organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Bromo­phen­yl)-N-(2-meth­oxy­phen­yl)acetamide

aCollege of Chemistry & Chemical Engineering, Jishou University, Jishou 416000, People's Republic of China
*Correspondence e-mail: xiaozhuping2005@163.com

(Received 1 December 2009; accepted 1 December 2009; online 9 December 2009)

In the title compound, C15H14BrNO2, the 4-bromo­phenyl fragment makes a dihedral angle of 76.55 (17)° with the acetamide unit and the dihedral angle between the two benzene rings is 50.88 (14)°. In the crystal structure, inter­molecular N—H⋯O hydrogen bonds and C—H⋯π contacts connect the mol­ecules, forming chains propagating in [100].

Related literature

For background to phenyl­acetamide derivatives as potential anti­microbial agents, see: Mijin & Marinković (2006[Mijin, D. & Marinković, A. (2006). Synth. Commun. 36, 193-198]); Mijin et al. (2008[Mijin, D. Z., Praščević, M. & Petrovic, S. D. (2008). J. Serb. Chem. Soc. 73, 945-950.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14BrNO2

  • Mr = 320.18

  • Triclinic, [P \overline 1]

  • a = 4.851 (4) Å

  • b = 12.083 (10) Å

  • c = 12.265 (10) Å

  • α = 74.61 (3)°

  • β = 87.47 (3)°

  • γ = 85.18 (3)°

  • V = 690.5 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.97 mm−1

  • T = 296 K

  • 0.25 × 0.20 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.524, Tmax = 0.755

  • 3678 measured reflections

  • 2642 independent reflections

  • 1441 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.133

  • S = 1.01

  • 2642 reflections

  • 177 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.79 e Å−3

  • Δρmin = −0.62 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.81 (5) 2.13 (5) 2.912 (6) 160 (5)
C15—H15CCg1i 0.96 2.86 3.617 (7) 137
Symmetry code: (i) x+1, y, z. Cg1 is the centroid of the C9–C14 ring.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

N-Substituted 2-phenylacetamides are very interesting compounds because of their structural similarity to the lateral chain of natural benzylpenicillin (Mijin et al., 2008; Mijin et al., 2006). As part of our work involving the synthesis of a series of phenylacetamide derivatives for antimicrobial activity screening, we report herein the crystal structure of the title phenylacetamide derivative (I).

The molecular structure of the title compound is shown in Fig. 1. The two benzene rings in form a dihedral angle of 50.88 (14) °. The acetamide fragment makes a dihedral angle of 76.55 (17) ° with the p-bromophenyl group [Br1/C1-C6]. The two benzene rings and the acetamide skeleton show a W-shape figuration. In the crystal structure, intermolecular N—H···O together with C—H···π contacts connect molecules to form an infinite line running along the crystallographic a-axis direction (see Fig. 2).

Related literature top

For background to phenylacetamide derivatives as potential antimicrobial agents, see: Mijin & Marinković (2006); Mijin et al. (2008). Cg1 is the centroid of the C9–C14 ring.

Experimental top

1.17 g (5 mmol) of 4-bromophenylacetyl chloride and 0.62 g (5 mmol) of 2-methoxyaniline were dissolved into 20 mL of fresh distilled CH2Cl2. The mixture was stirred in the present of triethylamine at 273 K for about 3 h. The contents were poured into 100 ml of ice-cold aqueous hydrochloride acid (w % = 5%) with stirring, which was extracted thrice with EtOAc. The EtOAc solution was washed with aqueous saturated NaHCO3 and brine, dried and concentrated under reduced pressure to give the product as a light yellow solid which on crystallization from EtOAc-petrolium ether gave colourless blocks of (I).

Refinement top

The H atom bonded to N1 was located in a difference Fourier map. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H of 0.93 Å for the aromatic atoms, 0.97 Å for the CH2 groups and 0.96 Å for the CH3 groups. Uiso(H) values were set at 1.2 times Ueq(C) for aromatic C and CH2 groups, and 1.5 times for CH3 groups.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Part of the crystal structure of (I) with hydrogen bonds indicated by thin dashed lines and C—H···π contacts shown as thick dashed lines.
2-(4-Bromophenyl)-N-(2-methoxyphenyl)acetamide top
Crystal data top
C15H14BrNO2Z = 2
Mr = 320.18F(000) = 324
Triclinic, P1Dx = 1.540 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.851 (4) ÅCell parameters from 1389 reflections
b = 12.083 (10) Åθ = 2.4–26.0°
c = 12.265 (10) ŵ = 2.97 mm1
α = 74.61 (3)°T = 296 K
β = 87.47 (3)°Block, colourless
γ = 85.18 (3)°0.25 × 0.20 × 0.10 mm
V = 690.5 (10) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
2642 independent reflections
Radiation source: fine-focus sealed tube1441 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scanθmax = 26.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 55
Tmin = 0.524, Tmax = 0.755k = 1014
3678 measured reflectionsl = 1415
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0528P)2 + 0.5023P]
where P = (Fo2 + 2Fc2)/3
2642 reflections(Δ/σ)max < 0.001
177 parametersΔρmax = 0.79 e Å3
0 restraintsΔρmin = 0.62 e Å3
Crystal data top
C15H14BrNO2γ = 85.18 (3)°
Mr = 320.18V = 690.5 (10) Å3
Triclinic, P1Z = 2
a = 4.851 (4) ÅMo Kα radiation
b = 12.083 (10) ŵ = 2.97 mm1
c = 12.265 (10) ÅT = 296 K
α = 74.61 (3)°0.25 × 0.20 × 0.10 mm
β = 87.47 (3)°
Data collection top
Bruker SMART APEX CCD
diffractometer
2642 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1441 reflections with I > 2σ(I)
Tmin = 0.524, Tmax = 0.755Rint = 0.027
3678 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.79 e Å3
2642 reflectionsΔρmin = 0.62 e Å3
177 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.42219 (14)0.65388 (5)0.56611 (5)0.0755 (3)
C10.2053 (9)0.4363 (4)0.8358 (4)0.0410 (12)
C20.0778 (11)0.5420 (4)0.8452 (4)0.0501 (14)
H20.12260.57070.90490.060*
C30.1146 (11)0.6050 (4)0.7670 (4)0.0519 (14)
H30.20090.67410.77530.062*
C40.1743 (10)0.5640 (4)0.6782 (4)0.0469 (13)
C50.0535 (11)0.4593 (4)0.6656 (4)0.0515 (14)
H50.09790.43150.60520.062*
C60.1339 (10)0.3977 (4)0.7450 (4)0.0493 (14)
H60.21520.32770.73710.059*
C70.4103 (10)0.3672 (4)0.9209 (4)0.0525 (14)
H7A0.46540.41530.96690.063*
H7B0.57410.34520.88110.063*
C80.2970 (10)0.2594 (4)0.9980 (4)0.0394 (12)
C90.4355 (9)0.0797 (4)1.1414 (4)0.0393 (12)
C100.5674 (10)0.0471 (4)1.2445 (4)0.0429 (12)
C110.5351 (11)0.0618 (4)1.3177 (4)0.0543 (15)
H110.62740.08461.38580.065*
C120.3679 (12)0.1345 (4)1.2889 (5)0.0589 (15)
H120.34610.20641.33830.071*
C130.2316 (12)0.1032 (4)1.1884 (5)0.0581 (15)
H130.11520.15301.17080.070*
C140.2681 (10)0.0036 (4)1.1129 (4)0.0465 (13)
H140.18110.02401.04360.056*
C150.8674 (12)0.0996 (5)1.3693 (5)0.0636 (16)
H15A0.73860.07741.43150.095*
H15B0.95690.16541.37580.095*
H15C1.00380.03691.37060.095*
H10.645 (11)0.205 (4)1.063 (4)0.055 (17)*
N10.4851 (9)0.1880 (3)1.0651 (3)0.0432 (11)
O10.7238 (7)0.1276 (3)1.2659 (3)0.0558 (10)
O20.0524 (7)0.2422 (3)0.9995 (3)0.0567 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0798 (5)0.0708 (4)0.0623 (4)0.0148 (3)0.0253 (3)0.0037 (3)
C10.033 (3)0.035 (3)0.050 (3)0.009 (2)0.005 (2)0.000 (2)
C20.061 (4)0.039 (3)0.046 (3)0.009 (3)0.006 (3)0.003 (2)
C30.064 (4)0.035 (3)0.053 (3)0.006 (3)0.004 (3)0.008 (2)
C40.048 (3)0.043 (3)0.041 (3)0.001 (2)0.003 (2)0.004 (2)
C50.062 (4)0.043 (3)0.050 (3)0.005 (3)0.007 (3)0.011 (2)
C60.049 (3)0.035 (3)0.059 (4)0.000 (2)0.003 (3)0.007 (2)
C70.036 (3)0.047 (3)0.065 (4)0.014 (2)0.015 (3)0.008 (3)
C80.033 (3)0.040 (3)0.042 (3)0.006 (2)0.004 (2)0.005 (2)
C90.034 (3)0.037 (3)0.043 (3)0.005 (2)0.002 (2)0.004 (2)
C100.042 (3)0.035 (3)0.049 (3)0.000 (2)0.004 (2)0.008 (2)
C110.062 (4)0.049 (3)0.044 (3)0.008 (3)0.004 (3)0.001 (3)
C120.063 (4)0.033 (3)0.069 (4)0.002 (3)0.003 (3)0.004 (3)
C130.061 (4)0.037 (3)0.078 (4)0.012 (3)0.000 (3)0.015 (3)
C140.047 (3)0.043 (3)0.048 (3)0.009 (2)0.005 (3)0.008 (2)
C150.065 (4)0.068 (4)0.058 (4)0.001 (3)0.018 (3)0.015 (3)
N10.031 (3)0.038 (2)0.053 (3)0.011 (2)0.010 (2)0.0044 (19)
O10.061 (2)0.054 (2)0.049 (2)0.0071 (18)0.0191 (18)0.0043 (17)
O20.029 (2)0.056 (2)0.072 (3)0.0111 (17)0.0083 (17)0.0096 (18)
Geometric parameters (Å, º) top
Br1—C41.910 (5)C9—C101.388 (7)
C1—C61.383 (7)C9—C141.397 (7)
C1—C21.403 (7)C9—N11.424 (6)
C1—C71.505 (6)C10—O11.367 (6)
C2—C31.394 (7)C10—C111.399 (7)
C2—H20.9300C11—C121.365 (8)
C3—C41.361 (7)C11—H110.9300
C3—H30.9300C12—C131.372 (7)
C4—C51.393 (7)C12—H120.9300
C5—C61.381 (7)C13—C141.394 (7)
C5—H50.9300C13—H130.9300
C6—H60.9300C14—H140.9300
C7—C81.521 (6)C15—O11.421 (6)
C7—H7A0.9700C15—H15A0.9600
C7—H7B0.9700C15—H15B0.9600
C8—O21.220 (5)C15—H15C0.9600
C8—N11.346 (6)N1—H10.81 (5)
C6—C1—C2117.2 (4)C10—C9—N1119.0 (4)
C6—C1—C7121.3 (5)C14—C9—N1121.6 (4)
C2—C1—C7121.6 (5)O1—C10—C9115.3 (4)
C3—C2—C1121.4 (5)O1—C10—C11124.8 (5)
C3—C2—H2119.3C9—C10—C11119.9 (5)
C1—C2—H2119.3C12—C11—C10119.9 (5)
C4—C3—C2119.0 (5)C12—C11—H11120.1
C4—C3—H3120.5C10—C11—H11120.1
C2—C3—H3120.5C11—C12—C13121.1 (5)
C3—C4—C5121.6 (5)C11—C12—H12119.4
C3—C4—Br1119.3 (4)C13—C12—H12119.4
C5—C4—Br1119.1 (4)C12—C13—C14119.8 (5)
C6—C5—C4118.3 (5)C12—C13—H13120.1
C6—C5—H5120.9C14—C13—H13120.1
C4—C5—H5120.9C13—C14—C9119.9 (5)
C5—C6—C1122.5 (5)C13—C14—H14120.0
C5—C6—H6118.7C9—C14—H14120.0
C1—C6—H6118.7O1—C15—H15A109.5
C1—C7—C8113.2 (4)O1—C15—H15B109.5
C1—C7—H7A108.9H15A—C15—H15B109.5
C8—C7—H7A108.9O1—C15—H15C109.5
C1—C7—H7B108.9H15A—C15—H15C109.5
C8—C7—H7B108.9H15B—C15—H15C109.5
H7A—C7—H7B107.7C8—N1—C9126.0 (4)
O2—C8—N1123.6 (4)C8—N1—H1120 (4)
O2—C8—C7121.6 (4)C9—N1—H1114 (4)
N1—C8—C7114.8 (4)C10—O1—C15118.3 (4)
C10—C9—C14119.3 (4)
C6—C1—C2—C30.6 (7)C14—C9—C10—C110.9 (7)
C7—C1—C2—C3179.2 (4)N1—C9—C10—C11176.1 (4)
C1—C2—C3—C41.6 (7)O1—C10—C11—C12178.4 (5)
C2—C3—C4—C51.8 (8)C9—C10—C11—C121.8 (8)
C2—C3—C4—Br1176.6 (4)C10—C11—C12—C130.6 (8)
C3—C4—C5—C61.0 (8)C11—C12—C13—C141.4 (8)
Br1—C4—C5—C6177.4 (4)C12—C13—C14—C92.2 (8)
C4—C5—C6—C10.1 (7)C10—C9—C14—C131.0 (7)
C2—C1—C6—C50.2 (7)N1—C9—C14—C13178.0 (5)
C7—C1—C6—C5180.0 (4)O2—C8—N1—C94.5 (8)
C6—C1—C7—C871.8 (6)C7—C8—N1—C9177.4 (5)
C2—C1—C7—C8107.9 (5)C10—C9—N1—C8142.9 (5)
C1—C7—C8—O210.1 (7)C14—C9—N1—C840.2 (7)
C1—C7—C8—N1171.8 (4)C9—C10—O1—C15179.3 (4)
C14—C9—C10—O1179.2 (4)C11—C10—O1—C150.6 (7)
N1—C9—C10—O13.8 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.81 (5)2.13 (5)2.912 (6)160 (5)
C15—H15C···Cg1i0.962.863.617 (7)137
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC15H14BrNO2
Mr320.18
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)4.851 (4), 12.083 (10), 12.265 (10)
α, β, γ (°)74.61 (3), 87.47 (3), 85.18 (3)
V3)690.5 (10)
Z2
Radiation typeMo Kα
µ (mm1)2.97
Crystal size (mm)0.25 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.524, 0.755
No. of measured, independent and
observed [I > 2σ(I)] reflections
3678, 2642, 1441
Rint0.027
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.133, 1.01
No. of reflections2642
No. of parameters177
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.79, 0.62

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.81 (5)2.13 (5)2.912 (6)160 (5)
C15—H15C···Cg1i0.962.863.617 (7)137.0
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

This work was supported by the Scientific Research Fund of Hunan Provincial Education Department, China (grant No. 09B083) and the Key Laboratory of Hunan Forest Products and Chemical Industry Engineering of Hunan Province, China (grant No. JDZ200904).

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMijin, D. & Marinković, A. (2006). Synth. Commun. 36, 193–198  Web of Science CrossRef CAS Google Scholar
First citationMijin, D. Z., Praščević, M. & Petrovic, S. D. (2008). J. Serb. Chem. Soc. 73, 945–950.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds