metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[tri­methyltin(IV)]-μ-2-methylbenzoato-κ2O:O′]

aDepartment of Chemistry, University of Sargodha, Sargodha 40100, Pakistan, and bInstitute of Nuclear Chemistry and Technology, ul. Dorodna 16, 03-195 Warszawa, Poland
*Correspondence e-mail: drdanish62@gmail.com

(Received 26 November 2009; accepted 30 November 2009; online 4 December 2009)

The polymeric structure of the title compound, [Sn(CH3)3(C8H7O2)]n, is composed of zigzag chains in which the tin(IV) atoms, coordinated by three methyl groups, are bridged by toluene-2-carboxyl­ate ligands via their O atoms. A slightly distorted trigonal-bipyramidal SnC3O2 coordination geometry arises for the metal, with the O atoms in the axial sites. Weak C—H⋯O hydrogen bonds help to stabilize the packing.

Related literature

For biological activity of tin complexes with carboxyl­ate ligands, see, for example: Shahzadi et al. (2007[Shahzadi, S., Shahid, K. & Ali, S. (2007). Russ. J. Coord. Chem. 33, 403-411.]). For a related structure, see: Danish et al. (2009[Danish, M., Tahir, M. N., Ahmad, N., Raza, A. R. & Ibrahim, M. (2009). Acta Cryst. E65, m609-m610.]). For a review of the structural chemistry of tin(IV) complexes with carboxyl­ate ligands, see: Tiekink (1991[Tiekink, E. R. T. (1991). Appl. Organomet. Chem. 5, 1-23.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(CH3)3(C8H7O2)]

  • Mr = 298.93

  • Monoclinic, P 21 /n

  • a = 10.618 (2) Å

  • b = 10.046 (2) Å

  • c = 12.833 (3) Å

  • β = 112.39 (3)°

  • V = 1265.7 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.00 mm−1

  • T = 293 K

  • 0.42 × 0.12 × 0.09 mm

Data collection
  • Kuma KM-4 four circle diffractometer

  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England]) Tmin = 0.838, Tmax = 0.892

  • 3389 measured reflections

  • 3226 independent reflections

  • 2090 reflections with I > 2σ(I)

  • Rint = 0.022

  • 3 standard reflections every 200 reflections

  • intensity decay: 6.4%

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.118

  • S = 1.04

  • 3226 reflections

  • 131 parameters

  • H-atom parameters constrained

  • Δρmax = 1.37 e Å−3

  • Δρmin = −1.69 e Å−3

Table 1
Selected bond lengths (Å)

Sn1—C11 2.108 (6)
Sn1—C12 2.112 (5)
Sn1—C13 2.116 (5)
Sn1—O2i 2.200 (3)
Sn1—O1 2.413 (3)
Symmetry code: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13C⋯O1i 0.96 2.66 3.271 (7) 122
C4—H4⋯O2ii 0.93 2.74 3.502 (6) 140
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{5\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: KM-4 Software (Kuma, 1996[Kuma (1996). KM-4 Software. Kuma Diffraction Ltd. Wrocław, Poland.]); cell refinement: KM-4 Software; data reduction: DATAPROC (Kuma, 2001[Kuma (2001). DATAPROC. Kuma Diffraction Ltd. Wrocław, Poland.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The structure of the title compound (I) is built of zigzag molecular chains in which trimethyl-tin units are bridged by toluene-3-carboxylate ligand molecules via both their carboxylate O atoms (Fig.1). The toluene ring is planar [r.m.s. 0.0068 (2) Å]. The carboxylic group makes with it a dihedral angle of 77.8 (2)°. A catenated molecular pattern is formed as shown in Fig. 2. Three methyl groups and the tin ion are coplanar [r.m.s. 0.0459 (2) Å]. The metal ion is shifted from the plane by 0.0918 (2) Å. Methyl C atoms form an equatorial plane of a trigonal bipyramid with the bridging carboxylate O atoms at the apices above and below this plane. The chains are kept together by weak hydrogen bonds in which methyl C atoms act as donors and the carboxylate O atoms in the adjacent chains -as acceptors. Weak intra-chain hydrogen bonds are also observed. Geometrical parameters of hydrogen bonds are listed in Table 1.

Related literature top

For biological activity of tin complexes with carboxylate ligands, see, for example: Shahzadi et al. (2007). For a related structure, see: Danish et al. (2009). For a review of the structural chemistry of tin(IV) complexes with carboxylate ligands, see: Tiekink (1991).

Experimental top

0.01 mol of sodium ortho-toluate was suspended in 25 ml of dry chloroform contained in a round-bottom flask under argon; 0.01 mol of trimethyl-tin chloride was then added with constant stirring. The reacting mixtured was refluxed for 4 h under argon, cooled to room temperature and kept in an ice bath for 1 h. Sodium chloride formed during the reaction was removed by filtration. The filtrate was warmed with activated charcoal for 5 minutes, filtered through silica gel and concentrated to 10 ml. Crude crystals appeared in three days. Then, they were recrystalized from 3:1 chloroform/acetone mixture to yield colourless blocks of (I).

Refinement top

The H atoms attached to toluene-ring C atoms and methyl C atoms were positioned geometrically and refined with a riding model.

Computing details top

Data collection: KM-4 Software (Kuma, 1996); cell refinement: KM-4 Software (Kuma, 1996); data reduction: DATAPROC (Kuma, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A structural unit of (1) with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the structure.
catena-Poly[[trimethyltin(IV)]-µ-2-methylbenzoato- κ2O:O'] top
Crystal data top
[Sn(CH3)3(C8H7O2)]F(000) = 592
Mr = 298.93Dx = 1.569 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 10.618 (2) Åθ = 6–15°
b = 10.046 (2) ŵ = 2.00 mm1
c = 12.833 (3) ÅT = 293 K
β = 112.39 (3)°Block, colourless
V = 1265.7 (4) Å30.42 × 0.12 × 0.09 mm
Z = 4
Data collection top
Kuma KM-4 four circle
diffractometer
2090 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.022
Graphite monochromatorθmax = 30.1°, θmin = 2.1°
profile data from ω/2θ scansh = 013
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2008)
k = 130
Tmin = 0.838, Tmax = 0.892l = 1715
3389 measured reflections3 standard reflections every 200 reflections
3226 independent reflections intensity decay: 6.4%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0777P)2 + 0.0604P]
where P = (Fo2 + 2Fc2)/3
3226 reflections(Δ/σ)max = 0.001
131 parametersΔρmax = 1.37 e Å3
0 restraintsΔρmin = 1.69 e Å3
Crystal data top
[Sn(CH3)3(C8H7O2)]V = 1265.7 (4) Å3
Mr = 298.93Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.618 (2) ŵ = 2.00 mm1
b = 10.046 (2) ÅT = 293 K
c = 12.833 (3) Å0.42 × 0.12 × 0.09 mm
β = 112.39 (3)°
Data collection top
Kuma KM-4 four circle
diffractometer
2090 reflections with I > 2σ(I)
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2008)
Rint = 0.022
Tmin = 0.838, Tmax = 0.8923 standard reflections every 200 reflections
3389 measured reflections intensity decay: 6.4%
3226 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 1.04Δρmax = 1.37 e Å3
3226 reflectionsΔρmin = 1.69 e Å3
131 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.67213 (3)0.58902 (3)0.23186 (2)0.04378 (12)
O10.8105 (3)0.7804 (3)0.2342 (4)0.0645 (9)
C11.0203 (4)0.7136 (4)0.2204 (4)0.0443 (8)
C70.9255 (4)0.8130 (4)0.2391 (3)0.0429 (8)
C41.1974 (6)0.5271 (6)0.1924 (6)0.0803 (17)
H41.25820.46650.18260.096*
C61.0906 (6)0.6253 (6)0.3062 (5)0.0651 (13)
H61.07920.62900.37450.078*
C51.1780 (6)0.5310 (7)0.2904 (6)0.0803 (17)
H51.22300.47070.34750.096*
C21.0385 (5)0.7088 (5)0.1204 (4)0.0632 (12)
C31.1262 (7)0.6142 (7)0.1067 (6)0.0825 (19)
H31.13740.60920.03830.099*
C80.9607 (9)0.8037 (9)0.0242 (6)0.110 (3)
H8A0.86460.78850.00110.165*
H8B0.98730.78810.03840.165*
H8C0.98130.89400.04940.165*
O20.9682 (3)0.9314 (3)0.2610 (3)0.0527 (7)
C120.5145 (5)0.7309 (5)0.1961 (6)0.0780 (17)
H12A0.54920.80980.23990.117*
H12B0.44200.69470.21470.117*
H12C0.48040.75290.11730.117*
C130.7115 (6)0.5114 (6)0.0940 (4)0.0725 (15)
H13A0.80340.53210.10310.109*
H13B0.64950.55040.02530.109*
H13C0.69940.41660.09090.109*
C110.7997 (7)0.5631 (6)0.4027 (5)0.0814 (18)
H11A0.84690.64480.43180.122*
H11B0.86460.49400.40900.122*
H11C0.74560.53880.44500.122*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.04404 (18)0.03127 (16)0.05657 (19)0.00215 (11)0.01979 (13)0.00013 (11)
O10.0526 (18)0.0341 (15)0.118 (3)0.0025 (13)0.0456 (18)0.0094 (17)
C10.0366 (18)0.0333 (18)0.063 (2)0.0039 (15)0.0193 (17)0.0053 (16)
C70.045 (2)0.0317 (18)0.053 (2)0.0008 (15)0.0201 (17)0.0006 (16)
C40.057 (3)0.063 (4)0.122 (5)0.017 (3)0.036 (3)0.016 (3)
C60.061 (3)0.059 (3)0.072 (3)0.018 (2)0.022 (2)0.006 (2)
C50.063 (3)0.062 (4)0.108 (5)0.024 (3)0.024 (3)0.009 (3)
C20.066 (3)0.059 (3)0.073 (3)0.012 (2)0.036 (3)0.006 (2)
C30.079 (4)0.088 (4)0.100 (5)0.011 (3)0.056 (4)0.015 (4)
C80.146 (7)0.121 (6)0.083 (4)0.050 (5)0.067 (4)0.033 (4)
O20.0473 (17)0.0323 (15)0.082 (2)0.0026 (11)0.0282 (16)0.0035 (13)
C120.055 (3)0.043 (2)0.135 (5)0.003 (2)0.034 (3)0.017 (3)
C130.099 (4)0.063 (3)0.067 (3)0.021 (3)0.044 (3)0.015 (3)
C110.084 (4)0.087 (4)0.055 (3)0.026 (3)0.006 (3)0.001 (3)
Geometric parameters (Å, º) top
Sn1—C112.108 (6)C2—C31.388 (7)
Sn1—C122.112 (5)C2—C81.530 (8)
Sn1—C132.116 (5)C3—H30.9300
Sn1—O2i2.200 (3)C8—H8A0.9600
Sn1—O12.413 (3)C8—H8B0.9600
O1—C71.243 (5)C8—H8C0.9600
C1—C21.370 (7)O2—Sn1ii2.200 (3)
C1—C61.389 (7)C12—H12A0.9600
C1—C71.500 (5)C12—H12B0.9600
C7—O21.266 (5)C12—H12C0.9600
C4—C51.351 (10)C13—H13A0.9600
C4—C31.383 (10)C13—H13B0.9600
C4—H40.9300C13—H13C0.9600
C6—C51.394 (8)C11—H11A0.9600
C6—H60.9300C11—H11B0.9600
C5—H50.9300C11—H11C0.9600
C11—Sn1—C12116.8 (3)C4—C3—C2121.5 (6)
C11—Sn1—C13124.8 (3)C4—C3—H3119.3
C12—Sn1—C13117.3 (3)C2—C3—H3119.3
C11—Sn1—O2i92.6 (2)C2—C8—H8A109.5
C12—Sn1—O2i90.09 (17)C2—C8—H8B109.5
C13—Sn1—O2i97.02 (17)H8A—C8—H8B109.5
C11—Sn1—O186.5 (2)C2—C8—H8C109.5
C12—Sn1—O183.88 (17)H8A—C8—H8C109.5
C13—Sn1—O189.46 (17)H8B—C8—H8C109.5
O2i—Sn1—O1172.68 (11)C7—O2—Sn1ii119.7 (3)
C7—O1—Sn1142.4 (3)Sn1—C12—H12A109.5
C2—C1—C6119.6 (4)Sn1—C12—H12B109.5
C2—C1—C7121.0 (4)H12A—C12—H12B109.5
C6—C1—C7119.3 (4)Sn1—C12—H12C109.5
O1—C7—O2121.4 (4)H12A—C12—H12C109.5
O1—C7—C1121.5 (3)H12B—C12—H12C109.5
O2—C7—C1117.1 (4)Sn1—C13—H13A109.5
C5—C4—C3119.4 (5)Sn1—C13—H13B109.5
C5—C4—H4120.3H13A—C13—H13B109.5
C3—C4—H4120.3Sn1—C13—H13C109.5
C1—C6—C5120.4 (6)H13A—C13—H13C109.5
C1—C6—H6119.8H13B—C13—H13C109.5
C5—C6—H6119.8Sn1—C11—H11A109.5
C4—C5—C6120.1 (6)Sn1—C11—H11B109.5
C4—C5—H5120.0H11A—C11—H11B109.5
C6—C5—H5120.0Sn1—C11—H11C109.5
C1—C2—C3119.0 (5)H11A—C11—H11C109.5
C1—C2—C8120.6 (5)H11B—C11—H11C109.5
C3—C2—C8120.4 (6)
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+3/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13C···O1i0.962.663.271 (7)122
C4—H4···O2iii0.932.743.502 (6)140
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (iii) x+5/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Sn(CH3)3(C8H7O2)]
Mr298.93
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)10.618 (2), 10.046 (2), 12.833 (3)
β (°) 112.39 (3)
V3)1265.7 (4)
Z4
Radiation typeMo Kα
µ (mm1)2.00
Crystal size (mm)0.42 × 0.12 × 0.09
Data collection
DiffractometerKuma KM-4 four circle
diffractometer
Absorption correctionAnalytical
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.838, 0.892
No. of measured, independent and
observed [I > 2σ(I)] reflections
3389, 3226, 2090
Rint0.022
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.118, 1.04
No. of reflections3226
No. of parameters131
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.37, 1.69

Computer programs: KM-4 Software (Kuma, 1996), DATAPROC (Kuma, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Sn1—C112.108 (6)Sn1—O2i2.200 (3)
Sn1—C122.112 (5)Sn1—O12.413 (3)
Sn1—C132.116 (5)
Symmetry code: (i) x+3/2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13C···O1i0.962.663.271 (7)122
C4—H4···O2ii0.932.743.502 (6)140
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+5/2, y1/2, z+1/2.
 

References

First citationDanish, M., Tahir, M. N., Ahmad, N., Raza, A. R. & Ibrahim, M. (2009). Acta Cryst. E65, m609–m610.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKuma (1996). KM-4 Software. Kuma Diffraction Ltd. Wrocław, Poland.  Google Scholar
First citationKuma (2001). DATAPROC. Kuma Diffraction Ltd. Wrocław, Poland.  Google Scholar
First citationOxford Diffraction (2008). CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England  Google Scholar
First citationShahzadi, S., Shahid, K. & Ali, S. (2007). Russ. J. Coord. Chem. 33, 403–411.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTiekink, E. R. T. (1991). Appl. Organomet. Chem. 5, 1–23.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds