organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[2-(4-Nitro­phenyl)hy­dra­zin­yl­­idene]malono­nitrile

aCollege of Science, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China, and bCollege of Food Science and Light Industry, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: wanghaibo@njut.edu.cn

(Received 1 December 2009; accepted 10 December 2009; online 19 December 2009)

The title compound, C10H8N8, is close to planar (r.m.s. deviation from the mean plane = 0.118 Å). In the crystal, inversion dimers linked by pairs of N—H⋯N hydrogen bonds generate R22(12) loops.

Related literature

For background to the use of the title compound as a dye, see: Tsai (2005[Tsai, P. S. (2005). Dyes Pigments, 11, 259-264.]). For reference structural data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C10H8N4

  • Mr = 184.20

  • Monoclinic, P 21 /n

  • a = 11.961 (2) Å

  • b = 5.8310 (12) Å

  • c = 14.569 (3) Å

  • β = 110.98 (3)°

  • V = 948.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.975, Tmax = 0.992

  • 1797 measured reflections

  • 1712 independent reflections

  • 1191 reflections with I > 2σ(I)

  • Rint = 0.034

  • 3 standard reflections every 200 reflections

  • intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.172

  • S = 1.01

  • 1712 reflections

  • 127 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4A⋯N2i 0.86 2.36 3.174 (3) 157
Symmetry code: (i) -x+1, -y+1, -z+2.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 Software. Enraf-Nonius, Delft. The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Related literature top

For background to the use of the title compound as a dye, see: Tsai (2005). For reference structural data, see: Allen et al. (1987).

Experimental top

A hydrochloric acid solution (6 ml) of p-toluidine (1.07 g, 0.01 mol) and an aqueous solution (3 ml) of sodium nitrite (0.72 g, 0.0105 mol) were mixed and stirred at 273 K for 1h, followed by the addition of an aqueous solution (10 ml) of malononitrile (0.66 g, 0.01 mol) and further stirring at 273 K for 2 h. The resulting product was filtered and washed with water, dried, and recrystallized from ethanol to give the title compound as yellow crystals (yield; 78%, m.p. 409 K). Yellow blocks of (I) were obtained by slow evaporation of an ethyl acetate solution.

Refinement top

H atoms were positioned geometrically, with N-H = 0.86 Å (for NH) and C—H = 0.93, 0.95 and 0.96 Å for aromatic, methine and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 50% displacement ellipsoids.
[Figure 2] Fig. 2. The packing for (I).
2-[2-(4-Nitrophenyl)hydrazinylidene]malononitrile top
Crystal data top
C10H8N4F(000) = 384
Mr = 184.20Dx = 1.289 Mg m3
Monoclinic, P21/nMelting point: 409 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 11.961 (2) ÅCell parameters from 25 reflections
b = 5.8310 (12) Åθ = 10–13°
c = 14.569 (3) ŵ = 0.08 mm1
β = 110.98 (3)°T = 293 K
V = 948.7 (3) Å3Block, yellow
Z = 40.30 × 0.20 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1191 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.034
Graphite monochromatorθmax = 25.3°, θmin = 1.9°
ω/2θ scansh = 014
Absorption correction: ψ scan
(North et al., 1968)
k = 07
Tmin = 0.975, Tmax = 0.992l = 1716
1797 measured reflections3 standard reflections every 200 reflections
1712 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.172H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.1P)2 + 0.170P]
where P = (Fo2 + 2Fc2)/3
1712 reflections(Δ/σ)max < 0.001
127 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C10H8N4V = 948.7 (3) Å3
Mr = 184.20Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.961 (2) ŵ = 0.08 mm1
b = 5.8310 (12) ÅT = 293 K
c = 14.569 (3) Å0.30 × 0.20 × 0.10 mm
β = 110.98 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1191 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.034
Tmin = 0.975, Tmax = 0.9923 standard reflections every 200 reflections
1797 measured reflections intensity decay: 1%
1712 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.172H-atom parameters constrained
S = 1.01Δρmax = 0.25 e Å3
1712 reflectionsΔρmin = 0.25 e Å3
127 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2746 (2)0.1077 (5)0.8662 (2)0.0513 (6)
N10.2481 (2)0.2797 (4)0.8277 (2)0.0739 (8)
N20.5027 (2)0.3075 (4)0.92534 (19)0.0692 (7)
C20.4155 (2)0.2173 (4)0.91795 (18)0.0489 (6)
N30.24161 (17)0.1817 (3)0.96436 (14)0.0445 (5)
C30.3086 (2)0.1060 (4)0.91713 (17)0.0448 (6)
N40.26745 (16)0.3729 (3)1.01369 (14)0.0445 (5)
H4A0.32680.45421.01230.053*
C40.19927 (19)0.4484 (4)1.06931 (16)0.0406 (6)
C50.1092 (2)0.3138 (4)1.08016 (17)0.0455 (6)
H5A0.09070.17201.04920.055*
C60.0477 (2)0.3931 (4)1.13736 (18)0.0486 (6)
H6A0.01280.30271.14450.058*
C70.0728 (2)0.6037 (4)1.18486 (17)0.0461 (6)
C80.1624 (2)0.7356 (4)1.17157 (18)0.0492 (6)
H8A0.18060.87811.20190.059*
C90.2249 (2)0.6599 (4)1.11451 (18)0.0468 (6)
H9A0.28450.75121.10640.056*
C100.0070 (2)0.6860 (5)1.2494 (2)0.0630 (8)
H10A0.05120.57341.25020.094*
H10B0.03270.82811.22410.094*
H10C0.06290.70911.31500.094*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0532 (14)0.0468 (15)0.0609 (15)0.0056 (12)0.0288 (12)0.0017 (13)
N10.0860 (18)0.0582 (16)0.0907 (19)0.0204 (13)0.0476 (15)0.0187 (14)
N20.0589 (14)0.0656 (16)0.0930 (18)0.0156 (13)0.0393 (13)0.0197 (14)
C20.0506 (15)0.0408 (14)0.0592 (15)0.0008 (12)0.0244 (12)0.0060 (12)
N30.0498 (11)0.0389 (12)0.0464 (11)0.0051 (9)0.0194 (9)0.0010 (9)
C30.0432 (12)0.0398 (13)0.0539 (14)0.0042 (11)0.0205 (11)0.0008 (11)
N40.0467 (11)0.0377 (11)0.0545 (12)0.0055 (9)0.0246 (9)0.0002 (9)
C40.0446 (12)0.0355 (12)0.0435 (12)0.0002 (10)0.0180 (10)0.0053 (10)
C50.0470 (13)0.0356 (13)0.0546 (14)0.0059 (10)0.0190 (11)0.0001 (11)
C60.0451 (13)0.0475 (15)0.0563 (14)0.0072 (11)0.0219 (11)0.0033 (12)
C70.0430 (13)0.0475 (15)0.0468 (13)0.0037 (11)0.0149 (10)0.0057 (11)
C80.0549 (14)0.0373 (13)0.0556 (14)0.0026 (11)0.0200 (12)0.0017 (11)
C90.0495 (13)0.0367 (13)0.0578 (14)0.0104 (11)0.0236 (11)0.0005 (11)
C100.0573 (16)0.0739 (19)0.0632 (16)0.0063 (14)0.0281 (13)0.0021 (14)
Geometric parameters (Å, º) top
C1—N11.137 (3)C5—H5A0.9300
C1—C31.433 (3)C6—C71.389 (3)
N2—C21.138 (3)C6—H6A0.9300
C2—C31.430 (3)C7—C81.388 (3)
N3—N41.302 (3)C7—C101.504 (3)
N3—C31.305 (3)C8—C91.375 (3)
N4—C41.410 (3)C8—H8A0.9300
N4—H4A0.8600C9—H9A0.9300
C4—C91.380 (3)C10—H10A0.9600
C4—C51.387 (3)C10—H10B0.9600
C5—C61.375 (3)C10—H10C0.9600
N1—C1—C3178.5 (3)C7—C6—H6A118.9
N2—C2—C3175.3 (3)C8—C7—C6117.4 (2)
N4—N3—C3120.74 (19)C8—C7—C10120.9 (2)
N3—C3—C2123.9 (2)C6—C7—C10121.7 (2)
N3—C3—C1117.0 (2)C9—C8—C7121.4 (2)
C2—C3—C1119.1 (2)C9—C8—H8A119.3
N3—N4—C4120.83 (19)C7—C8—H8A119.3
N3—N4—H4A119.6C8—C9—C4119.9 (2)
C4—N4—H4A119.6C8—C9—H9A120.0
C9—C4—C5120.0 (2)C4—C9—H9A120.0
C9—C4—N4118.5 (2)C7—C10—H10A109.5
C5—C4—N4121.4 (2)C7—C10—H10B109.5
C6—C5—C4119.1 (2)H10A—C10—H10B109.5
C6—C5—H5A120.5C7—C10—H10C109.5
C4—C5—H5A120.5H10A—C10—H10C109.5
C5—C6—C7122.1 (2)H10B—C10—H10C109.5
C5—C6—H6A118.9
N4—N3—C3—C22.4 (4)N4—C4—C5—C6178.3 (2)
N4—N3—C3—C1179.0 (2)C4—C5—C6—C70.1 (4)
N2—C2—C3—N345 (3)C5—C6—C7—C80.9 (4)
N2—C2—C3—C1131 (3)C5—C6—C7—C10178.4 (2)
N1—C1—C3—N365 (10)C6—C7—C8—C90.7 (4)
N1—C1—C3—C2112 (10)C10—C7—C8—C9178.6 (2)
C3—N3—N4—C4176.4 (2)C7—C8—C9—C40.2 (4)
N3—N4—C4—C9175.4 (2)C5—C4—C9—C81.0 (3)
N3—N4—C4—C55.4 (3)N4—C4—C9—C8178.1 (2)
C9—C4—C5—C60.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···N2i0.862.363.174 (3)157
Symmetry code: (i) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC10H8N4
Mr184.20
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)11.961 (2), 5.8310 (12), 14.569 (3)
β (°) 110.98 (3)
V3)948.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.975, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
1797, 1712, 1191
Rint0.034
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.172, 1.01
No. of reflections1712
No. of parameters127
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.25

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···N2i0.862.363.174 (3)157
Symmetry code: (i) x+1, y+1, z+2.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1994). CAD-4 Software. Enraf–Nonius, Delft. The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTsai, P. S. (2005). Dyes Pigments, 11, 259–264.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds