organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,10-Diall­yl­oxy-1,2,3,6b,7,8,9,12b-octa­hydro­perylene

aDepartment of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA, bRigaku Americas Corporation, 9009 New Trails Drive, The Woodlands, Texas 77381, USA, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 2 December 2009; accepted 6 December 2009; online 9 December 2009)

In the title compound, C26H28O2, the central atoms are coplanar, with the –CH2—CH2– links of the cyclo­hexene groups lying to either side of the plane and with the diall­yloxy residues twisted out of this plane [C—C—O—C torsion angles = 16.6 (3) and −13.9 (3)°]. In the crystal structure, mol­ecules are connected into chains propagating in [100] via C—H⋯π inter­actions.

Related literature

For the preparation of oxygenated perylenes and their use as photosensitizing organic dyes in solar harvesting techniques, see: Penick et al. (2008[Penick, M. A., Mahindaratne, M. P. D., Gutierrez, R. D., Smith, T. D., Tiekink, E. R. T. & Negrete, G. R. (2008). J. Org. Chem. 73, 6378-6381.]).

[Scheme 1]

Experimental

Crystal data
  • C26H28O2

  • Mr = 372.48

  • Monoclinic, P 21

  • a = 4.5883 (1) Å

  • b = 14.9171 (3) Å

  • c = 13.9203 (3) Å

  • β = 95.153 (1)°

  • V = 948.92 (3) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.63 mm−1

  • T = 100 K

  • 0.50 × 0.19 × 0.11 mm

Data collection
  • Rigaku RAXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.745, Tmax = 0.935

  • 8967 measured reflections

  • 3243 independent reflections

  • 2616 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.104

  • S = 1.26

  • 3243 reflections

  • 254 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯Cg1i 1.00 2.78 3.671 (3) 148
C20—H20⋯Cg4ii 1.00 2.82 3.702 (3) 148
Symmetry codes: (i) x-1, y, z; (ii) x+1, y, z. Cg1 and Cg4 are the centroids of the C4–C9 and C14–C19 rings, respectively.

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

Our laboratory has been investigating the preparation of oxygenated perylenes and their use as photosensitizing organic dyes in solar harvesting techniques (Penick et al., 2008). The commercially available starting material 1,2,3,4-tetrahydronaphthalen-1,5-diol (1), Fig. 1, was allylated selectively at the phenolic-OH using equimolar amounts of allyl bromide and K2CO3 in refluxing acetone. The resulting 5-allyloxy-1,2,3,4-tetrahydronaphthalen-1-ol (2), Fig. 2, was subjected to tandem Friedel-Crafts annulation (Penick et al., 2008) in acetonitrile at room temperature using BF3 as the Lewis acid catalyst. The product (3), Fig. 1, precipitated and was purified by trituration with acetone to produce a white solid. Product 3 was crystallized using a slow evaporation method from chloroform to obtain single crystals for spectroscopic and X-ray crystallographic analysis.

The molecular structure of the title compound, Fig. 2, features an essentially planar core. Thus, the maximum deviations from the least-squares plane through the benzene rings (atoms C4–C9 and C14–C19) as well as the sp3 O1, O2, C10, C13, C20, and C23 atoms are 0.0509 (23) Å for atom C10 and -0.0389 (21) Å for atom C8 (r.m.s. = 0.0242 Å). The C11 and C12, and C21 and C22 atoms of the cyclohexene rings lie to either side of this plane. The planarity in the molecule does not extend to the terminal diallyloxy residues as seen in the magnitudes of the C5–C4–O1–O3 and C16–C17–O2–C24 torsion angles of 16.6 (3) and -13.9 (3) °, respectively.

The most prominent feature of the crystal packing is the presence of C–H···π interactions that link molecules into supramolecular chains along [1 0 0], Fig. 3. The geometric parameters associated with these interactions are C13–H13···Cg(C4–C9)i = 2.78 Å, C13···Cg(C4–C9)i = 3.671 (3) Å with an angle of 148° at H13 for symmetry operation i: -1 + x, y, z; and C20–H20···Cg(C14–C19)ii = 2.82 Å, C20···Cg(C14–C19)ii = 3.702 (3) Å with an angle of 148° at H20 for ii: 1 + x, y, z. Supramolecular chains are consolidated in the crystal structure by hydrophobic interactions, Fig. 4.

Related literature top

For the preparation of oxygenated perylenes and their use as photosensitizing organic dyes in solar harvesting techniques, see: Penick et al. (2008).

Experimental top

Referring to Fig. 1, diol 1 was converted to allyl aryl ether 2 via conventional phenolic alkylation (allyl bromide/K2CO3/acetone). Octahydroperylene 3 was prepared upon treatment of allyl aryl ether 2 (173 mg, 0.85 mmol) in acetonitrile (5 ml) with BF3.Et2O (0.5 ml) by dropwise addition over one minute and the mixture was stirred for 43 h at room temperature. An off-white solid was collected by filtration, triturated with acetone, and dried under vacuum. The solid was crystallized by slowly evaporating its CHCl3 solution to yield off-white small rods (84 mg, 53%), M. pt. = 458–461 K; 1H NMR (CDCl3, 500 MHz): δ 1.51 (tt, J = 12.2, 8.3 Hz, 2H), 1.69–1.79 (m, 2H), 2.00–2.10 (m, 2H), 2.53 (dt, J = 16.1, 7.8 Hz, 2H), 2.51–2.58 (m, 2H), 3.15 (ddd, J = 16.1, 6.8, 5.4 Hz, 2H), 3.73 (dd, J = 11.7, 4.4 Hz, 2H), 4.51–4.59 (m, two ABX patterns, 4H), 5.27 (dq, J = 10.8, 1.5 Hz, 2H), 5.44 (dq, J = 17.1, 1.5 Hz, 2H), 6.95 (ddt, J = 17.1, 10.8, 5.4 Hz, 2H), 6.82 (d, J = 7.8 Hz, 2H), 7.23 (d, J = 8.3 Hz, 2H) p.p.m. 13C NMR (CDCl3, 125 MHz): δ 20.9 (t), 21.19 (t), 29.89 (t), 36.09 (d), 69.29 (t), 110.1 (d), 116.9 (dd), 124.5 (d), 126.7 (s), 128.2 (s), 133.9 (d), 136.9 (s), 153.5 (s) p.p.m. IR (νmax, cm-1): 2933, 2913, 2857, 1486, 1464, 1420, 1258, 1071, 1033, 997. 924, 797. MS (APCI, m/z): 373.4 (52, M++1), 372.4 (34, M+), 371.4 (100, M+-1), 330.4 (33, M+-C3H6).

Refinement top

The H atoms were geometrically placed (C—H = 0.95–1.00 Å) and refined as riding with Uiso(H) = 1.2Ueq(parent atom). The structure was refined as a racemic twin precluding the determination of absolute structure.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Reaction scheme.
[Figure 2] Fig. 2. Molecular structure of the title compound, showing displacement ellipsoids at the 70% probability level.
[Figure 3] Fig. 3. The supramolecular chains in the title compound aligned along [1 0 0] sustained by C–H···π interactions which are represented by purple dashed lines. Color code: O, red; C, grey; and H, green.
[Figure 4] Fig. 4. A view in projection down the a axis of the crystal packing in the title compound. Color code: O, red; C, grey; and H, green.
4,10-Diallyloxy-1,2,3,6b,7,8,9,12b-octahydroperylene top
Crystal data top
C26H28O2F(000) = 400
Mr = 372.48Dx = 1.304 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54187 Å
Hall symbol: P 2ybCell parameters from 8127 reflections
a = 4.5883 (1) Åθ = 6.7–70.1°
b = 14.9171 (3) ŵ = 0.63 mm1
c = 13.9203 (3) ÅT = 100 K
β = 95.153 (1)°Prism, colourless
V = 948.92 (3) Å30.50 × 0.19 × 0.11 mm
Z = 2
Data collection top
Rigaku RAXIS RAPID
diffractometer
3243 independent reflections
Radiation source: fine-focus sealed tube2616 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
Profile data from ω scansθmax = 70.0°, θmin = 6.7°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 45
Tmin = 0.745, Tmax = 0.935k = 1817
8967 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.26 w = 1/[σ2(Fo2) + (0.0392P)2 + 0.0986P]
where P = (Fo2 + 2Fc2)/3
3243 reflections(Δ/σ)max < 0.001
254 parametersΔρmax = 0.21 e Å3
1 restraintΔρmin = 0.19 e Å3
Crystal data top
C26H28O2V = 948.92 (3) Å3
Mr = 372.48Z = 2
Monoclinic, P21Cu Kα radiation
a = 4.5883 (1) ŵ = 0.63 mm1
b = 14.9171 (3) ÅT = 100 K
c = 13.9203 (3) Å0.50 × 0.19 × 0.11 mm
β = 95.153 (1)°
Data collection top
Rigaku RAXIS RAPID
diffractometer
3243 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2616 reflections with I > 2σ(I)
Tmin = 0.745, Tmax = 0.935Rint = 0.039
8967 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0361 restraint
wR(F2) = 0.104H-atom parameters constrained
S = 1.26Δρmax = 0.21 e Å3
3243 reflectionsΔρmin = 0.19 e Å3
254 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.0758 (4)0.14440 (11)1.29479 (11)0.0205 (4)
O20.3720 (4)0.35698 (11)0.62545 (11)0.0209 (4)
C11.1560 (6)0.14679 (19)1.49090 (18)0.0257 (6)
H1A1.00220.18041.45790.031*
H1B1.18110.14711.55940.031*
C21.3344 (6)0.09973 (17)1.44171 (18)0.0215 (6)
H21.48510.06711.47760.026*
C31.3204 (6)0.09320 (16)1.33434 (16)0.0185 (6)
H3A1.50300.11681.31100.022*
H3B1.29790.02981.31400.022*
C41.0339 (5)0.15331 (16)1.19565 (16)0.0173 (6)
C51.1684 (5)0.09822 (16)1.13154 (17)0.0182 (6)
H51.29920.05211.15470.022*
C61.1068 (5)0.11230 (16)1.03333 (17)0.0179 (5)
H61.20130.07580.98960.022*
C70.9124 (5)0.17770 (15)0.99632 (17)0.0146 (5)
C80.7818 (5)0.23265 (14)1.06198 (17)0.0153 (5)
C90.8430 (5)0.22077 (15)1.16185 (18)0.0161 (5)
C100.7069 (6)0.28600 (17)1.22696 (16)0.0179 (6)
H10A0.79470.27811.29400.021*
H10B0.49430.27421.22570.021*
C110.7571 (6)0.38257 (16)1.19372 (17)0.0226 (6)
H11A0.96260.39971.21290.027*
H11B0.62910.42351.22700.027*
C120.6945 (6)0.39485 (15)1.08386 (16)0.0188 (5)
H12A0.87680.41371.05660.023*
H12B0.54870.44331.07130.023*
C130.5781 (6)0.30864 (14)1.03188 (16)0.0148 (6)
H130.38440.29461.05600.018*
C140.5266 (5)0.32240 (15)0.92412 (18)0.0153 (6)
C150.3363 (5)0.38949 (16)0.88675 (17)0.0182 (6)
H150.24300.42690.93000.022*
C160.2800 (5)0.40290 (16)0.78830 (17)0.0187 (6)
H160.15190.44960.76480.022*
C170.4106 (5)0.34823 (15)0.72429 (16)0.0158 (5)
C180.5998 (5)0.27982 (16)0.75910 (16)0.0160 (5)
C190.6584 (5)0.26758 (15)0.85844 (16)0.0134 (5)
C200.8599 (6)0.19078 (16)0.88847 (17)0.0168 (6)
H201.05370.20440.86420.020*
C210.7403 (6)0.10527 (16)0.83550 (16)0.0199 (6)
H21A0.87870.05520.85060.024*
H21B0.55100.08880.85960.024*
C220.6961 (6)0.11772 (17)0.72538 (17)0.0242 (6)
H22A0.83540.07860.69470.029*
H22B0.49550.09850.70210.029*
C230.7414 (6)0.21513 (15)0.69392 (17)0.0189 (6)
H23A0.95350.22800.69600.023*
H23B0.65560.22330.62670.023*
C240.1371 (6)0.41273 (16)0.58588 (17)0.0197 (6)
H24A0.16600.47490.60990.024*
H24B0.05120.39030.60600.024*
C250.1309 (6)0.41135 (16)0.47868 (17)0.0216 (6)
H250.02000.44470.44370.026*
C260.3135 (6)0.36865 (18)0.42822 (18)0.0272 (6)
H26A0.46810.33440.46000.033*
H26B0.29170.37180.35980.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0198 (10)0.0258 (10)0.0154 (8)0.0072 (8)0.0006 (7)0.0045 (7)
O20.0214 (11)0.0219 (10)0.0190 (9)0.0062 (8)0.0009 (8)0.0030 (8)
C10.0292 (17)0.0258 (14)0.0209 (13)0.0025 (12)0.0032 (11)0.0019 (11)
C20.0180 (15)0.0208 (13)0.0246 (14)0.0024 (11)0.0037 (11)0.0041 (11)
C30.0169 (15)0.0165 (12)0.0213 (14)0.0006 (10)0.0031 (11)0.0025 (11)
C40.0160 (15)0.0191 (13)0.0165 (12)0.0034 (11)0.0006 (11)0.0021 (11)
C50.0178 (15)0.0157 (12)0.0207 (13)0.0033 (11)0.0001 (11)0.0027 (10)
C60.0175 (15)0.0133 (12)0.0233 (13)0.0004 (10)0.0033 (10)0.0049 (10)
C70.0140 (15)0.0111 (12)0.0185 (12)0.0015 (9)0.0010 (10)0.0023 (10)
C80.0130 (14)0.0132 (13)0.0194 (13)0.0012 (10)0.0004 (11)0.0008 (10)
C90.0121 (15)0.0144 (13)0.0219 (13)0.0025 (10)0.0023 (11)0.0005 (10)
C100.0202 (15)0.0156 (13)0.0176 (13)0.0019 (11)0.0001 (11)0.0031 (10)
C110.0311 (17)0.0133 (13)0.0229 (14)0.0047 (11)0.0001 (12)0.0038 (10)
C120.0231 (15)0.0118 (12)0.0213 (12)0.0007 (10)0.0013 (10)0.0018 (9)
C130.0142 (15)0.0135 (13)0.0172 (13)0.0015 (9)0.0041 (10)0.0013 (9)
C140.0127 (15)0.0148 (12)0.0186 (12)0.0029 (10)0.0023 (10)0.0017 (10)
C150.0181 (15)0.0156 (12)0.0212 (13)0.0008 (10)0.0030 (11)0.0001 (10)
C160.0172 (15)0.0155 (13)0.0228 (14)0.0027 (10)0.0008 (11)0.0017 (11)
C170.0161 (16)0.0144 (13)0.0165 (12)0.0025 (10)0.0011 (10)0.0024 (10)
C180.0140 (14)0.0130 (12)0.0209 (12)0.0004 (10)0.0018 (10)0.0007 (10)
C190.0111 (13)0.0099 (12)0.0190 (12)0.0054 (10)0.0002 (10)0.0016 (10)
C200.0144 (15)0.0138 (13)0.0223 (14)0.0007 (10)0.0016 (11)0.0001 (10)
C210.0262 (16)0.0121 (12)0.0213 (13)0.0006 (11)0.0015 (11)0.0030 (10)
C220.0333 (17)0.0180 (14)0.0205 (13)0.0015 (11)0.0022 (12)0.0020 (10)
C230.0215 (16)0.0155 (13)0.0194 (13)0.0022 (10)0.0011 (11)0.0001 (10)
C240.0205 (16)0.0178 (12)0.0203 (13)0.0032 (11)0.0006 (11)0.0026 (11)
C250.0254 (17)0.0178 (13)0.0208 (13)0.0006 (11)0.0022 (11)0.0022 (10)
C260.0311 (17)0.0282 (15)0.0210 (13)0.0008 (12)0.0042 (11)0.0003 (11)
Geometric parameters (Å, º) top
O1—C41.383 (3)C12—H12B0.9900
O1—C31.427 (3)C13—C141.511 (3)
O2—C171.378 (3)C13—H131.0000
O2—C241.432 (3)C14—C151.398 (3)
C1—C21.316 (3)C14—C191.403 (3)
C1—H1A0.9500C15—C161.386 (3)
C1—H1B0.9500C15—H150.9500
C2—C31.493 (3)C16—C171.383 (3)
C2—H20.9500C16—H160.9500
C3—H3A0.9900C17—C181.398 (3)
C3—H3B0.9900C18—C191.397 (3)
C4—C91.388 (3)C18—C231.511 (3)
C4—C51.397 (3)C19—C201.508 (3)
C5—C61.387 (3)C20—C211.549 (3)
C5—H50.9500C20—H201.0000
C6—C71.389 (3)C21—C221.539 (3)
C6—H60.9500C21—H21A0.9900
C7—C81.402 (3)C21—H21B0.9900
C7—C201.512 (3)C22—C231.537 (3)
C8—C91.405 (3)C22—H22A0.9900
C8—C131.504 (3)C22—H22B0.9900
C9—C101.503 (3)C23—H23A0.9900
C10—C111.537 (3)C23—H23B0.9900
C10—H10A0.9900C24—C251.490 (3)
C10—H10B0.9900C24—H24A0.9900
C11—C121.541 (3)C24—H24B0.9900
C11—H11A0.9900C25—C261.306 (3)
C11—H11B0.9900C25—H250.9500
C12—C131.547 (3)C26—H26A0.9500
C12—H12A0.9900C26—H26B0.9500
C4—O1—C3118.08 (18)C12—C13—H13107.3
C17—O2—C24117.67 (18)C15—C14—C19117.8 (2)
C2—C1—H1A120.0C15—C14—C13120.2 (2)
C2—C1—H1B120.0C19—C14—C13122.0 (2)
H1A—C1—H1B120.0C16—C15—C14121.7 (2)
C1—C2—C3125.6 (2)C16—C15—H15119.1
C1—C2—H2117.2C14—C15—H15119.1
C3—C2—H2117.2C17—C16—C15119.9 (2)
O1—C3—C2108.2 (2)C17—C16—H16120.0
O1—C3—H3A110.1C15—C16—H16120.0
C2—C3—H3A110.1O2—C17—C16124.3 (2)
O1—C3—H3B110.1O2—C17—C18115.8 (2)
C2—C3—H3B110.1C16—C17—C18119.9 (2)
H3A—C3—H3B108.4C19—C18—C17119.8 (2)
O1—C4—C9115.8 (2)C19—C18—C23117.1 (2)
O1—C4—C5123.5 (2)C17—C18—C23123.0 (2)
C9—C4—C5120.8 (2)C18—C19—C14120.9 (2)
C6—C5—C4118.5 (2)C18—C19—C20115.6 (2)
C6—C5—H5120.7C14—C19—C20123.5 (2)
C4—C5—H5120.7C19—C20—C7114.37 (19)
C5—C6—C7122.6 (2)C19—C20—C21108.16 (19)
C5—C6—H6118.7C7—C20—C21112.61 (18)
C7—C6—H6118.7C19—C20—H20107.1
C6—C7—C8117.8 (2)C7—C20—H20107.1
C6—C7—C20119.9 (2)C21—C20—H20107.1
C8—C7—C20122.2 (2)C22—C21—C20112.59 (18)
C7—C8—C9120.8 (2)C22—C21—H21A109.1
C7—C8—C13123.4 (2)C20—C21—H21A109.1
C9—C8—C13115.8 (2)C22—C21—H21B109.1
C4—C9—C8119.4 (2)C20—C21—H21B109.1
C4—C9—C10123.3 (2)H21A—C21—H21B107.8
C8—C9—C10117.3 (2)C23—C22—C21112.9 (2)
C9—C10—C11110.1 (2)C23—C22—H22A109.0
C9—C10—H10A109.6C21—C22—H22A109.0
C11—C10—H10A109.6C23—C22—H22B109.0
C9—C10—H10B109.6C21—C22—H22B109.0
C11—C10—H10B109.6H22A—C22—H22B107.8
H10A—C10—H10B108.2C18—C23—C22110.9 (2)
C10—C11—C12112.98 (19)C18—C23—H23A109.5
C10—C11—H11A109.0C22—C23—H23A109.5
C12—C11—H11A109.0C18—C23—H23B109.5
C10—C11—H11B109.0C22—C23—H23B109.5
C12—C11—H11B109.0H23A—C23—H23B108.1
H11A—C11—H11B107.8O2—C24—C25108.87 (19)
C11—C12—C13113.02 (18)O2—C24—H24A109.9
C11—C12—H12A109.0C25—C24—H24A109.9
C13—C12—H12A109.0O2—C24—H24B109.9
C11—C12—H12B109.0C25—C24—H24B109.9
C13—C12—H12B109.0H24A—C24—H24B108.3
H12A—C12—H12B107.8C26—C25—C24126.1 (2)
C8—C13—C14114.61 (19)C26—C25—H25116.9
C8—C13—C12108.44 (19)C24—C25—H25116.9
C14—C13—C12111.59 (18)C25—C26—H26A120.0
C8—C13—H13107.3C25—C26—H26B120.0
C14—C13—H13107.3H26A—C26—H26B120.0
C4—O1—C3—C2175.20 (19)C19—C14—C15—C160.7 (3)
C1—C2—C3—O11.7 (4)C13—C14—C15—C16178.8 (2)
C3—O1—C4—C9164.3 (2)C14—C15—C16—C170.9 (4)
C3—O1—C4—C516.6 (3)C24—O2—C17—C1613.9 (3)
O1—C4—C5—C6179.0 (2)C24—O2—C17—C18167.3 (2)
C9—C4—C5—C60.1 (3)C15—C16—C17—O2179.0 (2)
C4—C5—C6—C71.3 (4)C15—C16—C17—C180.2 (4)
C5—C6—C7—C81.8 (4)O2—C17—C18—C19178.24 (19)
C5—C6—C7—C20178.7 (2)C16—C17—C18—C190.7 (3)
C6—C7—C8—C90.9 (3)O2—C17—C18—C233.5 (3)
C20—C7—C8—C9177.7 (2)C16—C17—C18—C23177.5 (2)
C6—C7—C8—C13177.2 (2)C17—C18—C19—C140.9 (3)
C20—C7—C8—C130.3 (3)C23—C18—C19—C14177.4 (2)
O1—C4—C9—C8178.18 (19)C17—C18—C19—C20178.7 (2)
C5—C4—C9—C80.9 (3)C23—C18—C19—C200.4 (3)
O1—C4—C9—C105.0 (3)C15—C14—C19—C180.2 (3)
C5—C4—C9—C10175.9 (2)C13—C14—C19—C18177.9 (2)
C7—C8—C9—C40.4 (3)C15—C14—C19—C20177.9 (2)
C13—C8—C9—C4178.7 (2)C13—C14—C19—C200.2 (3)
C7—C8—C9—C10176.6 (2)C18—C19—C20—C7178.4 (2)
C13—C8—C9—C101.6 (3)C14—C19—C20—C70.6 (3)
C4—C9—C10—C11128.2 (2)C18—C19—C20—C2152.0 (3)
C8—C9—C10—C1148.6 (3)C14—C19—C20—C21125.8 (2)
C9—C10—C11—C1245.6 (3)C6—C7—C20—C19176.4 (2)
C10—C11—C12—C133.3 (3)C8—C7—C20—C190.3 (3)
C7—C8—C13—C140.7 (3)C6—C7—C20—C2159.6 (3)
C9—C8—C13—C14177.4 (2)C8—C7—C20—C21123.7 (2)
C7—C8—C13—C12126.1 (2)C19—C20—C21—C2254.4 (3)
C9—C8—C13—C1252.0 (3)C7—C20—C21—C22178.2 (2)
C11—C12—C13—C851.3 (3)C20—C21—C22—C237.6 (3)
C11—C12—C13—C14178.5 (2)C19—C18—C23—C2248.7 (3)
C8—C13—C14—C15178.5 (2)C17—C18—C23—C22129.6 (2)
C12—C13—C14—C1557.8 (3)C21—C22—C23—C1842.6 (3)
C8—C13—C14—C190.5 (3)C17—O2—C24—C25178.87 (19)
C12—C13—C14—C19124.2 (2)O2—C24—C25—C261.8 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg4 are the centroids of the C4–C9 and C14–C19 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C13—H13···Cg1i1.002.783.671 (3)148
C20—H20···Cg4ii1.002.823.702 (3)148
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC26H28O2
Mr372.48
Crystal system, space groupMonoclinic, P21
Temperature (K)100
a, b, c (Å)4.5883 (1), 14.9171 (3), 13.9203 (3)
β (°) 95.153 (1)
V3)948.92 (3)
Z2
Radiation typeCu Kα
µ (mm1)0.63
Crystal size (mm)0.50 × 0.19 × 0.11
Data collection
DiffractometerRigaku RAXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.745, 0.935
No. of measured, independent and
observed [I > 2σ(I)] reflections
8967, 3243, 2616
Rint0.039
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.104, 1.26
No. of reflections3243
No. of parameters254
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.19

Computer programs: CrystalClear (Rigaku/MSC, 2005), PROCESS-AUTO (Rigaku, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg4 are the centroids of the C4–C9 and C14–C19 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C13—H13···Cg1i1.002.783.671 (3)148
C20—H20···Cg4ii1.002.823.702 (3)148
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.
 

Footnotes

Additional correspondence author, e-mail: george.negrete@utsa.edu.

Acknowledgements

This research was supported by a grant to GRN from the UTSA Collaborative Research Seed Grant Program (CRSGP).

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationPenick, M. A., Mahindaratne, M. P. D., Gutierrez, R. D., Smith, T. D., Tiekink, E. R. T. & Negrete, G. R. (2008). J. Org. Chem. 73, 6378–6381.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds