organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Mesitylacetic acid

aSchool of Chemistry and Biological Engineering, Changsha University of Science & Technology, Changsha 410004, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
*Correspondence e-mail: js_li@yahoo.com.cn

(Received 27 November 2009; accepted 30 November 2009; online 4 December 2009)

In the title compound, C11H14O2, the dihedral angle between the CCOO carboxyl unit and the benzene ring is 85.37 (7)°. In the crystal, the mol­ecules are linked into inversion dimers by pairs of O—H⋯O hydrogen bonds.

Related literature

For background to carboxylic acids as supra­molecular synthons, see: Thalladi et al. (1996[Thalladi, V. R., Goud, B. S., Hoy, V. J., Allen, F. H., Howard, J. A. K. & Desiraju, G. R. (1996). Chem. Commun. pp. 401-402.]).

[Scheme 1]

Experimental

Crystal data
  • C11H14O2

  • Mr = 178.22

  • Monoclinic, P 21 /c

  • a = 8.2312 (16) Å

  • b = 15.366 (3) Å

  • c = 7.5708 (15) Å

  • β = 92.74 (3)°

  • V = 956.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 113 K

  • 0.32 × 0.18 × 0.12 mm

Data collection
  • Rigaku Saturn CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.974, Tmax = 0.990

  • 6163 measured reflections

  • 1681 independent reflections

  • 1259 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.104

  • S = 1.03

  • 1681 reflections

  • 123 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.82 1.84 2.6564 (15) 177
Symmetry code: (i) -x+1, -y+2, -z.

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Carboxylic acid is a supramolecular synthon, widely used to construct supramolecular array with one to three different dimensions via hydrogen bonds (Thalladi et al., 1996). Herein the structure of the title compound (I) is reported.

In the title molecule, (Fig 1), the carbonyl moiety C1/C2/O1/O2 forms an angle of 85.3797) with the benzene ring. In the crystal packing, molecules are linked into dimers by strong O—H···O H-bonding (Table 1 & Fig 2).

Related literature top

For background to carboxylic acids as supramolecular synthons, see: Thalladi et al. (1996).

Experimental top

The title compound was available from Hunan institute of Chemical Industry, received without further purification. Colourless blocks of (I) were obtained by evaporation from its solution of ethyl acetate/petroleum ether 1/4 (v/v).

Refinement top

All H atoms were positioned geometrically and constrained to ride on their parent atoms [C—H distances are 0.93 and 0.97Å with Uiso(H) = 1.2 Ueq(C) for aromatic and CH2 H atoms, 0.82 and 0.96Å with Uiso = 1.5Ueq (O and C) for OH and CH3 H atoms].

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecule of (I) showing displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The dimer formed via intermolecular O—H···O hydrogen bonding.
2-Mesitylacetic acid top
Crystal data top
C11H14O2F(000) = 384
Mr = 178.22Dx = 1.238 Mg m3
Monoclinic, P21/cMelting point: 440-442 K K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 8.2312 (16) ÅCell parameters from 2789 reflections
b = 15.366 (3) Åθ = 2.5–27.9°
c = 7.5708 (15) ŵ = 0.08 mm1
β = 92.74 (3)°T = 113 K
V = 956.4 (3) Å3Block, colourless
Z = 40.32 × 0.18 × 0.12 mm
Data collection top
Rigaku Saturn CCD
diffractometer
1681 independent reflections
Radiation source: rotating anode1259 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.040
Detector resolution: 7.31 pixels mm-1θmax = 25.0°, θmin = 2.5°
ω and ϕ scansh = 97
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 1815
Tmin = 0.974, Tmax = 0.990l = 88
6163 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.0648P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
1681 reflectionsΔρmax = 0.20 e Å3
123 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.109 (9)
Crystal data top
C11H14O2V = 956.4 (3) Å3
Mr = 178.22Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.2312 (16) ŵ = 0.08 mm1
b = 15.366 (3) ÅT = 113 K
c = 7.5708 (15) Å0.32 × 0.18 × 0.12 mm
β = 92.74 (3)°
Data collection top
Rigaku Saturn CCD
diffractometer
1681 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
1259 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 0.990Rint = 0.040
6163 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.03Δρmax = 0.20 e Å3
1681 reflectionsΔρmin = 0.18 e Å3
123 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.36719 (12)0.93504 (6)0.08273 (12)0.0294 (3)
O20.48038 (12)1.05038 (6)0.21730 (12)0.0262 (3)
H20.52441.05480.12280.039*
C10.38084 (16)0.98320 (8)0.21106 (17)0.0190 (3)
C20.29007 (17)0.97161 (8)0.37622 (17)0.0232 (4)
H2A0.25681.02840.41730.028*
H2B0.36320.94670.46690.028*
C30.14180 (16)0.91442 (8)0.35423 (16)0.0189 (3)
C40.14441 (17)0.82764 (8)0.41446 (17)0.0205 (3)
C50.00572 (17)0.77723 (8)0.38957 (18)0.0229 (4)
H50.00760.72010.43030.027*
C60.13609 (17)0.80882 (8)0.30596 (17)0.0231 (4)
C70.13687 (17)0.89545 (8)0.25041 (17)0.0235 (4)
H70.23130.91830.19630.028*
C80.00110 (17)0.94838 (8)0.27356 (16)0.0198 (3)
C90.00882 (18)1.04182 (8)0.21213 (18)0.0270 (4)
H9A0.11391.05330.15660.040*
H9B0.07361.05180.12890.040*
H9C0.00901.07980.31190.040*
C100.29354 (18)0.78874 (10)0.50715 (19)0.0316 (4)
H10A0.27260.72910.53600.047*
H10B0.31980.82070.61360.047*
H10C0.38320.79160.43080.047*
C110.28185 (19)0.75097 (9)0.2738 (2)0.0340 (4)
H11A0.26060.71000.18210.051*
H11B0.37460.78580.23820.051*
H11C0.30350.72020.38050.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0363 (7)0.0287 (6)0.0241 (6)0.0128 (5)0.0107 (5)0.0080 (4)
O20.0285 (6)0.0279 (6)0.0229 (6)0.0113 (4)0.0080 (4)0.0047 (4)
C10.0194 (8)0.0168 (6)0.0207 (7)0.0004 (6)0.0010 (6)0.0015 (5)
C20.0284 (9)0.0236 (7)0.0178 (8)0.0039 (6)0.0027 (6)0.0005 (5)
C30.0243 (8)0.0199 (7)0.0130 (7)0.0031 (6)0.0064 (6)0.0029 (5)
C40.0250 (8)0.0212 (7)0.0159 (7)0.0019 (6)0.0061 (6)0.0016 (5)
C50.0330 (9)0.0159 (6)0.0206 (7)0.0011 (6)0.0102 (6)0.0005 (5)
C60.0259 (9)0.0253 (7)0.0188 (7)0.0049 (6)0.0094 (6)0.0048 (5)
C70.0228 (8)0.0295 (8)0.0185 (8)0.0030 (6)0.0044 (6)0.0018 (5)
C80.0270 (8)0.0190 (7)0.0141 (7)0.0001 (6)0.0073 (6)0.0014 (5)
C90.0343 (9)0.0233 (7)0.0237 (8)0.0029 (6)0.0055 (7)0.0014 (5)
C100.0317 (9)0.0294 (8)0.0336 (9)0.0033 (6)0.0022 (7)0.0032 (6)
C110.0329 (10)0.0366 (9)0.0332 (9)0.0109 (7)0.0080 (7)0.0040 (6)
Geometric parameters (Å, º) top
O1—C11.2222 (15)C6—C111.5037 (18)
O2—C11.3174 (15)C7—C81.3865 (18)
O2—H20.8200C7—H70.9300
C1—C21.4976 (19)C8—C91.5096 (18)
C2—C31.5067 (17)C9—H9A0.9600
C2—H2A0.9700C9—H9B0.9600
C2—H2B0.9700C9—H9C0.9600
C3—C81.4000 (18)C10—H10A0.9600
C3—C41.4089 (18)C10—H10B0.9600
C4—C51.3850 (18)C10—H10C0.9600
C4—C101.5080 (19)C11—H11A0.9600
C5—C61.3885 (18)C11—H11B0.9600
C5—H50.9300C11—H11C0.9600
C6—C71.3959 (19)
C1—O2—H2109.5C8—C7—H7119.0
O1—C1—O2122.43 (13)C6—C7—H7119.0
O1—C1—C2124.14 (12)C7—C8—C3119.45 (11)
O2—C1—C2113.42 (10)C7—C8—C9119.81 (12)
C1—C2—C3114.26 (10)C3—C8—C9120.73 (12)
C1—C2—H2A108.7C8—C9—H9A109.5
C3—C2—H2A108.7C8—C9—H9B109.5
C1—C2—H2B108.7H9A—C9—H9B109.5
C3—C2—H2B108.7C8—C9—H9C109.5
H2A—C2—H2B107.6H9A—C9—H9C109.5
C8—C3—C4119.57 (12)H9B—C9—H9C109.5
C8—C3—C2119.34 (11)C4—C10—H10A109.5
C4—C3—C2121.09 (12)C4—C10—H10B109.5
C5—C4—C3119.05 (12)H10A—C10—H10B109.5
C5—C4—C10119.27 (12)C4—C10—H10C109.5
C3—C4—C10121.68 (13)H10A—C10—H10C109.5
C4—C5—C6122.41 (11)H10B—C10—H10C109.5
C4—C5—H5118.8C6—C11—H11A109.5
C6—C5—H5118.8C6—C11—H11B109.5
C5—C6—C7117.54 (12)H11A—C11—H11B109.5
C5—C6—C11120.94 (12)C6—C11—H11C109.5
C7—C6—C11121.52 (13)H11A—C11—H11C109.5
C8—C7—C6121.95 (13)H11B—C11—H11C109.5
O1—C1—C2—C318.70 (18)C4—C5—C6—C71.7 (2)
O2—C1—C2—C3162.26 (11)C4—C5—C6—C11177.16 (12)
C1—C2—C3—C877.82 (15)C5—C6—C7—C81.3 (2)
C1—C2—C3—C4102.58 (14)C11—C6—C7—C8177.55 (12)
C8—C3—C4—C51.12 (19)C6—C7—C8—C30.3 (2)
C2—C3—C4—C5179.28 (12)C6—C7—C8—C9179.59 (12)
C8—C3—C4—C10178.12 (12)C4—C3—C8—C71.50 (19)
C2—C3—C4—C101.48 (19)C2—C3—C8—C7178.89 (11)
C3—C4—C5—C60.5 (2)C4—C3—C8—C9178.36 (12)
C10—C4—C5—C6179.77 (13)C2—C3—C8—C91.24 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.821.842.6564 (15)177
Symmetry code: (i) x+1, y+2, z.

Experimental details

Crystal data
Chemical formulaC11H14O2
Mr178.22
Crystal system, space groupMonoclinic, P21/c
Temperature (K)113
a, b, c (Å)8.2312 (16), 15.366 (3), 7.5708 (15)
β (°) 92.74 (3)
V3)956.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.32 × 0.18 × 0.12
Data collection
DiffractometerRigaku Saturn CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.974, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
6163, 1681, 1259
Rint0.040
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.104, 1.03
No. of reflections1681
No. of parameters123
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.18

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.821.842.6564 (15)177
Symmetry code: (i) x+1, y+2, z.
 

References

First citationRigaku/MSC (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThalladi, V. R., Goud, B. S., Hoy, V. J., Allen, F. H., Howard, J. A. K. & Desiraju, G. R. (1996). Chem. Commun. pp. 401–402.  CSD CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds