—C14—H14A119.8
H3A—C3—H3C109.5C14—C15—C16121.1 (3)
H3B—C3—H3C109.5C14—C15—H15A119.4
C3—C4—C2108.4 (3)C16—C15—H15A119.5
C3—C4—C5112.5 (3)C15—C16—C17118.1 (3)
C2—C4—C5109.8 (3)C15—C16—C19120.6 (3)
C3—C4—C1108.9 (3)C17—C16—C19121.3 (3)
C2—C4—C1109.2 (3)C18—C17—C16121.3 (3)
C5—C4—C1108.2 (3)C18—C17—H17A119.3
C6—C5—C10116.7 (3)C16—C17—H17A119.4
C6—C5—C4123.6 (3)C17—C18—C13120.3 (3)
C10—C5—C4119.6 (3)C17—C18—H18A119.8
C7—C6—C5121.9 (3)C13—C18—H18A119.9
C7—C6—H6A119.1C16—C19—H19A109.5
C5—C6—H6A119.0C16—C19—H19B109.4
C6—C7—C8120.4 (3)H19A—C19—H19B109.5
C6—C7—H7A119.8C16—C19—H19C109.5
C8—C7—H7A119.8H19A—C19—H19C109.5
C7—C8—C9118.6 (3)H19B—C19—H19C109.5
C7—C8—C11120.7 (3)C11—O1—C12103.2 (2)
C9—C8—C11120.5 (3)
C11—N1—N2—C120.4 (4)C9—C8—C11—O110.5 (4)
C3—C4—C5—C64.5 (5)N1—N2—C12—O10.3 (4)
C2—C4—C5—C6125.3 (4)N1—N2—C12—C13179.2 (3)
C1—C4—C5—C6115.7 (4)N2—C12—C13—C14178.7 (3)
C3—C4—C5—C10178.5 (3)O1—C12—C13—C140.1 (5)
C2—C4—C5—C1057.8 (4)N2—C12—C13—C180.4 (5)
C1—C4—C5—C1061.2 (4)O1—C12—C13—C18179.2 (3)
C10—C5—C6—C72.0 (5)C18—C13—C14—C151.0 (5)
C4—C5—C6—C7175.0 (3)C12—C13—C14—C15178.1 (3)
C5—C6—C7—C80.5 (5)C13—C14—C15—C160.7 (5)
C6—C7—C8—C91.8 (5)C14—C15—C16—C170.1 (5)
C6—C7—C8—C11174.8 (3)C14—C15—C16—C19179.9 (3)
C7—C8—C9—C102.4 (5)C15—C16—C17—C180.2 (5)
C11—C8—C9—C10174.2 (3)C19—C16—C17—C18179.8 (3)
C8—C9—C10—C50.8 (5)C16—C17—C18—C130.1 (5)
C6—C5—C10—C91.4 (5)C14—C13—C18—C170.7 (5)
C4—C5—C10—C9175.8 (3)C12—C13—C18—C17178.4 (3)
N2—N1—C11—O10.4 (4)N1—C11—O1—C120.2 (4)
N2—N1—C11—C8177.0 (3)C8—C11—O1—C12177.2 (3)
C7—C8—C11—N110.5 (5)N2—C12—O1—C110.1 (3)
C9—C8—C11—N1166.0 (3)C13—C12—O1—C11179.1 (3)
C7—C8—C11—O1173.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···N2i0.932.593.456 (5)155
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC19H20N2O
Mr292.37
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)9.886 (9), 10.613 (9), 16.093 (13)
β (°) 99.14 (2)
V3)1667 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.813, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
17627, 3791, 3032
Rint0.063
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.109, 0.223, 1.15
No. of reflections3791
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.27

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PRPKAPPA (Ferguson, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···N2i0.932.593.456 (5)155
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

The authors are grateful to the Starter Fund of Southeast University for financial support to buy the X-ray diffractometer.

References

First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationJin, S. H., Kim, M. Y. & Kim, J. Y. (2004). J. Am. Chem. Soc. 126, 2474–2480.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds