organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 1| January 2010| Pages o29-o30

4-Amino-3-(1-naphthyl­oxymeth­yl)-1H-1,2,4-triazole-5(4H)-thione

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bSeQuent Scientific Limited, No. 120 A & B, Industrial Area, Baikampady, New Mangalore, Karnataka 575 011, India, and cDepartment of Chemistry, National Institute of Technology-Karnataka, Surathkal, Mangalore 575 025, India
*Correspondence e-mail: hkfun@usm.my

(Received 26 November 2009; accepted 28 November 2009; online 4 December 2009)

In the title compound, C13H12N4OS, the dihedral angle between the triazole and naphthalene ring systems is 67.42 (5)°. In the crystal, adjacent mol­ecules are linked via two pairs of inter­molecular N—H⋯S inter­actions, forming R22(8) and R22(10) ring motifs. Weak C—H⋯S inter­actions generate infinite chains along [001] and the structure is further consolidated by C–H⋯π bonds and aromatic ππ stacking inter­actions [distance between the centroids of the triazole rings = 3.2479 (7) Å].

Related literature

For general background to and the pharmacological activity of triazole derivatives, see: Amir et al. (2008[Amir, M., Kumar, H. & Javed, S. A. (2008). Eur. J. Med. Chem. 43, 2056-2066.]); Sztanke et al. (2008[Sztanke, K., Tuzimski, T., Rzymowska, J., Pasternak, K. & Kandefer-Szerszeń, M. (2008). Eur. J. Med. Chem. 43, 404-419.]); Kuş et al. (2008[Kuş, C., Ayhan Kılcıgil, G., Zbey, O. S., Kaynak, F. B., Kaya, M., Oban, C. T. & Can-Eke, B. (2008). Bioorg. Med. Chem. 16, 4294-4303.]); Padmavathi et al. (2008[Padmavathi, V., Thriveni, P., Reddy, G. S. & Deepti, D. (2008). Eur. J. Med. Chem. 43, 917-924.]); Isloor et al. (2009[Isloor, A. M., Kalluraya, B. & Shetty, P. (2009). Eur. J. Med. Chem. 44, 3784-3787.]). For a related structure, see: Fun et al. (2009[Fun, H.-K., Liew, W.-C., Vijesh, A. M., Padaki, M. & Isloor, A. M. (2009). Acta Cryst. E65, o1910-o1911.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the preparation, see: Suresh (1992[Suresh K. V. (1992). M Phil dissertation, Mangalore University, India.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C13H12N4OS

  • Mr = 272.33

  • Monoclinic, P 21 /c

  • a = 7.0023 (1) Å

  • b = 24.0785 (4) Å

  • c = 8.0915 (1) Å

  • β = 113.404 (1)°

  • V = 1252.02 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 100 K

  • 0.38 × 0.23 × 0.07 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.908, Tmax = 0.983

  • 24326 measured reflections

  • 5826 independent reflections

  • 4223 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.122

  • S = 1.03

  • 5826 reflections

  • 220 parameters

  • All H-atom parameters refined

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯S1i 0.89 (2) 2.39 (2) 3.2857 (11) 176.2 (14)
N4—H1N4⋯S1ii 0.90 (2) 2.62 (2) 3.5075 (12) 167.3 (19)
C12—H12A⋯S1ii 0.96 (2) 2.836 (18) 3.5368 (13) 130.3 (12)
C9—H9ACg1iii 0.964 (17) 2.794 (18) 3.6345 (14) 146.8 (14)
Symmetry codes: (i) -x, -y, -z+1; (ii) -x, -y, -z; (iii) [x, -y-{\script{3\over 2}}, z-{\script{3\over 2}}]. Cg1 is the centroid of C4–C8/C13 ring.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

1,2,4-triazole and its derivatives were reported to exhibit various pharmacological activities such as antimicrobial, analgesic, anti-inflammatory, anticancer and antioxidant properties (Amir et al., 2008; Sztanke et al.., 2008; Kuş et al., 2008; Padmavathi et al., 2008). A few derivatives of triazoles have exhibited antimicrobial activity (Isloor et al., 2009). Some of the present day drugs such as ribavirin (antiviral agent), rizatriptan (anti migraine agent), alprazolam (anxiolytic agent), fluconazole and itraconazole (antifungal agents) are the best examples for potent molecules possessing the triazole nucleus. The amino and mercapto groups of 1,2,4-triazoles serve as readily accessible nucleophilic centers of the preparation of N-bridged heterocycles. Keeping in view of the biological importance, we have synthesized the title compound to study its crystal structure.

The molecular structure of the title compound is shown in Fig. 1. The triazole ring (C1/N1/N2/C2/N3) make an dihedral angle of 67.42 (5)° with naphthalene ring (C4-C13). Short intermolecular distances between the centroids of the triazole rings [3.2479 (7) Å] indicate the existence of π···π interactions. The molecular structure is linked via pairs of intermolecular N1—H1N1···S1 and N4—H1N4···S1 interactions, forming R22 (8) and R22 (10) ring motifs (Bernstein et al., 1995), respectively. Bond lengths and angles are within normal ranges, and comparable to a closely related structure (Fun et al., 2009). In the crystal packing (Fig. 2), the molecules are linked into infinite one-dimensional chains along the direction [0 0 1] via adjacent ring motifs and C12–H12A···S1 interactions (Fig. 2). The crystal strcuture is further consolidated by C–H···π (Table 1) interactions.

Related literature top

For general background to and the pharmacological activity of triazole derivatives, see: Amir et al. (2008); Sztanke et al. (2008); Kuş et al. (2008); Padmavathi et al. (2008); Isloor et al. (2009). For a related structure, see: Fun et al. (2009). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the preparation, see: Suresh (1992). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986). Cg1 is the centroid of C4–C8/C13 ring.

Experimental top

2-(1-Naphthyloxy)acetohydrazide (21.6 g, 1.00 mmol) was added slowly to a solution of potassium hydroxide (8.4 g, 1.50 mmol) in ethanol (150 ml). The resulting mixture was stirred well until a clear solution was obtained. Carbon disulphide (11.4 g, 1.50 mmol) was added drop-wise and the contents were stirred vigorously. Further stirring was continued for 24 h. The resulting mixture was diluted with ether (100 ml) and the precipitate formed was collected by filtration, washed with dry ether and dried at 65 /%c under vacuum. It was used for the next step without any purification.

A mixture of the above synthesized potassium dithiocarbazinate (16.5 g, 0.50 mmol), hydrazine hydrate (99 %, 1.00 mmol) and water (2 ml) was heated gently to boil for 30 minutes. Heating was continued until the evacuation of hydrogen sulphide ceased. The reaction mixture was cooled to room temperature, diluted with water (100 ml) and acidified with HCl. The solid mass that separated was collected by filtration, washed with water and dried. Recrystallization was achieved from ethanol. The yield was 9.25 g (68 %), m. p. 470-471 K (Suresh, 1992).

Refinement top

All H atoms were located in a difference Fourier map and refined freely.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal structure of (I) viewed along the b axis. Intermolecular interactions are shown in dashed lines.
4-Amino-3-(1-naphthyloxymethyl)-1H-1,2,4-triazole-5(4H)-thione top
Crystal data top
C13H12N4OSF(000) = 568
Mr = 272.33Dx = 1.445 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5692 reflections
a = 7.0023 (1) Åθ = 2.9–35.1°
b = 24.0785 (4) ŵ = 0.26 mm1
c = 8.0915 (1) ÅT = 100 K
β = 113.404 (1)°Plate, yellow
V = 1252.02 (3) Å30.38 × 0.23 × 0.07 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
5826 independent reflections
Radiation source: fine-focus sealed tube4223 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ϕ and ω scansθmax = 35.8°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1111
Tmin = 0.908, Tmax = 0.983k = 3938
24326 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122All H-atom parameters refined
S = 1.03 w = 1/[σ2(Fo2) + (0.0592P)2 + 0.214P]
where P = (Fo2 + 2Fc2)/3
5826 reflections(Δ/σ)max < 0.001
220 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C13H12N4OSV = 1252.02 (3) Å3
Mr = 272.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.0023 (1) ŵ = 0.26 mm1
b = 24.0785 (4) ÅT = 100 K
c = 8.0915 (1) Å0.38 × 0.23 × 0.07 mm
β = 113.404 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
5826 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
4223 reflections with I > 2σ(I)
Tmin = 0.908, Tmax = 0.983Rint = 0.045
24326 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.122All H-atom parameters refined
S = 1.03Δρmax = 0.51 e Å3
5826 reflectionsΔρmin = 0.33 e Å3
220 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.00629 (5)0.044619 (13)0.25791 (4)0.01810 (8)
O10.52129 (13)0.11362 (4)0.14188 (11)0.01666 (16)
N10.22651 (15)0.04341 (4)0.46060 (13)0.01481 (17)
N20.38889 (16)0.07854 (4)0.47914 (13)0.01636 (18)
N30.33179 (15)0.01814 (4)0.25913 (12)0.01411 (17)
N40.37675 (18)0.01243 (5)0.13172 (14)0.0193 (2)
C10.18602 (17)0.00623 (5)0.32721 (14)0.01419 (19)
C20.44981 (17)0.06189 (5)0.35421 (15)0.01418 (19)
C30.61978 (18)0.08762 (5)0.31417 (15)0.0162 (2)
C40.65096 (17)0.13872 (5)0.07391 (14)0.01338 (19)
C50.86351 (18)0.14187 (5)0.16169 (16)0.0165 (2)
C60.98108 (19)0.16981 (5)0.07908 (17)0.0195 (2)
C70.88492 (19)0.19351 (5)0.08729 (17)0.0187 (2)
C80.66644 (18)0.19040 (5)0.18076 (15)0.01484 (19)
C90.5615 (2)0.21540 (5)0.35253 (16)0.0185 (2)
C100.3499 (2)0.21323 (5)0.43817 (16)0.0199 (2)
C110.2304 (2)0.18580 (5)0.35758 (16)0.0178 (2)
C120.32576 (18)0.16061 (5)0.19258 (15)0.01452 (19)
C130.54499 (17)0.16261 (4)0.10061 (14)0.01255 (18)
H3A0.693 (2)0.1148 (6)0.405 (2)0.013 (3)*
H3B0.715 (2)0.0602 (6)0.310 (2)0.015 (4)*
H5A0.940 (3)0.1254 (7)0.279 (2)0.022 (4)*
H6A1.131 (3)0.1723 (7)0.134 (2)0.029 (4)*
H7A0.962 (3)0.2110 (7)0.143 (2)0.026 (4)*
H9A0.647 (3)0.2335 (7)0.404 (2)0.031 (5)*
H10A0.288 (3)0.2318 (7)0.550 (2)0.028 (4)*
H11A0.080 (3)0.1865 (7)0.414 (2)0.023 (4)*
H12A0.240 (3)0.1418 (7)0.142 (2)0.022 (4)*
H1N10.162 (3)0.0455 (7)0.536 (3)0.031 (5)*
H1N40.284 (3)0.0023 (8)0.022 (3)0.035 (5)*
H2N40.354 (3)0.0475 (8)0.153 (3)0.035 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01841 (14)0.02112 (15)0.01629 (13)0.00540 (10)0.00852 (11)0.00193 (10)
O10.0150 (4)0.0207 (4)0.0148 (3)0.0010 (3)0.0065 (3)0.0072 (3)
N10.0161 (4)0.0159 (4)0.0151 (4)0.0006 (3)0.0090 (4)0.0001 (3)
N20.0187 (4)0.0159 (4)0.0170 (4)0.0015 (4)0.0098 (4)0.0006 (3)
N30.0157 (4)0.0156 (4)0.0129 (4)0.0004 (3)0.0077 (3)0.0001 (3)
N40.0248 (5)0.0216 (5)0.0153 (4)0.0013 (4)0.0122 (4)0.0031 (4)
C10.0144 (5)0.0157 (5)0.0133 (4)0.0014 (4)0.0064 (4)0.0022 (3)
C20.0151 (5)0.0143 (5)0.0138 (4)0.0005 (4)0.0064 (4)0.0029 (3)
C30.0157 (5)0.0191 (5)0.0135 (4)0.0012 (4)0.0056 (4)0.0044 (4)
C40.0141 (4)0.0139 (5)0.0140 (4)0.0013 (3)0.0076 (4)0.0015 (3)
C50.0148 (5)0.0188 (5)0.0156 (5)0.0000 (4)0.0057 (4)0.0023 (4)
C60.0145 (5)0.0233 (6)0.0218 (5)0.0027 (4)0.0085 (4)0.0006 (4)
C70.0187 (5)0.0193 (5)0.0218 (5)0.0035 (4)0.0118 (5)0.0007 (4)
C80.0187 (5)0.0130 (5)0.0159 (4)0.0008 (4)0.0100 (4)0.0001 (4)
C90.0259 (6)0.0157 (5)0.0172 (5)0.0006 (4)0.0120 (5)0.0034 (4)
C100.0261 (6)0.0174 (5)0.0153 (5)0.0032 (4)0.0072 (5)0.0039 (4)
C110.0185 (5)0.0177 (5)0.0159 (5)0.0026 (4)0.0054 (4)0.0000 (4)
C120.0156 (5)0.0137 (5)0.0148 (4)0.0003 (4)0.0066 (4)0.0003 (4)
C130.0145 (5)0.0111 (4)0.0129 (4)0.0004 (3)0.0065 (4)0.0003 (3)
Geometric parameters (Å, º) top
S1—C11.6842 (12)C5—C61.4192 (16)
O1—C41.3743 (12)C5—H5A0.971 (17)
O1—C31.4308 (13)C6—C71.3678 (18)
N1—C11.3431 (14)C6—H6A0.964 (18)
N1—N21.3768 (13)C7—C81.4138 (17)
N1—H1N10.894 (19)C7—H7A0.931 (17)
N2—C21.3066 (14)C8—C91.4223 (16)
N3—C11.3691 (13)C8—C131.4246 (15)
N3—C21.3710 (15)C9—C101.3648 (19)
N3—N41.4005 (13)C9—H9A0.964 (17)
N4—H1N40.90 (2)C10—C111.4123 (17)
N4—H2N40.888 (19)C10—H10A0.947 (18)
C2—C31.4872 (15)C11—C121.3740 (16)
C3—H3A0.966 (15)C11—H11A0.967 (17)
C3—H3B0.948 (15)C12—C131.4160 (16)
C4—C51.3732 (16)C12—H12A0.960 (16)
C4—C131.4294 (15)
C4—O1—C3116.29 (9)C4—C5—H5A123.0 (10)
C1—N1—N2113.50 (9)C6—C5—H5A117.3 (10)
C1—N1—H1N1125.7 (12)C7—C6—C5120.69 (11)
N2—N1—H1N1120.7 (12)C7—C6—H6A116.6 (10)
C2—N2—N1103.67 (9)C5—C6—H6A122.6 (10)
C1—N3—C2108.34 (9)C6—C7—C8120.62 (10)
C1—N3—N4127.42 (10)C6—C7—H7A121.0 (11)
C2—N3—N4123.73 (9)C8—C7—H7A118.4 (11)
N3—N4—H1N4107.3 (12)C7—C8—C9121.97 (10)
N3—N4—H2N4104.3 (12)C7—C8—C13119.74 (10)
H1N4—N4—H2N4109.4 (18)C9—C8—C13118.27 (10)
N1—C1—N3103.33 (9)C10—C9—C8121.01 (10)
N1—C1—S1130.05 (8)C10—C9—H9A122.4 (11)
N3—C1—S1126.60 (9)C8—C9—H9A116.6 (11)
N2—C2—N3111.15 (10)C9—C10—C11120.41 (11)
N2—C2—C3125.18 (11)C9—C10—H10A117.4 (10)
N3—C2—C3123.64 (10)C11—C10—H10A122.2 (10)
O1—C3—C2106.07 (9)C12—C11—C10120.45 (11)
O1—C3—H3A110.6 (9)C12—C11—H11A119.1 (10)
C2—C3—H3A109.9 (8)C10—C11—H11A120.4 (10)
O1—C3—H3B110.0 (9)C11—C12—C13120.17 (10)
C2—C3—H3B110.6 (9)C11—C12—H12A118.5 (10)
H3A—C3—H3B109.6 (13)C13—C12—H12A121.4 (10)
C5—C4—O1124.75 (10)C12—C13—C8119.68 (10)
C5—C4—C13121.29 (9)C12—C13—C4122.31 (9)
O1—C4—C13113.96 (9)C8—C13—C4117.98 (10)
C4—C5—C6119.66 (11)
C1—N1—N2—C20.50 (13)C4—C5—C6—C70.18 (19)
N2—N1—C1—N30.61 (12)C5—C6—C7—C80.32 (19)
N2—N1—C1—S1179.18 (9)C6—C7—C8—C9178.92 (12)
C2—N3—C1—N10.48 (12)C6—C7—C8—C130.36 (18)
N4—N3—C1—N1171.51 (10)C7—C8—C9—C10178.15 (11)
C2—N3—C1—S1179.11 (9)C13—C8—C9—C100.43 (17)
N4—N3—C1—S17.12 (17)C8—C9—C10—C110.18 (18)
N1—N2—C2—N30.17 (12)C9—C10—C11—C120.48 (18)
N1—N2—C2—C3178.26 (11)C10—C11—C12—C130.87 (17)
C1—N3—C2—N20.20 (13)C11—C12—C13—C80.61 (16)
N4—N3—C2—N2172.15 (10)C11—C12—C13—C4177.82 (11)
C1—N3—C2—C3177.92 (10)C7—C8—C13—C12178.58 (11)
N4—N3—C2—C39.73 (17)C9—C8—C13—C120.03 (16)
C4—O1—C3—C2177.76 (9)C7—C8—C13—C40.08 (16)
N2—C2—C3—O1110.95 (12)C9—C8—C13—C4178.53 (10)
N3—C2—C3—O166.91 (14)C5—C4—C13—C12179.03 (11)
C3—O1—C4—C52.21 (16)O1—C4—C13—C120.50 (15)
C3—O1—C4—C13178.28 (9)C5—C4—C13—C80.57 (16)
O1—C4—C5—C6178.85 (11)O1—C4—C13—C8178.96 (9)
C13—C4—C5—C60.63 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···S1i0.89 (2)2.39 (2)3.2857 (11)176.2 (14)
N4—H1N4···S1ii0.90 (2)2.62 (2)3.5075 (12)167.3 (19)
C12—H12A···S1ii0.96 (2)2.836 (18)3.5368 (13)130.3 (12)
C9—H9A···Cg1iii0.964 (17)2.794 (18)3.6345 (14)146.8 (14)
Symmetry codes: (i) x, y, z+1; (ii) x, y, z; (iii) x, y3/2, z3/2.

Experimental details

Crystal data
Chemical formulaC13H12N4OS
Mr272.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)7.0023 (1), 24.0785 (4), 8.0915 (1)
β (°) 113.404 (1)
V3)1252.02 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.38 × 0.23 × 0.07
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.908, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
24326, 5826, 4223
Rint0.045
(sin θ/λ)max1)0.823
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.122, 1.03
No. of reflections5826
No. of parameters220
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.51, 0.33

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···S1i0.89 (2)2.39 (2)3.2857 (11)176.2 (14)
N4—H1N4···S1ii0.90 (2)2.62 (2)3.5075 (12)167.3 (19)
C12—H12A···S1ii0.96 (2)2.836 (18)3.5368 (13)130.3 (12)
C9—H9A···Cg1iii0.964 (17)2.794 (18)3.6345 (14)146.8 (14)
Symmetry codes: (i) x, y, z+1; (ii) x, y, z; (iii) x, y3/2, z3/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5525-2009.

Acknowledgements

HKF and CKQ thank Universiti Sains Malaysia (USM) for the Research University Golden Goose Grant (1001/PFIZIK/811012). CKQ thanks USM for a Research Fellowship. AMI is grateful to the Head of the Department of Chemistry and Director, NITK, Surathkal, India, for providing research facilities.

References

First citationAmir, M., Kumar, H. & Javed, S. A. (2008). Eur. J. Med. Chem. 43, 2056–2066.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Liew, W.-C., Vijesh, A. M., Padaki, M. & Isloor, A. M. (2009). Acta Cryst. E65, o1910–o1911.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationIsloor, A. M., Kalluraya, B. & Shetty, P. (2009). Eur. J. Med. Chem. 44, 3784–3787.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKuş, C., Ayhan Kılcıgil, G., Zbey, O. S., Kaynak, F. B., Kaya, M., Oban, C. T. & Can-Eke, B. (2008). Bioorg. Med. Chem. 16, 4294–4303.  Web of Science PubMed Google Scholar
First citationPadmavathi, V., Thriveni, P., Reddy, G. S. & Deepti, D. (2008). Eur. J. Med. Chem. 43, 917–924.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuresh K. V. (1992). M Phil dissertation, Mangalore University, India.  Google Scholar
First citationSztanke, K., Tuzimski, T., Rzymowska, J., Pasternak, K. & Kandefer-Szerszeń, M. (2008). Eur. J. Med. Chem. 43, 404–419.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 1| January 2010| Pages o29-o30
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds