metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­azido­{3,3′-[o-phenyl­enebis(nitrilo­methyl­­idyne)]di-2-naphtholato}manganese(III)

aDepartment of Chemistry and Chemical Engineering, School of Bioengineering, SouthWest JiaoTong University, Chengdu, Sichuan 610031, People's Republic of China
*Correspondence e-mail: wangcuijuan2000@126.com

(Received 2 December 2009; accepted 8 December 2009; online 12 December 2009)

In the title complex, [Mn(C28H18N2O2)(N3)(H2O)], the MnIII ion adopts a distorted fac-MnO3N3 octa­hedral geometry arising from the O,N,N′,O′-tetra­dentate Schiff base ligand, an azide ion and a water mol­ecule. In the crystal, inter­molecular O—H⋯(O,O) and O—H⋯N hydrogen bonds and ππ inter­actions [centroid–centroid separation = 3.5535 (13) Å] link the mol­ecules into chains.

Related literature

For background to Schiff base–metal complexes, see: Sunatsuki et al. (2002[Sunatsuki, Y., Motoda, Y. & Matsumoto, N. (2002). Coord. Chem. Rev. 226, 199-209.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C28H18N2O2)(N3)(H2O)]

  • Mr = 529.43

  • Triclinic, [P \overline 1]

  • a = 6.6827 (1) Å

  • b = 11.8803 (2) Å

  • c = 15.3778 (3) Å

  • α = 99.455 (1)°

  • β = 97.692 (1)°

  • γ = 98.180 (1)°

  • V = 1176.49 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.60 mm−1

  • T = 298 K

  • 0.29 × 0.20 × 0.12 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.844, Tmax = 0.931

  • 12984 measured reflections

  • 4205 independent reflections

  • 3519 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.121

  • S = 0.88

  • 4205 reflections

  • 340 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Selected bond lengths (Å)

Mn1—O2 1.8644 (15)
Mn1—O1 1.8799 (14)
Mn1—N1 1.9663 (17)
Mn1—N2 1.9672 (17)
Mn1—N3 2.2465 (19)
Mn1—O3 2.3905 (16)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3WA⋯N3i 0.82 (1) 2.10 (3) 2.911 (3) 167 (4)
O3—H3WB⋯O1ii 0.82 (3) 2.14 (3) 2.941 (2) 164 (4)
O3—H3WB⋯O2ii 0.82 (3) 2.57 (3) 3.130 (2) 127 (3)
Symmetry codes: (i) x-1, y, z; (ii) -x, -y, -z+2.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In recent years, there has been considerable interest in the chemistry of transition metal complexes of Schiff bases (Sunatsuki et al., 2002). In this paper, we report here the synthesis and crystal structure of the title complex (I).

The molecular structure of (I) is illustrated in Fig. 1. The MnIII ion takes a slightly distorted octahedral geometry, where the equatorial plane comprise the two N atoms two imine nitrogen atoms and two O atoms of alkoxide groups. The apical postiions are occupied by the N atom of azide ligand and one O atom from water molecule. The Mn—N(azide) bond length is significantly longer than the Mn-N(imine) (Table 1) and the bond angles deviate from the ideal values (the largest angle is 173.80 (7)°). The chelate bite angles in the five-membered and the six-membered rings formed by the coordination of alkoxide-O and imine-N, and two related imine-N of Schiff base to the MnIII center lie in same plane and are almost parallel to the naphthalen rings with 2.6°.

The structure is further stabilized by strongly π-π stacking interactions between two adjacent naphthalen rings in an offset arrangement. The distance between the centroids of the six-membered rings is 3.55 (3)Å. In addition, Intermolecular O-H···O, O-H···N hydrogen bonds form a zig-zag like chain parallel to the b axis (Table 2).

Related literature top

For background to Schiff base–metal complexes, see: Sunatsuki et al. (2002).

Experimental top

A mixture of Mn(Ac)3, NaN3 and 3-((1E)-((E)-2-((naphthalen-2-yl)methyleneamino) phenylimino)methyl)naphthalen-2,2'-diol in water (30mL) was refluxed for 5 hours and then filtered while hot. Colourless blocks of (I) were obtained by evaporating the filtrate at room temperature for a period of three weeks. The compound is insoluble in commom organic solvents and dissolves water very slowly.

Refinement top

The H atoms of organic ligand were placed in calculated positions (C-H = 0.93Å) refined using a riding model, with Uiso(H) = 1.2Ueq(C) H atoms of water molecules were located in a difference map and refined with restraints of O-H=0.83 (1)Å, and with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular view of (I) with ellipsoids drawn at the the 30% probability level. H atoms are shown as spheres of arbitrary radius.
Aquaazido{3,3'-[o-phenylenebis(nitrilomethylidyne)]di-2- naphtholato}manganese(III) top
Crystal data top
[Mn(C28H18N2O2)(N3)(H2O)]Z = 2
Mr = 529.43F(000) = 544
Triclinic, P1Dx = 1.495 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.6827 (1) ÅCell parameters from 4205 reflections
b = 11.8803 (2) Åθ = 2.2–25.2°
c = 15.3778 (3) ŵ = 0.60 mm1
α = 99.455 (1)°T = 298 K
β = 97.692 (1)°Block, colourless
γ = 98.180 (1)°0.29 × 0.20 × 0.12 mm
V = 1176.49 (4) Å3
Data collection top
Bruker APEXII CCD
diffractometer
4205 independent reflections
Radiation source: fine-focus sealed tube3519 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ϕ and ω scanθmax = 25.2°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 88
Tmin = 0.844, Tmax = 0.931k = 1413
12984 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 0.88 w = 1/[σ2(Fo2) + (0.1P)2 + 0.1339P]
where P = (Fo2 + 2Fc2)/3
4205 reflections(Δ/σ)max = 0.001
340 parametersΔρmax = 0.26 e Å3
3 restraintsΔρmin = 0.23 e Å3
Crystal data top
[Mn(C28H18N2O2)(N3)(H2O)]γ = 98.180 (1)°
Mr = 529.43V = 1176.49 (4) Å3
Triclinic, P1Z = 2
a = 6.6827 (1) ÅMo Kα radiation
b = 11.8803 (2) ŵ = 0.60 mm1
c = 15.3778 (3) ÅT = 298 K
α = 99.455 (1)°0.29 × 0.20 × 0.12 mm
β = 97.692 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
4205 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3519 reflections with I > 2σ(I)
Tmin = 0.844, Tmax = 0.931Rint = 0.025
12984 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0353 restraints
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 0.88Δρmax = 0.26 e Å3
4205 reflectionsΔρmin = 0.23 e Å3
340 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.21230 (5)0.16035 (2)0.939323 (19)0.03163 (14)
N20.2571 (3)0.32332 (14)0.99968 (12)0.0311 (4)
O10.1336 (2)0.00645 (12)0.87811 (10)0.0356 (4)
N10.0823 (3)0.22059 (14)0.83821 (12)0.0307 (4)
O20.3187 (2)0.11226 (12)1.04281 (10)0.0378 (4)
C110.0019 (3)0.15759 (19)0.76023 (15)0.0337 (5)
H110.04630.19710.71650.040*
O30.1107 (2)0.14771 (13)0.99088 (12)0.0411 (4)
C10.0450 (3)0.03427 (17)0.79550 (14)0.0303 (5)
C280.3879 (3)0.17238 (18)1.12325 (14)0.0322 (5)
C190.3971 (3)0.29292 (19)1.14745 (14)0.0339 (5)
C100.0201 (3)0.03561 (18)0.73472 (14)0.0317 (5)
C160.2261 (4)0.51867 (18)0.96493 (16)0.0396 (5)
H160.29470.55591.02120.048*
C180.3317 (3)0.36058 (18)1.08433 (15)0.0335 (5)
H180.34300.43961.10540.040*
N30.5156 (3)0.19321 (18)0.89218 (13)0.0432 (5)
C220.5792 (5)0.5194 (3)1.35685 (19)0.0701 (9)
H220.58730.59861.37570.084*
C250.5511 (4)0.2830 (2)1.30092 (16)0.0426 (6)
C120.0973 (3)0.34341 (17)0.85631 (15)0.0340 (5)
C90.1130 (3)0.0194 (2)0.64364 (15)0.0369 (5)
C40.1307 (3)0.1403 (2)0.61810 (15)0.0401 (5)
C50.2167 (4)0.1956 (2)0.52954 (17)0.0526 (7)
H50.22770.27540.51340.063*
C30.0665 (3)0.20654 (19)0.68215 (15)0.0391 (5)
H30.08170.28650.66520.047*
C20.0163 (3)0.15628 (18)0.76743 (14)0.0341 (5)
H20.05490.20230.80810.041*
C210.4955 (4)0.4698 (2)1.27051 (18)0.0534 (7)
H210.44800.51611.23180.064*
C200.4797 (3)0.3504 (2)1.23912 (15)0.0388 (5)
C60.2835 (4)0.1338 (3)0.46767 (18)0.0615 (8)
H60.33870.17060.40950.074*
C140.0525 (4)0.5279 (2)0.82062 (18)0.0484 (6)
H140.00260.57180.78040.058*
C150.1542 (4)0.58246 (19)0.90428 (17)0.0435 (6)
H150.17420.66280.91970.052*
C260.5337 (4)0.1611 (2)1.27266 (16)0.0429 (6)
H260.57780.11701.31380.051*
C130.0239 (4)0.4089 (2)0.79603 (17)0.0453 (6)
H130.04410.37280.73940.054*
C170.1963 (3)0.39877 (17)0.94229 (14)0.0323 (5)
C80.1867 (4)0.0416 (2)0.57819 (17)0.0507 (6)
H80.18000.12130.59320.061*
C270.4558 (3)0.1080 (2)1.18858 (15)0.0383 (5)
H270.44600.02821.17270.046*
C240.6383 (4)0.3370 (3)1.38941 (17)0.0570 (7)
H240.68680.29251.42940.068*
C70.2677 (4)0.0144 (3)0.49312 (17)0.0589 (7)
H70.31340.02830.45120.071*
C230.6525 (5)0.4530 (3)1.41707 (19)0.0712 (9)
H230.71050.48771.47540.085*
N40.5327 (3)0.21532 (17)0.82123 (15)0.0454 (5)
N50.5512 (4)0.2366 (3)0.75124 (19)0.0928 (10)
H3WA0.218 (3)0.149 (3)0.958 (2)0.139*
H3WB0.129 (6)0.095 (3)1.019 (2)0.139*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0397 (2)0.0212 (2)0.0312 (2)0.00640 (14)0.00187 (14)0.00203 (13)
N20.0304 (9)0.0229 (8)0.0391 (10)0.0044 (7)0.0049 (8)0.0039 (7)
O10.0485 (9)0.0231 (7)0.0323 (8)0.0081 (6)0.0029 (7)0.0024 (6)
N10.0336 (9)0.0223 (9)0.0356 (10)0.0045 (7)0.0035 (8)0.0052 (7)
O20.0491 (9)0.0282 (8)0.0333 (8)0.0083 (7)0.0016 (7)0.0030 (6)
C110.0342 (11)0.0340 (12)0.0343 (12)0.0075 (9)0.0026 (9)0.0108 (9)
O30.0420 (9)0.0340 (9)0.0492 (10)0.0069 (7)0.0057 (7)0.0137 (7)
C10.0284 (10)0.0281 (10)0.0324 (11)0.0036 (8)0.0045 (9)0.0014 (9)
C280.0279 (10)0.0342 (12)0.0331 (11)0.0046 (8)0.0046 (9)0.0034 (9)
C190.0314 (11)0.0334 (12)0.0343 (12)0.0018 (9)0.0054 (9)0.0022 (9)
C100.0313 (11)0.0308 (11)0.0311 (11)0.0040 (8)0.0024 (9)0.0033 (9)
C160.0421 (12)0.0278 (11)0.0495 (14)0.0055 (9)0.0125 (11)0.0049 (10)
C180.0308 (11)0.0266 (10)0.0399 (12)0.0016 (8)0.0075 (9)0.0015 (9)
N30.0398 (11)0.0522 (12)0.0410 (12)0.0148 (9)0.0072 (9)0.0120 (9)
C220.092 (2)0.0518 (17)0.0509 (17)0.0014 (16)0.0000 (16)0.0164 (14)
C250.0356 (12)0.0539 (15)0.0356 (12)0.0069 (10)0.0064 (10)0.0006 (11)
C120.0337 (11)0.0262 (11)0.0441 (13)0.0062 (9)0.0080 (10)0.0096 (9)
C90.0358 (12)0.0392 (12)0.0330 (12)0.0037 (9)0.0025 (9)0.0040 (9)
C40.0384 (12)0.0417 (13)0.0355 (12)0.0007 (10)0.0052 (10)0.0010 (10)
C50.0602 (16)0.0482 (15)0.0389 (14)0.0036 (12)0.0011 (12)0.0052 (12)
C30.0425 (13)0.0270 (11)0.0426 (13)0.0019 (9)0.0033 (10)0.0024 (9)
C20.0370 (11)0.0276 (11)0.0368 (12)0.0055 (9)0.0034 (9)0.0052 (9)
C210.0634 (17)0.0437 (14)0.0456 (15)0.0030 (12)0.0044 (13)0.0050 (12)
C200.0351 (12)0.0410 (13)0.0363 (12)0.0014 (10)0.0071 (10)0.0014 (10)
C60.0670 (18)0.0696 (19)0.0353 (14)0.0041 (15)0.0060 (13)0.0019 (13)
C140.0572 (15)0.0338 (13)0.0608 (16)0.0148 (11)0.0081 (13)0.0226 (12)
C150.0487 (14)0.0228 (11)0.0625 (16)0.0077 (10)0.0170 (12)0.0100 (11)
C260.0409 (13)0.0531 (14)0.0370 (13)0.0148 (11)0.0017 (10)0.0127 (11)
C130.0532 (14)0.0327 (12)0.0490 (14)0.0093 (10)0.0009 (11)0.0092 (11)
C170.0300 (10)0.0259 (10)0.0420 (12)0.0033 (8)0.0101 (9)0.0069 (9)
C80.0578 (15)0.0496 (15)0.0413 (14)0.0081 (12)0.0041 (12)0.0095 (11)
C270.0367 (12)0.0392 (12)0.0399 (13)0.0114 (9)0.0024 (10)0.0087 (10)
C240.0590 (17)0.0692 (19)0.0370 (14)0.0096 (14)0.0001 (12)0.0011 (13)
C70.0646 (17)0.0703 (19)0.0391 (14)0.0113 (14)0.0051 (13)0.0133 (13)
C230.086 (2)0.073 (2)0.0393 (15)0.0053 (17)0.0039 (15)0.0150 (14)
N40.0364 (11)0.0474 (12)0.0519 (13)0.0075 (9)0.0045 (9)0.0099 (10)
N50.0725 (18)0.149 (3)0.0665 (18)0.0116 (18)0.0128 (15)0.0513 (19)
Geometric parameters (Å, º) top
Mn1—O21.8644 (15)C25—C201.417 (3)
Mn1—O11.8799 (14)C25—C261.425 (4)
Mn1—N11.9663 (17)C12—C131.389 (3)
Mn1—N21.9672 (17)C12—C171.405 (3)
Mn1—N32.2465 (19)C9—C41.409 (3)
Mn1—O32.3905 (16)C9—C81.411 (3)
N2—C181.309 (3)C4—C51.416 (3)
N2—C171.419 (3)C4—C31.418 (3)
O1—C11.309 (2)C5—C61.361 (4)
N1—C111.306 (3)C5—H50.9300
N1—C121.426 (3)C3—C21.355 (3)
O2—C281.310 (3)C3—H30.9300
C11—C101.419 (3)C2—H20.9300
C11—H110.9300C21—C201.405 (3)
O3—H3WA0.824 (10)C21—H210.9300
O3—H3WB0.82 (3)C6—C71.393 (4)
C1—C101.414 (3)C6—H60.9300
C1—C21.420 (3)C14—C151.380 (4)
C28—C191.409 (3)C14—C131.381 (3)
C28—C271.425 (3)C14—H140.9300
C19—C181.422 (3)C15—H150.9300
C19—C201.458 (3)C26—C271.341 (3)
C10—C91.458 (3)C26—H260.9300
C16—C151.375 (3)C13—H130.9300
C16—C171.388 (3)C8—C71.367 (4)
C16—H160.9300C8—H80.9300
C18—H180.9300C27—H270.9300
N3—N41.180 (3)C24—C231.359 (4)
C22—C211.369 (4)C24—H240.9300
C22—C231.396 (4)C7—H70.9300
C22—H220.9300C23—H230.9300
C25—C241.413 (3)N4—N51.163 (3)
O2—Mn1—O191.53 (6)C17—C12—N1115.35 (18)
O2—Mn1—N1173.78 (7)C4—C9—C8117.2 (2)
O1—Mn1—N192.11 (7)C4—C9—C10119.0 (2)
O2—Mn1—N292.48 (7)C8—C9—C10123.8 (2)
O1—Mn1—N2172.58 (6)C9—C4—C5120.2 (2)
N1—Mn1—N283.37 (7)C9—C4—C3119.6 (2)
O2—Mn1—N394.70 (7)C5—C4—C3120.2 (2)
O1—Mn1—N396.71 (7)C6—C5—C4121.1 (3)
N1—Mn1—N389.87 (7)C6—C5—H5119.5
N2—Mn1—N389.18 (7)C4—C5—H5119.5
O2—Mn1—O388.06 (6)C2—C3—C4121.7 (2)
O1—Mn1—O388.87 (6)C2—C3—H3119.2
N1—Mn1—O386.98 (6)C4—C3—H3119.2
N2—Mn1—O385.04 (6)C3—C2—C1120.8 (2)
N3—Mn1—O3173.70 (6)C3—C2—H2119.6
C18—N2—C17122.21 (18)C1—C2—H2119.6
C18—N2—Mn1124.62 (15)C22—C21—C20121.4 (3)
C17—N2—Mn1113.16 (13)C22—C21—H21119.3
C1—O1—Mn1129.97 (13)C20—C21—H21119.3
C11—N1—C12122.49 (18)C21—C20—C25117.3 (2)
C11—N1—Mn1124.55 (15)C21—C20—C19124.1 (2)
C12—N1—Mn1112.82 (14)C25—C20—C19118.7 (2)
C28—O2—Mn1129.92 (14)C5—C6—C7118.8 (2)
N1—C11—C10127.3 (2)C5—C6—H6120.6
N1—C11—H11116.4C7—C6—H6120.6
C10—C11—H11116.4C15—C14—C13120.7 (2)
Mn1—O3—H3WA122 (3)C15—C14—H14119.7
Mn1—O3—H3WB112 (3)C13—C14—H14119.7
H3WA—O3—H3WB109 (2)C16—C15—C14120.3 (2)
O1—C1—C10123.96 (18)C16—C15—H15119.8
O1—C1—C2116.30 (18)C14—C15—H15119.8
C10—C1—C2119.74 (18)C27—C26—C25122.1 (2)
O2—C28—C19124.40 (19)C27—C26—H26119.0
O2—C28—C27115.74 (19)C25—C26—H26119.0
C19—C28—C27119.9 (2)C14—C13—C12119.7 (2)
C28—C19—C18121.72 (19)C14—C13—H13120.2
C28—C19—C20119.3 (2)C12—C13—H13120.2
C18—C19—C20119.0 (2)C16—C17—C12119.6 (2)
C1—C10—C11121.72 (19)C16—C17—N2125.5 (2)
C1—C10—C9119.03 (19)C12—C17—N2114.96 (17)
C11—C10—C9119.25 (19)C7—C8—C9121.1 (2)
C15—C16—C17120.1 (2)C7—C8—H8119.4
C15—C16—H16120.0C9—C8—H8119.4
C17—C16—H16120.0C26—C27—C28120.8 (2)
N2—C18—C19126.8 (2)C26—C27—H27119.6
N2—C18—H18116.6C28—C27—H27119.6
C19—C18—H18116.6C23—C24—C25121.1 (3)
N4—N3—Mn1123.20 (16)C23—C24—H24119.5
C21—C22—C23121.1 (3)C25—C24—H24119.5
C21—C22—H22119.5C8—C7—C6121.6 (3)
C23—C22—H22119.5C8—C7—H7119.2
C24—C25—C20119.9 (2)C6—C7—H7119.2
C24—C25—C26120.8 (2)C24—C23—C22119.2 (3)
C20—C25—C26119.3 (2)C24—C23—H23120.4
C13—C12—C17119.66 (19)C22—C23—H23120.4
C13—C12—N1125.0 (2)N5—N4—N3179.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3WA···N3i0.82 (1)2.10 (3)2.911 (3)167 (4)
O3—H3WB···O1ii0.82 (3)2.14 (3)2.941 (2)164 (4)
O3—H3WB···O2ii0.82 (3)2.57 (3)3.130 (2)127 (3)
Symmetry codes: (i) x1, y, z; (ii) x, y, z+2.

Experimental details

Crystal data
Chemical formula[Mn(C28H18N2O2)(N3)(H2O)]
Mr529.43
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)6.6827 (1), 11.8803 (2), 15.3778 (3)
α, β, γ (°)99.455 (1), 97.692 (1), 98.180 (1)
V3)1176.49 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.60
Crystal size (mm)0.29 × 0.20 × 0.12
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.844, 0.931
No. of measured, independent and
observed [I > 2σ(I)] reflections
12984, 4205, 3519
Rint0.025
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.121, 0.88
No. of reflections4205
No. of parameters340
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.23

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Mn1—O21.8644 (15)Mn1—N21.9672 (17)
Mn1—O11.8799 (14)Mn1—N32.2465 (19)
Mn1—N11.9663 (17)Mn1—O32.3905 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3WA···N3i0.824 (10)2.10 (3)2.911 (3)167 (4)
O3—H3WB···O1ii0.82 (3)2.14 (3)2.941 (2)164 (4)
O3—H3WB···O2ii0.82 (3)2.57 (3)3.130 (2)127 (3)
Symmetry codes: (i) x1, y, z; (ii) x, y, z+2.
 

Acknowledgements

This work was supported by the Science and Technology Development Fund of SouthWest JiaoTong University

References

First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSunatsuki, Y., Motoda, Y. & Matsumoto, N. (2002). Coord. Chem. Rev. 226, 199–209.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds