organic compounds
4,10-Diallyloxy-1,2,3,6b,7,8,9,12b-octahydroperylene
aDepartment of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA, bRigaku Americas Corporation, 9009 New Trails Drive, The Woodlands, Texas 77381, USA, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com
In the title compound, C26H28O2, the central atoms are coplanar, with the –CH2—CH2– links of the cyclohexene groups lying to either side of the plane and with the diallyloxy residues twisted out of this plane [C—C—O—C torsion angles = 16.6 (3) and −13.9 (3)°]. In the molecules are connected into chains propagating in [100] via C—H⋯π interactions.
Related literature
For the preparation of oxygenated perylenes and their use as photosensitizing organic dyes in solar harvesting techniques, see: Penick et al. (2008).
Experimental
Crystal data
|
Refinement
|
Data collection: CrystalClear (Rigaku/MSC, 2005); cell PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2009).
Supporting information
10.1107/S160053680905243X/hb5266sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053680905243X/hb5266Isup2.hkl
Referring to Fig. 1, diol 1 was converted to allyl aryl ether 2 via conventional phenolic alkylation (allyl bromide/K2CO3/acetone). Octahydroperylene 3 was prepared upon treatment of allyl aryl ether 2 (173 mg, 0.85 mmol) in acetonitrile (5 ml) with BF3.Et2O (0.5 ml) by dropwise addition over one minute and the mixture was stirred for 43 h at room temperature. An off-white solid was collected by filtration, triturated with acetone, and dried under vacuum. The solid was crystallized by slowly evaporating its CHCl3 solution to yield off-white small rods (84 mg, 53%), M. pt. = 458–461 K; 1H NMR (CDCl3, 500 MHz): δ 1.51 (tt, J = 12.2, 8.3 Hz, 2H), 1.69–1.79 (m, 2H), 2.00–2.10 (m, 2H), 2.53 (dt, J = 16.1, 7.8 Hz, 2H), 2.51–2.58 (m, 2H), 3.15 (ddd, J = 16.1, 6.8, 5.4 Hz, 2H), 3.73 (dd, J = 11.7, 4.4 Hz, 2H), 4.51–4.59 (m, two ABX patterns, 4H), 5.27 (dq, J = 10.8, 1.5 Hz, 2H), 5.44 (dq, J = 17.1, 1.5 Hz, 2H), 6.95 (ddt, J = 17.1, 10.8, 5.4 Hz, 2H), 6.82 (d, J = 7.8 Hz, 2H), 7.23 (d, J = 8.3 Hz, 2H) p.p.m. 13C NMR (CDCl3, 125 MHz): δ 20.9 (t), 21.19 (t), 29.89 (t), 36.09 (d), 69.29 (t), 110.1 (d), 116.9 (dd), 124.5 (d), 126.7 (s), 128.2 (s), 133.9 (d), 136.9 (s), 153.5 (s) p.p.m. IR (νmax, cm-1): 2933, 2913, 2857, 1486, 1464, 1420, 1258, 1071, 1033, 997. 924, 797. MS (APCI, m/z): 373.4 (52, M++1), 372.4 (34, M+), 371.4 (100, M+-1), 330.4 (33, M+-C3H6).
The H atoms were geometrically placed (C—H = 0.95–1.00 Å) and refined as riding with Uiso(H) = 1.2Ueq(parent atom). The structure was refined as a racemic twin precluding the determination of absolute structure.
Data collection: CrystalClear (Rigaku/MSC, 2005); cell
PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2009).C26H28O2 | F(000) = 400 |
Mr = 372.48 | Dx = 1.304 Mg m−3 |
Monoclinic, P21 | Cu Kα radiation, λ = 1.54187 Å |
Hall symbol: P 2yb | Cell parameters from 8127 reflections |
a = 4.5883 (1) Å | θ = 6.7–70.1° |
b = 14.9171 (3) Å | µ = 0.63 mm−1 |
c = 13.9203 (3) Å | T = 100 K |
β = 95.153 (1)° | Prism, colourless |
V = 948.92 (3) Å3 | 0.50 × 0.19 × 0.11 mm |
Z = 2 |
Rigaku RAXIS RAPID diffractometer | 3243 independent reflections |
Radiation source: fine-focus sealed tube | 2616 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.039 |
Profile data from ω scans | θmax = 70.0°, θmin = 6.7° |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | h = −4→5 |
Tmin = 0.745, Tmax = 0.935 | k = −18→17 |
8967 measured reflections | l = −16→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.036 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.104 | H-atom parameters constrained |
S = 1.26 | w = 1/[σ2(Fo2) + (0.0392P)2 + 0.0986P] where P = (Fo2 + 2Fc2)/3 |
3243 reflections | (Δ/σ)max < 0.001 |
254 parameters | Δρmax = 0.21 e Å−3 |
1 restraint | Δρmin = −0.19 e Å−3 |
C26H28O2 | V = 948.92 (3) Å3 |
Mr = 372.48 | Z = 2 |
Monoclinic, P21 | Cu Kα radiation |
a = 4.5883 (1) Å | µ = 0.63 mm−1 |
b = 14.9171 (3) Å | T = 100 K |
c = 13.9203 (3) Å | 0.50 × 0.19 × 0.11 mm |
β = 95.153 (1)° |
Rigaku RAXIS RAPID diffractometer | 3243 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 2616 reflections with I > 2σ(I) |
Tmin = 0.745, Tmax = 0.935 | Rint = 0.039 |
8967 measured reflections |
R[F2 > 2σ(F2)] = 0.036 | 1 restraint |
wR(F2) = 0.104 | H-atom parameters constrained |
S = 1.26 | Δρmax = 0.21 e Å−3 |
3243 reflections | Δρmin = −0.19 e Å−3 |
254 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 1.0758 (4) | 0.14440 (11) | 1.29479 (11) | 0.0205 (4) | |
O2 | 0.3720 (4) | 0.35698 (11) | 0.62545 (11) | 0.0209 (4) | |
C1 | 1.1560 (6) | 0.14679 (19) | 1.49090 (18) | 0.0257 (6) | |
H1A | 1.0022 | 0.1804 | 1.4579 | 0.031* | |
H1B | 1.1811 | 0.1471 | 1.5594 | 0.031* | |
C2 | 1.3344 (6) | 0.09973 (17) | 1.44171 (18) | 0.0215 (6) | |
H2 | 1.4851 | 0.0671 | 1.4776 | 0.026* | |
C3 | 1.3204 (6) | 0.09320 (16) | 1.33434 (16) | 0.0185 (6) | |
H3A | 1.5030 | 0.1168 | 1.3110 | 0.022* | |
H3B | 1.2979 | 0.0298 | 1.3140 | 0.022* | |
C4 | 1.0339 (5) | 0.15331 (16) | 1.19565 (16) | 0.0173 (6) | |
C5 | 1.1684 (5) | 0.09822 (16) | 1.13154 (17) | 0.0182 (6) | |
H5 | 1.2992 | 0.0521 | 1.1547 | 0.022* | |
C6 | 1.1068 (5) | 0.11230 (16) | 1.03333 (17) | 0.0179 (5) | |
H6 | 1.2013 | 0.0758 | 0.9896 | 0.022* | |
C7 | 0.9124 (5) | 0.17770 (15) | 0.99632 (17) | 0.0146 (5) | |
C8 | 0.7818 (5) | 0.23265 (14) | 1.06198 (17) | 0.0153 (5) | |
C9 | 0.8430 (5) | 0.22077 (15) | 1.16185 (18) | 0.0161 (5) | |
C10 | 0.7069 (6) | 0.28600 (17) | 1.22696 (16) | 0.0179 (6) | |
H10A | 0.7947 | 0.2781 | 1.2940 | 0.021* | |
H10B | 0.4943 | 0.2742 | 1.2257 | 0.021* | |
C11 | 0.7571 (6) | 0.38257 (16) | 1.19372 (17) | 0.0226 (6) | |
H11A | 0.9626 | 0.3997 | 1.2129 | 0.027* | |
H11B | 0.6291 | 0.4235 | 1.2270 | 0.027* | |
C12 | 0.6945 (6) | 0.39485 (15) | 1.08386 (16) | 0.0188 (5) | |
H12A | 0.8768 | 0.4137 | 1.0566 | 0.023* | |
H12B | 0.5487 | 0.4433 | 1.0713 | 0.023* | |
C13 | 0.5781 (6) | 0.30864 (14) | 1.03188 (16) | 0.0148 (6) | |
H13 | 0.3844 | 0.2946 | 1.0560 | 0.018* | |
C14 | 0.5266 (5) | 0.32240 (15) | 0.92412 (18) | 0.0153 (6) | |
C15 | 0.3363 (5) | 0.38949 (16) | 0.88675 (17) | 0.0182 (6) | |
H15 | 0.2430 | 0.4269 | 0.9300 | 0.022* | |
C16 | 0.2800 (5) | 0.40290 (16) | 0.78830 (17) | 0.0187 (6) | |
H16 | 0.1519 | 0.4496 | 0.7648 | 0.022* | |
C17 | 0.4106 (5) | 0.34823 (15) | 0.72429 (16) | 0.0158 (5) | |
C18 | 0.5998 (5) | 0.27982 (16) | 0.75910 (16) | 0.0160 (5) | |
C19 | 0.6584 (5) | 0.26758 (15) | 0.85844 (16) | 0.0134 (5) | |
C20 | 0.8599 (6) | 0.19078 (16) | 0.88847 (17) | 0.0168 (6) | |
H20 | 1.0537 | 0.2044 | 0.8642 | 0.020* | |
C21 | 0.7403 (6) | 0.10527 (16) | 0.83550 (16) | 0.0199 (6) | |
H21A | 0.8787 | 0.0552 | 0.8506 | 0.024* | |
H21B | 0.5510 | 0.0888 | 0.8596 | 0.024* | |
C22 | 0.6961 (6) | 0.11772 (17) | 0.72538 (17) | 0.0242 (6) | |
H22A | 0.8354 | 0.0786 | 0.6947 | 0.029* | |
H22B | 0.4955 | 0.0985 | 0.7021 | 0.029* | |
C23 | 0.7414 (6) | 0.21513 (15) | 0.69392 (17) | 0.0189 (6) | |
H23A | 0.9535 | 0.2280 | 0.6960 | 0.023* | |
H23B | 0.6556 | 0.2233 | 0.6267 | 0.023* | |
C24 | 0.1371 (6) | 0.41273 (16) | 0.58588 (17) | 0.0197 (6) | |
H24A | 0.1660 | 0.4749 | 0.6099 | 0.024* | |
H24B | −0.0512 | 0.3903 | 0.6060 | 0.024* | |
C25 | 0.1309 (6) | 0.41135 (16) | 0.47868 (17) | 0.0216 (6) | |
H25 | −0.0200 | 0.4447 | 0.4437 | 0.026* | |
C26 | 0.3135 (6) | 0.36865 (18) | 0.42822 (18) | 0.0272 (6) | |
H26A | 0.4681 | 0.3344 | 0.4600 | 0.033* | |
H26B | 0.2917 | 0.3718 | 0.3598 | 0.033* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0198 (10) | 0.0258 (10) | 0.0154 (8) | 0.0072 (8) | −0.0006 (7) | 0.0045 (7) |
O2 | 0.0214 (11) | 0.0219 (10) | 0.0190 (9) | 0.0062 (8) | −0.0009 (8) | 0.0030 (8) |
C1 | 0.0292 (17) | 0.0258 (14) | 0.0209 (13) | 0.0025 (12) | −0.0032 (11) | 0.0019 (11) |
C2 | 0.0180 (15) | 0.0208 (13) | 0.0246 (14) | 0.0024 (11) | −0.0037 (11) | 0.0041 (11) |
C3 | 0.0169 (15) | 0.0165 (12) | 0.0213 (14) | 0.0006 (10) | −0.0031 (11) | 0.0025 (11) |
C4 | 0.0160 (15) | 0.0191 (13) | 0.0165 (12) | −0.0034 (11) | −0.0006 (11) | 0.0021 (11) |
C5 | 0.0178 (15) | 0.0157 (12) | 0.0207 (13) | 0.0033 (11) | 0.0001 (11) | 0.0027 (10) |
C6 | 0.0175 (15) | 0.0133 (12) | 0.0233 (13) | 0.0004 (10) | 0.0033 (10) | −0.0049 (10) |
C7 | 0.0140 (15) | 0.0111 (12) | 0.0185 (12) | −0.0015 (9) | −0.0010 (10) | −0.0023 (10) |
C8 | 0.0130 (14) | 0.0132 (13) | 0.0194 (13) | −0.0012 (10) | −0.0004 (11) | −0.0008 (10) |
C9 | 0.0121 (15) | 0.0144 (13) | 0.0219 (13) | −0.0025 (10) | 0.0023 (11) | −0.0005 (10) |
C10 | 0.0202 (15) | 0.0156 (13) | 0.0176 (13) | 0.0019 (11) | 0.0001 (11) | −0.0031 (10) |
C11 | 0.0311 (17) | 0.0133 (13) | 0.0229 (14) | −0.0047 (11) | −0.0001 (12) | −0.0038 (10) |
C12 | 0.0231 (15) | 0.0118 (12) | 0.0213 (12) | −0.0007 (10) | 0.0013 (10) | −0.0018 (9) |
C13 | 0.0142 (15) | 0.0135 (13) | 0.0172 (13) | −0.0015 (9) | 0.0041 (10) | −0.0013 (9) |
C14 | 0.0127 (15) | 0.0148 (12) | 0.0186 (12) | −0.0029 (10) | 0.0023 (10) | 0.0017 (10) |
C15 | 0.0181 (15) | 0.0156 (12) | 0.0212 (13) | 0.0008 (10) | 0.0030 (11) | 0.0001 (10) |
C16 | 0.0172 (15) | 0.0155 (13) | 0.0228 (14) | 0.0027 (10) | −0.0008 (11) | 0.0017 (11) |
C17 | 0.0161 (16) | 0.0144 (13) | 0.0165 (12) | −0.0025 (10) | −0.0011 (10) | 0.0024 (10) |
C18 | 0.0140 (14) | 0.0130 (12) | 0.0209 (12) | −0.0004 (10) | 0.0018 (10) | −0.0007 (10) |
C19 | 0.0111 (13) | 0.0099 (12) | 0.0190 (12) | −0.0054 (10) | −0.0002 (10) | 0.0016 (10) |
C20 | 0.0144 (15) | 0.0138 (13) | 0.0223 (14) | −0.0007 (10) | 0.0016 (11) | 0.0001 (10) |
C21 | 0.0262 (16) | 0.0121 (12) | 0.0213 (13) | −0.0006 (11) | 0.0015 (11) | −0.0030 (10) |
C22 | 0.0333 (17) | 0.0180 (14) | 0.0205 (13) | 0.0015 (11) | −0.0022 (12) | −0.0020 (10) |
C23 | 0.0215 (16) | 0.0155 (13) | 0.0194 (13) | 0.0022 (10) | 0.0011 (11) | 0.0001 (10) |
C24 | 0.0205 (16) | 0.0178 (12) | 0.0203 (13) | 0.0032 (11) | −0.0006 (11) | 0.0026 (11) |
C25 | 0.0254 (17) | 0.0178 (13) | 0.0208 (13) | −0.0006 (11) | −0.0022 (11) | 0.0022 (10) |
C26 | 0.0311 (17) | 0.0282 (15) | 0.0210 (13) | 0.0008 (12) | −0.0042 (11) | −0.0003 (11) |
O1—C4 | 1.383 (3) | C12—H12B | 0.9900 |
O1—C3 | 1.427 (3) | C13—C14 | 1.511 (3) |
O2—C17 | 1.378 (3) | C13—H13 | 1.0000 |
O2—C24 | 1.432 (3) | C14—C15 | 1.398 (3) |
C1—C2 | 1.316 (3) | C14—C19 | 1.403 (3) |
C1—H1A | 0.9500 | C15—C16 | 1.386 (3) |
C1—H1B | 0.9500 | C15—H15 | 0.9500 |
C2—C3 | 1.493 (3) | C16—C17 | 1.383 (3) |
C2—H2 | 0.9500 | C16—H16 | 0.9500 |
C3—H3A | 0.9900 | C17—C18 | 1.398 (3) |
C3—H3B | 0.9900 | C18—C19 | 1.397 (3) |
C4—C9 | 1.388 (3) | C18—C23 | 1.511 (3) |
C4—C5 | 1.397 (3) | C19—C20 | 1.508 (3) |
C5—C6 | 1.387 (3) | C20—C21 | 1.549 (3) |
C5—H5 | 0.9500 | C20—H20 | 1.0000 |
C6—C7 | 1.389 (3) | C21—C22 | 1.539 (3) |
C6—H6 | 0.9500 | C21—H21A | 0.9900 |
C7—C8 | 1.402 (3) | C21—H21B | 0.9900 |
C7—C20 | 1.512 (3) | C22—C23 | 1.537 (3) |
C8—C9 | 1.405 (3) | C22—H22A | 0.9900 |
C8—C13 | 1.504 (3) | C22—H22B | 0.9900 |
C9—C10 | 1.503 (3) | C23—H23A | 0.9900 |
C10—C11 | 1.537 (3) | C23—H23B | 0.9900 |
C10—H10A | 0.9900 | C24—C25 | 1.490 (3) |
C10—H10B | 0.9900 | C24—H24A | 0.9900 |
C11—C12 | 1.541 (3) | C24—H24B | 0.9900 |
C11—H11A | 0.9900 | C25—C26 | 1.306 (3) |
C11—H11B | 0.9900 | C25—H25 | 0.9500 |
C12—C13 | 1.547 (3) | C26—H26A | 0.9500 |
C12—H12A | 0.9900 | C26—H26B | 0.9500 |
C4—O1—C3 | 118.08 (18) | C12—C13—H13 | 107.3 |
C17—O2—C24 | 117.67 (18) | C15—C14—C19 | 117.8 (2) |
C2—C1—H1A | 120.0 | C15—C14—C13 | 120.2 (2) |
C2—C1—H1B | 120.0 | C19—C14—C13 | 122.0 (2) |
H1A—C1—H1B | 120.0 | C16—C15—C14 | 121.7 (2) |
C1—C2—C3 | 125.6 (2) | C16—C15—H15 | 119.1 |
C1—C2—H2 | 117.2 | C14—C15—H15 | 119.1 |
C3—C2—H2 | 117.2 | C17—C16—C15 | 119.9 (2) |
O1—C3—C2 | 108.2 (2) | C17—C16—H16 | 120.0 |
O1—C3—H3A | 110.1 | C15—C16—H16 | 120.0 |
C2—C3—H3A | 110.1 | O2—C17—C16 | 124.3 (2) |
O1—C3—H3B | 110.1 | O2—C17—C18 | 115.8 (2) |
C2—C3—H3B | 110.1 | C16—C17—C18 | 119.9 (2) |
H3A—C3—H3B | 108.4 | C19—C18—C17 | 119.8 (2) |
O1—C4—C9 | 115.8 (2) | C19—C18—C23 | 117.1 (2) |
O1—C4—C5 | 123.5 (2) | C17—C18—C23 | 123.0 (2) |
C9—C4—C5 | 120.8 (2) | C18—C19—C14 | 120.9 (2) |
C6—C5—C4 | 118.5 (2) | C18—C19—C20 | 115.6 (2) |
C6—C5—H5 | 120.7 | C14—C19—C20 | 123.5 (2) |
C4—C5—H5 | 120.7 | C19—C20—C7 | 114.37 (19) |
C5—C6—C7 | 122.6 (2) | C19—C20—C21 | 108.16 (19) |
C5—C6—H6 | 118.7 | C7—C20—C21 | 112.61 (18) |
C7—C6—H6 | 118.7 | C19—C20—H20 | 107.1 |
C6—C7—C8 | 117.8 (2) | C7—C20—H20 | 107.1 |
C6—C7—C20 | 119.9 (2) | C21—C20—H20 | 107.1 |
C8—C7—C20 | 122.2 (2) | C22—C21—C20 | 112.59 (18) |
C7—C8—C9 | 120.8 (2) | C22—C21—H21A | 109.1 |
C7—C8—C13 | 123.4 (2) | C20—C21—H21A | 109.1 |
C9—C8—C13 | 115.8 (2) | C22—C21—H21B | 109.1 |
C4—C9—C8 | 119.4 (2) | C20—C21—H21B | 109.1 |
C4—C9—C10 | 123.3 (2) | H21A—C21—H21B | 107.8 |
C8—C9—C10 | 117.3 (2) | C23—C22—C21 | 112.9 (2) |
C9—C10—C11 | 110.1 (2) | C23—C22—H22A | 109.0 |
C9—C10—H10A | 109.6 | C21—C22—H22A | 109.0 |
C11—C10—H10A | 109.6 | C23—C22—H22B | 109.0 |
C9—C10—H10B | 109.6 | C21—C22—H22B | 109.0 |
C11—C10—H10B | 109.6 | H22A—C22—H22B | 107.8 |
H10A—C10—H10B | 108.2 | C18—C23—C22 | 110.9 (2) |
C10—C11—C12 | 112.98 (19) | C18—C23—H23A | 109.5 |
C10—C11—H11A | 109.0 | C22—C23—H23A | 109.5 |
C12—C11—H11A | 109.0 | C18—C23—H23B | 109.5 |
C10—C11—H11B | 109.0 | C22—C23—H23B | 109.5 |
C12—C11—H11B | 109.0 | H23A—C23—H23B | 108.1 |
H11A—C11—H11B | 107.8 | O2—C24—C25 | 108.87 (19) |
C11—C12—C13 | 113.02 (18) | O2—C24—H24A | 109.9 |
C11—C12—H12A | 109.0 | C25—C24—H24A | 109.9 |
C13—C12—H12A | 109.0 | O2—C24—H24B | 109.9 |
C11—C12—H12B | 109.0 | C25—C24—H24B | 109.9 |
C13—C12—H12B | 109.0 | H24A—C24—H24B | 108.3 |
H12A—C12—H12B | 107.8 | C26—C25—C24 | 126.1 (2) |
C8—C13—C14 | 114.61 (19) | C26—C25—H25 | 116.9 |
C8—C13—C12 | 108.44 (19) | C24—C25—H25 | 116.9 |
C14—C13—C12 | 111.59 (18) | C25—C26—H26A | 120.0 |
C8—C13—H13 | 107.3 | C25—C26—H26B | 120.0 |
C14—C13—H13 | 107.3 | H26A—C26—H26B | 120.0 |
C4—O1—C3—C2 | 175.20 (19) | C19—C14—C15—C16 | −0.7 (3) |
C1—C2—C3—O1 | −1.7 (4) | C13—C14—C15—C16 | −178.8 (2) |
C3—O1—C4—C9 | −164.3 (2) | C14—C15—C16—C17 | 0.9 (4) |
C3—O1—C4—C5 | 16.6 (3) | C24—O2—C17—C16 | −13.9 (3) |
O1—C4—C5—C6 | 179.0 (2) | C24—O2—C17—C18 | 167.3 (2) |
C9—C4—C5—C6 | −0.1 (3) | C15—C16—C17—O2 | −179.0 (2) |
C4—C5—C6—C7 | −1.3 (4) | C15—C16—C17—C18 | −0.2 (4) |
C5—C6—C7—C8 | 1.8 (4) | O2—C17—C18—C19 | 178.24 (19) |
C5—C6—C7—C20 | 178.7 (2) | C16—C17—C18—C19 | −0.7 (3) |
C6—C7—C8—C9 | −0.9 (3) | O2—C17—C18—C23 | −3.5 (3) |
C20—C7—C8—C9 | −177.7 (2) | C16—C17—C18—C23 | 177.5 (2) |
C6—C7—C8—C13 | 177.2 (2) | C17—C18—C19—C14 | 0.9 (3) |
C20—C7—C8—C13 | 0.3 (3) | C23—C18—C19—C14 | −177.4 (2) |
O1—C4—C9—C8 | −178.18 (19) | C17—C18—C19—C20 | 178.7 (2) |
C5—C4—C9—C8 | 0.9 (3) | C23—C18—C19—C20 | 0.4 (3) |
O1—C4—C9—C10 | 5.0 (3) | C15—C14—C19—C18 | −0.2 (3) |
C5—C4—C9—C10 | −175.9 (2) | C13—C14—C19—C18 | 177.9 (2) |
C7—C8—C9—C4 | −0.4 (3) | C15—C14—C19—C20 | −177.9 (2) |
C13—C8—C9—C4 | −178.7 (2) | C13—C14—C19—C20 | 0.2 (3) |
C7—C8—C9—C10 | 176.6 (2) | C18—C19—C20—C7 | −178.4 (2) |
C13—C8—C9—C10 | −1.6 (3) | C14—C19—C20—C7 | −0.6 (3) |
C4—C9—C10—C11 | 128.2 (2) | C18—C19—C20—C21 | −52.0 (3) |
C8—C9—C10—C11 | −48.6 (3) | C14—C19—C20—C21 | 125.8 (2) |
C9—C10—C11—C12 | 45.6 (3) | C6—C7—C20—C19 | −176.4 (2) |
C10—C11—C12—C13 | 3.3 (3) | C8—C7—C20—C19 | 0.3 (3) |
C7—C8—C13—C14 | −0.7 (3) | C6—C7—C20—C21 | 59.6 (3) |
C9—C8—C13—C14 | 177.4 (2) | C8—C7—C20—C21 | −123.7 (2) |
C7—C8—C13—C12 | −126.1 (2) | C19—C20—C21—C22 | 54.4 (3) |
C9—C8—C13—C12 | 52.0 (3) | C7—C20—C21—C22 | −178.2 (2) |
C11—C12—C13—C8 | −51.3 (3) | C20—C21—C22—C23 | −7.6 (3) |
C11—C12—C13—C14 | −178.5 (2) | C19—C18—C23—C22 | 48.7 (3) |
C8—C13—C14—C15 | 178.5 (2) | C17—C18—C23—C22 | −129.6 (2) |
C12—C13—C14—C15 | −57.8 (3) | C21—C22—C23—C18 | −42.6 (3) |
C8—C13—C14—C19 | 0.5 (3) | C17—O2—C24—C25 | −178.87 (19) |
C12—C13—C14—C19 | 124.2 (2) | O2—C24—C25—C26 | −1.8 (4) |
Cg1 and Cg4 are the centroids of the C4–C9 and C14–C19 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C13—H13···Cg1i | 1.00 | 2.78 | 3.671 (3) | 148 |
C20—H20···Cg4ii | 1.00 | 2.82 | 3.702 (3) | 148 |
Symmetry codes: (i) x−1, y, z; (ii) x+1, y, z. |
Experimental details
Crystal data | |
Chemical formula | C26H28O2 |
Mr | 372.48 |
Crystal system, space group | Monoclinic, P21 |
Temperature (K) | 100 |
a, b, c (Å) | 4.5883 (1), 14.9171 (3), 13.9203 (3) |
β (°) | 95.153 (1) |
V (Å3) | 948.92 (3) |
Z | 2 |
Radiation type | Cu Kα |
µ (mm−1) | 0.63 |
Crystal size (mm) | 0.50 × 0.19 × 0.11 |
Data collection | |
Diffractometer | Rigaku RAXIS RAPID diffractometer |
Absorption correction | Multi-scan (ABSCOR; Higashi, 1995) |
Tmin, Tmax | 0.745, 0.935 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8967, 3243, 2616 |
Rint | 0.039 |
(sin θ/λ)max (Å−1) | 0.609 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.036, 0.104, 1.26 |
No. of reflections | 3243 |
No. of parameters | 254 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.21, −0.19 |
Computer programs: CrystalClear (Rigaku/MSC, 2005), PROCESS-AUTO (Rigaku, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2009).
Cg1 and Cg4 are the centroids of the C4–C9 and C14–C19 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C13—H13···Cg1i | 1.00 | 2.78 | 3.671 (3) | 148 |
C20—H20···Cg4ii | 1.00 | 2.82 | 3.702 (3) | 148 |
Symmetry codes: (i) x−1, y, z; (ii) x+1, y, z. |
Footnotes
‡Additional correspondence author, e-mail: george.negrete@utsa.edu.
Acknowledgements
This research was supported by a grant to GRN from the UTSA Collaborative Research Seed Grant Program (CRSGP).
References
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Penick, M. A., Mahindaratne, M. P. D., Gutierrez, R. D., Smith, T. D., Tiekink, E. R. T. & Negrete, G. R. (2008). J. Org. Chem. 73, 6378–6381. Web of Science CSD CrossRef PubMed CAS Google Scholar
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2009). publCIF. In preparation. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Our laboratory has been investigating the preparation of oxygenated perylenes and their use as photosensitizing organic dyes in solar harvesting techniques (Penick et al., 2008). The commercially available starting material 1,2,3,4-tetrahydronaphthalen-1,5-diol (1), Fig. 1, was allylated selectively at the phenolic-OH using equimolar amounts of allyl bromide and K2CO3 in refluxing acetone. The resulting 5-allyloxy-1,2,3,4-tetrahydronaphthalen-1-ol (2), Fig. 2, was subjected to tandem Friedel-Crafts annulation (Penick et al., 2008) in acetonitrile at room temperature using BF3 as the Lewis acid catalyst. The product (3), Fig. 1, precipitated and was purified by trituration with acetone to produce a white solid. Product 3 was crystallized using a slow evaporation method from chloroform to obtain single crystals for spectroscopic and X-ray crystallographic analysis.
The molecular structure of the title compound, Fig. 2, features an essentially planar core. Thus, the maximum deviations from the least-squares plane through the benzene rings (atoms C4–C9 and C14–C19) as well as the sp3 O1, O2, C10, C13, C20, and C23 atoms are 0.0509 (23) Å for atom C10 and -0.0389 (21) Å for atom C8 (r.m.s. = 0.0242 Å). The C11 and C12, and C21 and C22 atoms of the cyclohexene rings lie to either side of this plane. The planarity in the molecule does not extend to the terminal diallyloxy residues as seen in the magnitudes of the C5–C4–O1–O3 and C16–C17–O2–C24 torsion angles of 16.6 (3) and -13.9 (3) °, respectively.
The most prominent feature of the crystal packing is the presence of C–H···π interactions that link molecules into supramolecular chains along [1 0 0], Fig. 3. The geometric parameters associated with these interactions are C13–H13···Cg(C4–C9)i = 2.78 Å, C13···Cg(C4–C9)i = 3.671 (3) Å with an angle of 148° at H13 for symmetry operation i: -1 + x, y, z; and C20–H20···Cg(C14–C19)ii = 2.82 Å, C20···Cg(C14–C19)ii = 3.702 (3) Å with an angle of 148° at H20 for ii: 1 + x, y, z. Supramolecular chains are consolidated in the crystal structure by hydrophobic interactions, Fig. 4.