organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 1| January 2010| Pages o53-o54

2-Phen­oxy­acetohydrazide

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Chemistry, National Institute of Technology-Karnataka, Surathkal, Mangalore 575 025, India, cDepartment of Chemistry, Manipal Institute of Technology, Manipal University, 576 104, India, and dDepartment of Printing and Media Engineering, Manipal Institute of Technology, Manipal University, 576 104, India
*Correspondence e-mail: hkfun@usm.my

(Received 26 November 2009; accepted 28 November 2009; online 4 December 2009)

In the title compound, C8H10N2O2, the acetohydrazide group is almost planar, with an r.m.s. deviation of 0.028 Å. In the crystal, the mol­ecules are linked by inter­molecular C—H⋯O, N—H⋯O and N—H⋯N hydrogen bonds into infinite sheets lying parallel to (001). The acetohydrazide O atom accepts two N—H⋯O links and one C—H⋯O link.

Related literature

For general background to and biological properties of hydrazine derivatives, see: Rando et al. (2008[Rando, D. G., Avery, M. A., Tekwani, B. L., Khan, S. I. & Ferreira, E. I. (2008). Bioorg. Med. Chem. 16, 6724-6731.]); Kumar et al. (2009[Kumar, P., Narasimhan, B., Sharma, D., Judge, V. & Narang, R. (2009). Eur. J. Med. Chem. 44, 1853-1863.]); Kamal et al. (2007[Kamal, A., Khan, N. A., Reddy, K. S. & Rohini, K. (2007). Bioorg. Med. Chem. 15, 1004-1013.]); Masunari & Tavares (2007[Masunari, A. & Tavares, L. C. (2007). Bioorg. Med. Chem. 15, 4229-4236.]); Rando et al. (2002[Rando, D. G., Sato, D. N., Siqueira, L., Malvezzi, A., Leite, C. Q. F., do Amaral, A. T., Ferreira, E. I. & Tavares, L. C. (2002). Bioorg. Med. Chem. 10, 557-560.]). For a related structure, see: Fun et al. (2009[Fun, H.-K., Quah, C. K., Sujith, K. V. & Kalluraya, B. (2009). Acta Cryst. E65, o1184-o1185.]). For the preparation, see: Holla & Udupa (1992[Holla, B. S. & Udupa, K. V. (1992). Farmaco, 47, 305-318.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C8H10N2O2

  • Mr = 166.18

  • Monoclinic, P 21

  • a = 6.3397 (8) Å

  • b = 4.0590 (6) Å

  • c = 15.948 (2) Å

  • β = 99.218 (10)°

  • V = 405.09 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.63 × 0.16 × 0.08 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.940, Tmax = 0.992

  • 3771 measured reflections

  • 1063 independent reflections

  • 916 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.124

  • S = 1.07

  • 1063 reflections

  • 121 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯N2i 0.86 (4) 2.21 (3) 2.953 (3) 144 (3)
N2—H1N2⋯O2ii 0.94 (4) 2.49 (3) 3.110 (3) 124 (2)
N2—H2N2⋯O2iii 0.96 (3) 2.05 (3) 2.986 (3) 163 (2)
C1—H1A⋯O2iv 0.93 2.51 3.396 (3) 159
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+1]; (ii) [-x+2, y-{\script{1\over 2}}, -z+1]; (iii) [-x+2, y+{\script{1\over 2}}, -z+1]; (iv) x-1, y+1, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Hydrazine derivatives have been reported to possess several biological properties. 5-nitro-2-heterocyclic benzylidine hydrazides were found to possess antileishmanial activities (Rando et al., 2008). Many substituted benzoic acid furan-2-yl-methylene hydrazides showed potent antimicrobial properties (Kumar et al., 2009). Hydrazine derivatives were also associated with remarkable anticancer (Kamal et al., 2007), antibacterial (Masunari & Tavares, 2007) and tuberculostatic (Rando et al., 2002) activities.

The molecular structure is shown in Fig. 1. The acetohydrazide group (C7/C8/N1/N2/O2) is almost planar, with an r.m.s. deviation of 0.028 Å. Bond lengths and angles are within normal ranges, and comparable to a closely related structure (Fun et al., 2009). In the crystal packing (Fig. 2), the molecules are linked via intermolecular C1—H1A···O2, N2—H1N2···O2 and N2—H2N2···O2 trifurcated acceptor bonds, together with N1—H1N1···N2 hydrogen bonds, into infinite two-dimensional networks parallel to plane (0 0 1).

Related literature top

For general background to and biological properties of hydrazine derivatives, see: Rando et al. (2008); Kumar et al. (2009); Kamal et al. (2007); Masunari & Tavares (2007); Rando et al. (2002). For a related structure, see: Fun et al. (2009). For the preparation, see: Holla & Udupa (1992). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

Phenol (11 ml, 1.20 mmol), ethyl chloroacetate (12.8 ml, 1.20 mmol) and potassium carbonate (20.75 g, 1.50 mmol) were refluxed in acetone (100 ml) at 80 °C for 18 h. The reaction mixture was then filtered, distilled to remove the acetone and poured into ice cold water with vigorous stirring. The ester, phenoxy ethyl acetate was extracted using ether. The solution was distilled to remove ether. Phenoxy ethyl acetate (8.2 ml, 0.50 mmol) was heated at 100 °C for 10h in absolute alcohol medium (40 ml) with hydrazine hydrate (2.5 ml, 0.50 mmol). The reaction mixture was allowed to cool, the solid separated was filtered, dried and recrystallized from ethanol. The yield was found to be 5.7 g (69 %). M. p. 381-383 K (Holla & Udupa, 1992).

Refinement top

Atoms H1N1, H1N2 and H2N2 were located from the difference Fourier map and refined freely. The remaining H atoms were positioned geometrically and refined using a riding model, with C-H = 0.93 and 0.97 Å and Uiso(H) = 1.2 Ueq(C). In the absence of significant anomalous dispersion, 648 Friedel pairs were merged for the final refinement.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal structure of (I) viewed along the c axis. H atoms not involved in intermolecular interactions (dashed lines) have been omitted for clarity.
2-Phenoxyacetohydrazide top
Crystal data top
C8H10N2O2F(000) = 176
Mr = 166.18Dx = 1.362 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 2286 reflections
a = 6.3397 (8) Åθ = 3.3–30.1°
b = 4.0590 (6) ŵ = 0.10 mm1
c = 15.948 (2) ÅT = 100 K
β = 99.218 (10)°Needle, colourless
V = 405.09 (10) Å30.63 × 0.16 × 0.08 mm
Z = 2
Data collection top
Bruker SMART APEXII CCD
diffractometer
1063 independent reflections
Radiation source: fine-focus sealed tube916 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ϕ and ω scansθmax = 27.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 88
Tmin = 0.940, Tmax = 0.992k = 55
3771 measured reflectionsl = 2019
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0857P)2]
where P = (Fo2 + 2Fc2)/3
1063 reflections(Δ/σ)max < 0.001
121 parametersΔρmax = 0.25 e Å3
1 restraintΔρmin = 0.25 e Å3
Crystal data top
C8H10N2O2V = 405.09 (10) Å3
Mr = 166.18Z = 2
Monoclinic, P21Mo Kα radiation
a = 6.3397 (8) ŵ = 0.10 mm1
b = 4.0590 (6) ÅT = 100 K
c = 15.948 (2) Å0.63 × 0.16 × 0.08 mm
β = 99.218 (10)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
1063 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
916 reflections with I > 2σ(I)
Tmin = 0.940, Tmax = 0.992Rint = 0.045
3771 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0471 restraint
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.25 e Å3
1063 reflectionsΔρmin = 0.25 e Å3
121 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5379 (2)0.5753 (5)0.30334 (10)0.0244 (5)
O20.9591 (3)0.0417 (5)0.39131 (11)0.0253 (5)
N10.6740 (3)0.2420 (6)0.44403 (13)0.0209 (5)
N20.7205 (3)0.0646 (7)0.52119 (14)0.0232 (5)
C10.2408 (4)0.8607 (7)0.23319 (17)0.0258 (6)
H1A0.19730.89070.28570.031*
C20.1199 (4)0.9836 (7)0.16016 (18)0.0303 (7)
H2A0.00591.09650.16390.036*
C30.1825 (4)0.9417 (8)0.08136 (18)0.0309 (7)
H3A0.09971.02500.03260.037*
C40.3696 (4)0.7745 (8)0.07658 (16)0.0295 (7)
H4A0.41220.74430.02390.035*
C50.4956 (4)0.6502 (7)0.14908 (16)0.0258 (6)
H5A0.62280.54130.14530.031*
C60.4291 (4)0.6909 (7)0.22719 (15)0.0214 (6)
C70.7239 (4)0.3818 (7)0.29959 (16)0.0220 (6)
H7A0.83820.52230.28670.026*
H7B0.69310.21930.25470.026*
C80.7937 (3)0.2108 (7)0.38313 (15)0.0204 (5)
H1N10.567 (5)0.375 (11)0.4326 (19)0.041 (9)*
H1N20.785 (5)0.132 (9)0.5068 (17)0.028 (8)*
H2N20.822 (5)0.192 (9)0.5594 (16)0.025 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0127 (8)0.0297 (10)0.0306 (9)0.0070 (9)0.0027 (6)0.0003 (10)
O20.0106 (7)0.0249 (10)0.0406 (10)0.0054 (9)0.0043 (7)0.0005 (9)
N10.0087 (8)0.0220 (12)0.0313 (11)0.0008 (9)0.0011 (8)0.0003 (10)
N20.0128 (9)0.0240 (12)0.0324 (12)0.0001 (11)0.0021 (8)0.0002 (12)
C10.0160 (11)0.0247 (15)0.0372 (14)0.0009 (12)0.0056 (10)0.0005 (13)
C20.0162 (11)0.0268 (16)0.0462 (16)0.0008 (12)0.0001 (11)0.0014 (14)
C30.0267 (13)0.0245 (14)0.0373 (15)0.0017 (14)0.0072 (11)0.0023 (13)
C40.0320 (14)0.0251 (16)0.0308 (13)0.0006 (14)0.0034 (11)0.0004 (13)
C50.0192 (12)0.0235 (15)0.0348 (13)0.0008 (12)0.0043 (10)0.0014 (12)
C60.0143 (10)0.0179 (12)0.0311 (13)0.0030 (11)0.0003 (9)0.0004 (12)
C70.0098 (10)0.0221 (14)0.0345 (13)0.0019 (11)0.0048 (9)0.0033 (12)
C80.0102 (10)0.0172 (11)0.0329 (13)0.0029 (11)0.0004 (9)0.0045 (12)
Geometric parameters (Å, º) top
O1—C61.379 (3)C2—C31.388 (4)
O1—C71.425 (3)C2—H2A0.9300
O2—C81.243 (3)C3—C41.379 (4)
N1—C81.331 (3)C3—H3A0.9300
N1—N21.416 (3)C4—C51.391 (4)
N1—H1N10.86 (4)C4—H4A0.9300
N2—H1N20.94 (4)C5—C61.387 (3)
N2—H2N20.96 (3)C5—H5A0.9300
C1—C21.381 (4)C7—C81.505 (4)
C1—C61.395 (3)C7—H7A0.9700
C1—H1A0.9300C7—H7B0.9700
C6—O1—C7116.79 (18)C3—C4—H4A119.4
C8—N1—N2121.5 (2)C5—C4—H4A119.4
C8—N1—H1N1115 (2)C6—C5—C4119.1 (2)
N2—N1—H1N1123 (2)C6—C5—H5A120.4
N1—N2—H1N2104.9 (17)C4—C5—H5A120.4
N1—N2—H2N2107.6 (19)O1—C6—C5124.7 (2)
H1N2—N2—H2N2110 (3)O1—C6—C1114.9 (2)
C2—C1—C6119.1 (2)C5—C6—C1120.5 (2)
C2—C1—H1A120.5O1—C7—C8110.18 (19)
C6—C1—H1A120.5O1—C7—H7A109.6
C1—C2—C3121.2 (2)C8—C7—H7A109.6
C1—C2—H2A119.4O1—C7—H7B109.6
C3—C2—H2A119.4C8—C7—H7B109.6
C4—C3—C2118.9 (2)H7A—C7—H7B108.1
C4—C3—H3A120.5O2—C8—N1123.1 (2)
C2—C3—H3A120.5O2—C8—C7118.1 (2)
C3—C4—C5121.1 (2)N1—C8—C7118.7 (2)
C6—C1—C2—C30.1 (4)C2—C1—C6—O1179.5 (2)
C1—C2—C3—C40.1 (4)C2—C1—C6—C50.9 (4)
C2—C3—C4—C50.4 (5)C6—O1—C7—C8166.8 (2)
C3—C4—C5—C61.2 (4)N2—N1—C8—O24.2 (4)
C7—O1—C6—C54.4 (4)N2—N1—C8—C7174.4 (2)
C7—O1—C6—C1176.0 (2)O1—C7—C8—O2177.3 (2)
C4—C5—C6—O1179.0 (2)O1—C7—C8—N14.0 (3)
C4—C5—C6—C11.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···N2i0.86 (4)2.21 (3)2.953 (3)144 (3)
N2—H1N2···O2ii0.94 (4)2.49 (3)3.110 (3)124 (2)
N2—H2N2···O2iii0.96 (3)2.05 (3)2.986 (3)163 (2)
C1—H1A···O2iv0.932.513.396 (3)159
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x+2, y1/2, z+1; (iii) x+2, y+1/2, z+1; (iv) x1, y+1, z.

Experimental details

Crystal data
Chemical formulaC8H10N2O2
Mr166.18
Crystal system, space groupMonoclinic, P21
Temperature (K)100
a, b, c (Å)6.3397 (8), 4.0590 (6), 15.948 (2)
β (°) 99.218 (10)
V3)405.09 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.63 × 0.16 × 0.08
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.940, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
3771, 1063, 916
Rint0.045
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.124, 1.07
No. of reflections1063
No. of parameters121
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.25

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···N2i0.86 (4)2.21 (3)2.953 (3)144 (3)
N2—H1N2···O2ii0.94 (4)2.49 (3)3.110 (3)124 (2)
N2—H2N2···O2iii0.96 (3)2.05 (3)2.986 (3)163 (2)
C1—H1A···O2iv0.932.513.396 (3)159
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x+2, y1/2, z+1; (iii) x+2, y+1/2, z+1; (iv) x1, y+1, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5525-2009.

Acknowledgements

HKF and CKQ thank Universiti Sains Malaysia (USM) for the Research University Golden Goose Grant (1001/PFIZIK/811012). CKQ thanks USM for a Research Fellowship. AMI is grateful to the Director, NITK-Surathkal, India, for providing the research facilities, and to the Head of the Department of Chemistry & Dean R&D, NITK Surathkal, for their encouragement.

References

First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Sujith, K. V. & Kalluraya, B. (2009). Acta Cryst. E65, o1184–o1185.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHolla, B. S. & Udupa, K. V. (1992). Farmaco, 47, 305–318.  PubMed CAS Web of Science Google Scholar
First citationKamal, A., Khan, N. A., Reddy, K. S. & Rohini, K. (2007). Bioorg. Med. Chem. 15, 1004–1013.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKumar, P., Narasimhan, B., Sharma, D., Judge, V. & Narang, R. (2009). Eur. J. Med. Chem. 44, 1853–1863.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMasunari, A. & Tavares, L. C. (2007). Bioorg. Med. Chem. 15, 4229–4236.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRando, D. G., Avery, M. A., Tekwani, B. L., Khan, S. I. & Ferreira, E. I. (2008). Bioorg. Med. Chem. 16, 6724–6731.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRando, D. G., Sato, D. N., Siqueira, L., Malvezzi, A., Leite, C. Q. F., do Amaral, A. T., Ferreira, E. I. & Tavares, L. C. (2002). Bioorg. Med. Chem. 10, 557–560.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 1| January 2010| Pages o53-o54
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds