organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Phenyl N-cyclo­hexyl­carbamate

aDepartment of Chemistry, Government College University, Lahore, Pakistan, and bDepartment of Physics, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 22 November 2009; accepted 25 November 2009; online 4 December 2009)

In the title compound, C13H17NO2, the dihedral angle between the benzene ring and the basal plane of the cyclo­hexyl ring is 49.55 (8)°. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds, forming chains propagating in [010].

Related literature

For related structures, see: Shahwar et al. (2009a[Shahwar, D., Tahir, M. N., Ahmad, N., Yasmeen, A. & Ullah, S. (2009a). Acta Cryst. E65, o1629.],b[Shahwar, D., Tahir, M. N., Mughal, M. S., Khan, M. A. & Ahmad, N. (2009b). Acta Cryst. E65, o1363.], 2010[Shahwar, D., Tahir, M. N., Ahmad, N., Ullah, S. & Khan, M. A. (2010). Acta Cryst. E66, o21.]).

[Scheme 1]

Experimental

Crystal data
  • C13H17NO2

  • Mr = 219.28

  • Monoclinic, P 21 /c

  • a = 11.4724 (11) Å

  • b = 9.3554 (8) Å

  • c = 11.5212 (10) Å

  • β = 92.380 (5)°

  • V = 1235.49 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.28 × 0.11 × 0.09 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.987, Tmax = 0.993

  • 10855 measured reflections

  • 2265 independent reflections

  • 1207 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.127

  • S = 0.99

  • 2265 reflections

  • 145 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.849 (19) 2.018 (19) 2.865 (2) 175 (2)
Symmetry code: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

The crystal structures of (II) phenyl piperidine-1-carboxylate (Shahwar et al., 2010), (III) phenyl N-(2-methylphenyl)carbamate (Shahwar et al., 2009a) and (IV) phenyl N-phenylcarbamate (Shahwar et al., 2009b) have been reported by us. In continuation to synthesize various carbamates for the study of biological activities, the title compound (I, Fig. 1) is being reported.

In (I), the benzene ring A (C1—C6) is of course planar. The central carbamate group B (O1/O2/C7/N1) and the basal plane C (C9/C10/C12/C13) of cyclohexyl are also planar with maximum r. m. s. deviations of 0.002 and 0.005 Å respectively, from the respective mean square planes. The dihedral angles between A/B, B/C and A/C are 76.26 (8)°, 70.99 (9)° and 52.17 (7)° respectively. The cyclohexyl ring is in the chair conformation with the apical atoms C8 and C11 are at a distance of 0.652 (3) and -0.668 (4) Å respectively, from the basal plane (C9/C10/C12/C13). The molecules are stabilized in the form of polymeric chains (Table 1, Fig. 2).

Related literature top

For related structures, see: Shahwar et al. (2009a,b, 2010).

Experimental top

Cyclohexylamine (0.01 M, 1.15 ml) and triethylamine (0.012 M, 1.66 ml) were added to 20 ml dichloromethane in a 50 ml round bottom flask equipped with magnetic stirrer. Phenyl chloroformate (0.01 M, 1.26 ml) was added drop wise with continuous stirring of the contents of the flask. After complete addition the stirring was continued for 30 minutes. Extra dichloromethane was evaporated and then resulting solid was washed with 1M HCl and filtered to get pure product. Recrystallization of the crude product with ethyl acetate affoarded colourless needles of (I).

Refinement top

The coordinates of H1N were located in a difference map and refined. The other H-atoms were positioned geometrically (C–H = 0.93–0.97 Å) and refined as riding with Uiso(H) = 1.2Ueq(Carrier).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of (I) with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The partial packing of (I), which shows that molecules form infinite chains.
Phenyl N-cyclohexylcarbamate top
Crystal data top
C13H17NO2F(000) = 472
Mr = 219.28Dx = 1.179 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2265 reflections
a = 11.4724 (11) Åθ = 2.8–25.4°
b = 9.3554 (8) ŵ = 0.08 mm1
c = 11.5212 (10) ÅT = 296 K
β = 92.380 (5)°Needle, colourless
V = 1235.49 (19) Å30.28 × 0.11 × 0.09 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2265 independent reflections
Radiation source: fine-focus sealed tube1207 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
Detector resolution: 7.90 pixels mm-1θmax = 25.4°, θmin = 2.8°
ω scansh = 1313
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1111
Tmin = 0.987, Tmax = 0.993l = 1313
10855 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.0463P)2 + 0.1974P]
where P = (Fo2 + 2Fc2)/3
2265 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.12 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C13H17NO2V = 1235.49 (19) Å3
Mr = 219.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.4724 (11) ŵ = 0.08 mm1
b = 9.3554 (8) ÅT = 296 K
c = 11.5212 (10) Å0.28 × 0.11 × 0.09 mm
β = 92.380 (5)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2265 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1207 reflections with I > 2σ(I)
Tmin = 0.987, Tmax = 0.993Rint = 0.043
10855 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.12 e Å3
2265 reflectionsΔρmin = 0.16 e Å3
145 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.09944 (15)0.52058 (14)0.31355 (14)0.0774 (7)
O20.03969 (14)0.74215 (15)0.26826 (13)0.0704 (6)
N10.06141 (17)0.54662 (18)0.21748 (16)0.0592 (7)
C10.1882 (2)0.5766 (2)0.3782 (2)0.0562 (9)
C20.16451 (18)0.62858 (16)0.48728 (15)0.0657 (10)
C30.25438 (18)0.67436 (16)0.55214 (15)0.0756 (10)
C40.3657 (3)0.6653 (3)0.5093 (3)0.0874 (12)
C50.3892 (3)0.6127 (3)0.4005 (3)0.0941 (12)
C60.2992 (3)0.5681 (3)0.3342 (2)0.0769 (11)
C70.0243 (2)0.6158 (2)0.26526 (17)0.0513 (8)
C80.15329 (19)0.6175 (2)0.15547 (17)0.0503 (8)
C90.1297 (2)0.6138 (2)0.02537 (18)0.0640 (9)
C100.2269 (2)0.6843 (3)0.03874 (19)0.0759 (10)
C110.3421 (2)0.6149 (3)0.0078 (2)0.0790 (11)
C120.3672 (2)0.6198 (3)0.1221 (2)0.0861 (11)
C130.2694 (2)0.5510 (3)0.18732 (19)0.0687 (10)
H1N0.0588 (19)0.456 (2)0.2198 (17)0.0710*
H20.088040.632850.517180.0788*
H30.238930.711870.625930.0905*
H40.426590.695120.554350.1045*
H50.465880.606960.371270.1126*
H60.314500.532400.259750.0923*
H80.155980.717760.179960.0604*
H9A0.056750.662610.006350.0768*
H9B0.121550.515290.000040.0768*
H10A0.210670.676730.121800.0910*
H10B0.230690.785000.018760.0910*
H11A0.403670.663980.047040.0947*
H11B0.340650.516220.033740.0947*
H12A0.376300.718500.146660.1033*
H12B0.439790.570230.140830.1033*
H13A0.266460.449660.169600.0825*
H13B0.285550.561320.270210.0825*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0806 (13)0.0403 (9)0.1156 (13)0.0035 (8)0.0577 (11)0.0012 (8)
O20.0816 (13)0.0329 (8)0.0991 (12)0.0038 (8)0.0325 (9)0.0029 (8)
N10.0672 (14)0.0331 (9)0.0796 (14)0.0014 (10)0.0321 (11)0.0008 (9)
C10.0607 (18)0.0409 (12)0.0687 (16)0.0029 (11)0.0232 (14)0.0050 (11)
C20.0613 (18)0.0572 (14)0.0786 (18)0.0003 (12)0.0025 (14)0.0031 (13)
C30.094 (2)0.0744 (17)0.0594 (16)0.0046 (16)0.0156 (16)0.0005 (12)
C40.077 (2)0.102 (2)0.086 (2)0.0202 (17)0.0361 (18)0.0012 (16)
C50.056 (2)0.127 (2)0.099 (2)0.0117 (16)0.0010 (17)0.0054 (19)
C60.078 (2)0.0915 (19)0.0615 (17)0.0040 (15)0.0065 (16)0.0072 (13)
C70.0600 (16)0.0359 (12)0.0593 (13)0.0039 (11)0.0165 (11)0.0001 (10)
C80.0569 (16)0.0398 (11)0.0553 (14)0.0073 (10)0.0152 (11)0.0018 (9)
C90.0624 (18)0.0666 (15)0.0628 (15)0.0008 (12)0.0012 (13)0.0054 (11)
C100.093 (2)0.0819 (17)0.0537 (15)0.0121 (16)0.0139 (15)0.0079 (12)
C110.072 (2)0.097 (2)0.0701 (18)0.0193 (15)0.0284 (15)0.0077 (14)
C120.0556 (19)0.124 (2)0.0791 (19)0.0113 (16)0.0093 (14)0.0037 (16)
C130.0644 (19)0.0845 (17)0.0572 (15)0.0016 (13)0.0025 (13)0.0076 (12)
Geometric parameters (Å, º) top
O1—C11.389 (3)C12—C131.519 (3)
O1—C71.373 (3)C2—H20.9300
O2—C71.196 (2)C3—H30.9300
N1—C71.317 (3)C4—H40.9300
N1—C81.457 (3)C5—H50.9300
N1—H1N0.849 (19)C6—H60.9300
C1—C21.364 (3)C8—H80.9800
C1—C61.353 (4)C9—H9A0.9700
C2—C31.367 (3)C9—H9B0.9700
C3—C41.353 (4)C10—H10A0.9700
C4—C51.363 (5)C10—H10B0.9700
C5—C61.375 (5)C11—H11A0.9700
C8—C131.502 (3)C11—H11B0.9700
C8—C91.512 (3)C12—H12A0.9700
C9—C101.514 (3)C12—H12B0.9700
C10—C111.502 (3)C13—H13A0.9700
C11—C121.513 (3)C13—H13B0.9700
C1—O1—C7117.32 (15)C1—C6—H6120.00
C7—N1—C8123.31 (17)C5—C6—H6120.00
C7—N1—H1N116.7 (15)N1—C8—H8108.00
C8—N1—H1N119.8 (14)C9—C8—H8108.00
O1—C1—C2120.4 (2)C13—C8—H8108.00
O1—C1—C6118.5 (2)C8—C9—H9A109.00
C2—C1—C6121.0 (2)C8—C9—H9B109.00
C1—C2—C3119.29 (19)C10—C9—H9A109.00
C2—C3—C4120.2 (2)C10—C9—H9B109.00
C3—C4—C5120.4 (3)H9A—C9—H9B108.00
C4—C5—C6119.8 (3)C9—C10—H10A110.00
C1—C6—C5119.4 (2)C9—C10—H10B110.00
O1—C7—O2122.3 (2)C11—C10—H10A109.00
O1—C7—N1110.04 (16)C11—C10—H10B109.00
O2—C7—N1127.7 (2)H10A—C10—H10B108.00
N1—C8—C9111.85 (17)C10—C11—H11A110.00
C9—C8—C13110.68 (17)C10—C11—H11B110.00
N1—C8—C13110.12 (17)C12—C11—H11A110.00
C8—C9—C10111.62 (18)C12—C11—H11B109.00
C9—C10—C11110.8 (2)H11A—C11—H11B108.00
C10—C11—C12110.56 (19)C11—C12—H12A109.00
C11—C12—C13111.24 (19)C11—C12—H12B109.00
C8—C13—C12111.7 (2)C13—C12—H12A109.00
C1—C2—H2120.00C13—C12—H12B109.00
C3—C2—H2120.00H12A—C12—H12B108.00
C2—C3—H3120.00C8—C13—H13A109.00
C4—C3—H3120.00C8—C13—H13B109.00
C3—C4—H4120.00C12—C13—H13A109.00
C5—C4—H4120.00C12—C13—H13B109.00
C4—C5—H5120.00H13A—C13—H13B108.00
C6—C5—H5120.00
C7—O1—C1—C275.3 (2)C1—C2—C3—C41.4 (3)
C7—O1—C1—C6109.8 (2)C2—C3—C4—C51.1 (4)
C1—O1—C7—O27.1 (3)C3—C4—C5—C60.3 (4)
C1—O1—C7—N1173.43 (18)C4—C5—C6—C10.2 (4)
C8—N1—C7—O1177.79 (18)N1—C8—C9—C10178.57 (18)
C8—N1—C7—O21.7 (4)C13—C8—C9—C1055.4 (2)
C7—N1—C8—C998.5 (2)N1—C8—C13—C12178.63 (18)
C7—N1—C8—C13138.0 (2)C9—C8—C13—C1254.5 (2)
O1—C1—C2—C3175.67 (16)C8—C9—C10—C1156.9 (2)
C6—C1—C2—C30.9 (3)C9—C10—C11—C1256.8 (3)
O1—C1—C6—C5175.0 (2)C10—C11—C12—C1356.1 (3)
C2—C1—C6—C50.1 (4)C11—C12—C13—C855.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.849 (19)2.018 (19)2.865 (2)175 (2)
Symmetry code: (i) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H17NO2
Mr219.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)11.4724 (11), 9.3554 (8), 11.5212 (10)
β (°) 92.380 (5)
V3)1235.49 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.28 × 0.11 × 0.09
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.987, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
10855, 2265, 1207
Rint0.043
(sin θ/λ)max1)0.604
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.127, 0.99
No. of reflections2265
No. of parameters145
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.12, 0.16

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.849 (19)2.018 (19)2.865 (2)175 (2)
Symmetry code: (i) x, y1/2, z+1/2.
 

Acknowledgements

DS is grateful to Dr I. U. Khan and M. N. Arshad for their assistance with the data collection.

References

First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationShahwar, D., Tahir, M. N., Ahmad, N., Ullah, S. & Khan, M. A. (2010). Acta Cryst. E66, o21.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShahwar, D., Tahir, M. N., Ahmad, N., Yasmeen, A. & Ullah, S. (2009a). Acta Cryst. E65, o1629.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShahwar, D., Tahir, M. N., Mughal, M. S., Khan, M. A. & Ahmad, N. (2009b). Acta Cryst. E65, o1363.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds