Experimental
Crystal data
4C8H12N+·H2P6O184−·2H2O Mr = 1000.61 Monoclinic, P 21 /c a = 17.254 (3) Å b = 11.763 (5) Å c = 11.556 (2) Å β = 106.41 (3)° V = 2249.9 (11) Å3 Z = 2 Mo Kα radiation μ = 0.32 mm−1 T = 293 K 0.35 × 0.20 × 0.01 mm
|
Data collection
Enraf–Nonius CAD-4 diffractometer 10097 measured reflections 9844 independent reflections 5567 reflections with I > 2σ(I) Rint = 0.039 2 standard reflections every 120 min intensity decay: 11%
|
D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A | O8—H8⋯O6i | 0.82 | 1.71 | 2.421 (2) | 144 | O1W—H2W⋯O9 | 0.85 (1) | 2.01 (1) | 2.831 (2) | 164 (2) | O1W—H1W⋯O5ii | 0.85 (1) | 2.00 (1) | 2.829 (2) | 165 (2) | N1—H1A⋯O9iii | 0.89 | 2.03 | 2.910 (2) | 170 | N1—H1B⋯O1W | 0.89 | 1.89 | 2.769 (2) | 169 | N1—H1C⋯O3 | 0.89 | 1.93 | 2.738 (2) | 151 | N2—H2A⋯O3i | 0.89 | 1.94 | 2.801 (2) | 161 | N2—H2B⋯O2iv | 0.89 | 1.97 | 2.768 (2) | 148 | N2—H2C⋯O5 | 0.89 | 1.83 | 2.719 (2) | 175 | Symmetry codes: (i) ; (ii) -x, -y+1, -z+1; (iii) ; (iv) . | |
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
The title compound, [3,5-(CH3)2C6H3NH3]4H2P6O18.2H2O was synthesized by reaction of the cyclohexaphosphoric acid on 3,5-xylidine in an aqueous solution. The used acid was produced from a Li6P6O18 (Schulke et al., 1985) solution by cation exchange on resins (Amberlite IR 120). The obtained H6P6O18 was added until the a pH between 1 and 2 in the final solution resulted. The same method of preparation was used for the synthesis of [3,5-(CH3)2C6H3NH3]6P6O18.6H2O, but in a less acidic medium (Khederi, et al., 2001). Then this solution was slowly evaporated at room temperature for several days until the formation of transparent prisms of (I) were obtained.
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Tetrakis(3,5-xylidinium) dihydrogen cyclohexaphosphate dihydrate
top Crystal data top 4C8H12N+·H2P6O184−·2H2O | F(000) = 1048 |
Mr = 1000.61 | Dx = 1.477 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 25 reflections |
a = 17.254 (3) Å | θ = 6.3–10.1° |
b = 11.763 (5) Å | µ = 0.32 mm−1 |
c = 11.556 (2) Å | T = 293 K |
β = 106.41 (3)° | Prism, colourless |
V = 2249.9 (11) Å3 | 0.35 × 0.20 × 0.01 mm |
Z = 2 | |
Data collection top Enraf–Nonius CAD-4 diffractometer | Rint = 0.039 |
Radiation source: Enraf Nonius FR590 | θmax = 35.0°, θmin = 3.0° |
Graphite monochromator | h = 0→27 |
non–profiled ω scans | k = −18→0 |
10097 measured reflections | l = −18→17 |
9844 independent reflections | 2 standard reflections every 120 min |
5567 reflections with I > 2σ(I) | intensity decay: 11% |
Refinement top Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.052 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.141 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0664P)2 + 0.0078P] where P = (Fo2 + 2Fc2)/3 |
9844 reflections | (Δ/σ)max = 0.001 |
295 parameters | Δρmax = 0.50 e Å−3 |
3 restraints | Δρmin = −0.51 e Å−3 |
Crystal data top 4C8H12N+·H2P6O184−·2H2O | V = 2249.9 (11) Å3 |
Mr = 1000.61 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 17.254 (3) Å | µ = 0.32 mm−1 |
b = 11.763 (5) Å | T = 293 K |
c = 11.556 (2) Å | 0.35 × 0.20 × 0.01 mm |
β = 106.41 (3)° | |
Data collection top Enraf–Nonius CAD-4 diffractometer | Rint = 0.039 |
10097 measured reflections | 2 standard reflections every 120 min |
9844 independent reflections | intensity decay: 11% |
5567 reflections with I > 2σ(I) | |
Refinement top R[F2 > 2σ(F2)] = 0.052 | 3 restraints |
wR(F2) = 0.141 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.02 | Δρmax = 0.50 e Å−3 |
9844 reflections | Δρmin = −0.51 e Å−3 |
295 parameters | |
Special details top Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
P1 | 0.00136 (3) | 0.52037 (4) | 0.73695 (4) | 0.02425 (10) | |
P2 | 0.09276 (3) | 0.68827 (4) | 0.63729 (4) | 0.02327 (10) | |
P3 | 0.13602 (3) | 0.55149 (4) | 0.45087 (4) | 0.02452 (10) | |
O1 | −0.04452 (9) | 0.43770 (12) | 0.62693 (12) | 0.0358 (3) | |
O2 | −0.05542 (9) | 0.55967 (13) | 0.80125 (13) | 0.0383 (3) | |
O3 | 0.07729 (8) | 0.46237 (12) | 0.80005 (12) | 0.0331 (3) | |
O4 | 0.01792 (9) | 0.62742 (15) | 0.66154 (17) | 0.0516 (5) | |
O5 | 0.06005 (9) | 0.77774 (12) | 0.54796 (13) | 0.0355 (3) | |
O6 | 0.15290 (10) | 0.71634 (14) | 0.75342 (13) | 0.0463 (4) | |
O7 | 0.13336 (10) | 0.58897 (13) | 0.58091 (12) | 0.0411 (4) | |
O8 | 0.18549 (10) | 0.63572 (15) | 0.40517 (15) | 0.0470 (4) | |
H8 | 0.1563 | 0.6703 | 0.3476 | 0.071* | |
O9 | 0.16580 (8) | 0.43352 (11) | 0.46188 (12) | 0.0299 (3) | |
O1W | 0.10923 (9) | 0.23683 (13) | 0.55367 (13) | 0.0350 (3) | |
H2W | 0.1207 (13) | 0.3026 (12) | 0.534 (2) | 0.049 (8)* | |
H1W | 0.0587 (6) | 0.226 (2) | 0.535 (2) | 0.051 (8)* | |
N1 | 0.15651 (10) | 0.26040 (14) | 0.80220 (14) | 0.0286 (3) | |
H1A | 0.1545 | 0.1974 | 0.8438 | 0.043* | |
H1B | 0.1444 | 0.2439 | 0.7240 | 0.043* | |
H1C | 0.1211 | 0.3107 | 0.8146 | 0.043* | |
N2 | 0.13845 (10) | 0.97750 (14) | 0.54343 (15) | 0.0330 (3) | |
H2A | 0.1291 | 1.0056 | 0.4692 | 0.050* | |
H2B | 0.1225 | 1.0275 | 0.5899 | 0.050* | |
H2C | 0.1111 | 0.9129 | 0.5408 | 0.050* | |
C1 | 0.23806 (11) | 0.30866 (16) | 0.84216 (16) | 0.0277 (3) | |
C2 | 0.26029 (13) | 0.38692 (18) | 0.76896 (19) | 0.0374 (5) | |
H2 | 0.2242 | 0.4077 | 0.6958 | 0.045* | |
C3 | 0.33672 (15) | 0.4345 (2) | 0.8052 (2) | 0.0442 (5) | |
C4 | 0.38869 (14) | 0.4024 (2) | 0.9153 (2) | 0.0448 (5) | |
H4 | 0.4401 | 0.4342 | 0.9397 | 0.054* | |
C5 | 0.36648 (13) | 0.3244 (2) | 0.9902 (2) | 0.0389 (5) | |
C6 | 0.28937 (12) | 0.27755 (18) | 0.95214 (18) | 0.0338 (4) | |
H6 | 0.2726 | 0.2255 | 1.0007 | 0.041* | |
C7 | 0.3613 (2) | 0.5219 (3) | 0.7259 (3) | 0.0738 (10) | |
H7A | 0.3367 | 0.5936 | 0.7336 | 0.111* | |
H7B | 0.3438 | 0.4974 | 0.6434 | 0.111* | |
H7C | 0.4190 | 0.5301 | 0.7505 | 0.111* | |
C8 | 0.42344 (16) | 0.2895 (3) | 1.1093 (2) | 0.0611 (8) | |
H8A | 0.4552 | 0.2259 | 1.0973 | 0.092* | |
H8B | 0.3930 | 0.2683 | 1.1638 | 0.092* | |
H8C | 0.4584 | 0.3519 | 1.1428 | 0.092* | |
C9 | 0.22502 (12) | 0.95537 (16) | 0.59349 (17) | 0.0301 (4) | |
C10 | 0.26548 (14) | 0.99879 (18) | 0.70482 (18) | 0.0376 (5) | |
H10 | 0.2387 | 1.0454 | 0.7460 | 0.045* | |
C11 | 0.34615 (15) | 0.9726 (2) | 0.7550 (2) | 0.0457 (5) | |
C12 | 0.38358 (15) | 0.9013 (2) | 0.6916 (2) | 0.0508 (6) | |
H12 | 0.4376 | 0.8823 | 0.7253 | 0.061* | |
C13 | 0.34264 (15) | 0.8571 (2) | 0.5790 (2) | 0.0454 (5) | |
C14 | 0.26241 (14) | 0.88654 (19) | 0.5298 (2) | 0.0391 (5) | |
H14 | 0.2340 | 0.8598 | 0.4540 | 0.047* | |
C15 | 0.3918 (2) | 1.0199 (3) | 0.8766 (3) | 0.0760 (10) | |
H15A | 0.4073 | 1.0970 | 0.8674 | 0.114* | |
H15B | 0.4392 | 0.9749 | 0.9101 | 0.114* | |
H15C | 0.3579 | 1.0179 | 0.9296 | 0.114* | |
C16 | 0.3838 (2) | 0.7769 (3) | 0.5129 (3) | 0.0766 (10) | |
H16A | 0.3464 | 0.7193 | 0.4731 | 0.115* | |
H16B | 0.4293 | 0.7419 | 0.5695 | 0.115* | |
H16C | 0.4021 | 0.8186 | 0.4542 | 0.115* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
P1 | 0.0263 (2) | 0.0223 (2) | 0.0234 (2) | 0.00168 (17) | 0.00594 (16) | 0.00207 (16) |
P2 | 0.0260 (2) | 0.01997 (19) | 0.02237 (19) | −0.00016 (16) | 0.00439 (16) | −0.00186 (15) |
P3 | 0.0315 (2) | 0.0211 (2) | 0.01944 (19) | 0.00324 (17) | 0.00459 (17) | −0.00015 (15) |
O1 | 0.0347 (7) | 0.0350 (7) | 0.0313 (7) | 0.0121 (6) | −0.0010 (6) | −0.0107 (6) |
O2 | 0.0436 (8) | 0.0418 (8) | 0.0324 (7) | 0.0089 (7) | 0.0154 (6) | −0.0037 (6) |
O3 | 0.0305 (7) | 0.0324 (7) | 0.0315 (7) | 0.0082 (6) | 0.0007 (5) | 0.0033 (5) |
O4 | 0.0324 (8) | 0.0516 (10) | 0.0708 (11) | 0.0029 (7) | 0.0147 (8) | 0.0358 (9) |
O5 | 0.0356 (7) | 0.0252 (6) | 0.0419 (8) | 0.0001 (6) | 0.0045 (6) | 0.0094 (6) |
O6 | 0.0525 (10) | 0.0407 (9) | 0.0335 (8) | 0.0069 (7) | −0.0078 (7) | −0.0156 (6) |
O7 | 0.0591 (10) | 0.0392 (8) | 0.0218 (6) | 0.0212 (7) | 0.0061 (6) | −0.0037 (6) |
O8 | 0.0470 (9) | 0.0448 (9) | 0.0454 (9) | −0.0054 (8) | 0.0066 (7) | 0.0210 (7) |
O9 | 0.0348 (7) | 0.0230 (6) | 0.0306 (6) | 0.0049 (5) | 0.0073 (5) | −0.0017 (5) |
O1W | 0.0338 (8) | 0.0331 (8) | 0.0359 (7) | −0.0025 (6) | 0.0064 (6) | 0.0061 (6) |
N1 | 0.0291 (8) | 0.0261 (7) | 0.0294 (7) | −0.0014 (6) | 0.0061 (6) | −0.0001 (6) |
N2 | 0.0352 (9) | 0.0279 (8) | 0.0350 (8) | −0.0015 (7) | 0.0085 (7) | 0.0026 (7) |
C1 | 0.0264 (8) | 0.0258 (8) | 0.0294 (8) | −0.0014 (7) | 0.0055 (7) | −0.0015 (7) |
C2 | 0.0392 (11) | 0.0373 (11) | 0.0323 (10) | −0.0051 (9) | 0.0044 (8) | 0.0045 (8) |
C3 | 0.0442 (12) | 0.0455 (13) | 0.0428 (12) | −0.0135 (10) | 0.0122 (10) | 0.0040 (10) |
C4 | 0.0312 (11) | 0.0496 (13) | 0.0508 (13) | −0.0097 (10) | 0.0067 (10) | −0.0007 (11) |
C5 | 0.0313 (10) | 0.0422 (12) | 0.0380 (11) | 0.0008 (9) | 0.0015 (8) | −0.0005 (9) |
C6 | 0.0322 (10) | 0.0350 (10) | 0.0324 (9) | −0.0008 (8) | 0.0059 (8) | 0.0036 (8) |
C7 | 0.071 (2) | 0.080 (2) | 0.0672 (19) | −0.0334 (17) | 0.0143 (16) | 0.0215 (16) |
C8 | 0.0433 (14) | 0.078 (2) | 0.0486 (14) | −0.0039 (13) | −0.0086 (11) | 0.0127 (13) |
C9 | 0.0334 (9) | 0.0254 (8) | 0.0316 (9) | −0.0034 (7) | 0.0091 (7) | 0.0019 (7) |
C10 | 0.0438 (12) | 0.0372 (11) | 0.0306 (9) | 0.0016 (9) | 0.0087 (9) | −0.0024 (8) |
C11 | 0.0446 (12) | 0.0513 (14) | 0.0341 (11) | −0.0006 (11) | −0.0003 (9) | −0.0010 (10) |
C12 | 0.0362 (12) | 0.0537 (15) | 0.0579 (15) | 0.0039 (11) | 0.0057 (11) | 0.0023 (12) |
C13 | 0.0438 (12) | 0.0412 (12) | 0.0558 (14) | −0.0026 (10) | 0.0217 (11) | −0.0076 (11) |
C14 | 0.0423 (12) | 0.0380 (11) | 0.0377 (10) | −0.0082 (9) | 0.0124 (9) | −0.0095 (9) |
C15 | 0.070 (2) | 0.090 (2) | 0.0484 (15) | 0.0066 (18) | −0.0148 (14) | −0.0129 (16) |
C16 | 0.0589 (18) | 0.082 (2) | 0.098 (3) | 0.0113 (17) | 0.0369 (18) | −0.028 (2) |
Geometric parameters (Å, º) top P1—O2 | 1.4619 (15) | C3—C7 | 1.515 (3) |
P1—O3 | 1.4744 (14) | C4—C5 | 1.388 (3) |
P1—O4 | 1.6024 (16) | C4—H4 | 0.9300 |
P1—O1 | 1.6187 (15) | C5—C6 | 1.392 (3) |
P2—O5 | 1.4706 (15) | C5—C8 | 1.505 (3) |
P2—O6 | 1.4832 (15) | C6—H6 | 0.9300 |
P2—O4 | 1.5692 (16) | C7—H7A | 0.9600 |
P2—O7 | 1.5930 (15) | C7—H7B | 0.9600 |
P3—O9 | 1.4728 (15) | C7—H7C | 0.9600 |
P3—O8 | 1.4980 (16) | C8—H8A | 0.9600 |
P3—O7 | 1.5790 (14) | C8—H8B | 0.9600 |
P3—O1i | 1.5859 (15) | C8—H8C | 0.9600 |
O1—P3i | 1.5859 (15) | C9—C14 | 1.371 (3) |
O8—H8 | 0.8200 | C9—C10 | 1.377 (3) |
O1W—H2W | 0.847 (9) | C10—C11 | 1.383 (3) |
O1W—H1W | 0.846 (9) | C10—H10 | 0.9300 |
N1—C1 | 1.466 (2) | C11—C12 | 1.387 (4) |
N1—H1A | 0.8900 | C11—C15 | 1.510 (3) |
N1—H1B | 0.8900 | C12—C13 | 1.393 (3) |
N1—H1C | 0.8900 | C12—H12 | 0.9300 |
N2—C9 | 1.465 (3) | C13—C14 | 1.384 (3) |
N2—H2A | 0.8900 | C13—C16 | 1.512 (4) |
N2—H2B | 0.8900 | C14—H14 | 0.9300 |
N2—H2C | 0.8900 | C15—H15A | 0.9600 |
C1—C2 | 1.376 (3) | C15—H15B | 0.9600 |
C1—C6 | 1.377 (3) | C15—H15C | 0.9600 |
C2—C3 | 1.384 (3) | C16—H16A | 0.9600 |
C2—H2 | 0.9300 | C16—H16B | 0.9600 |
C3—C4 | 1.386 (3) | C16—H16C | 0.9600 |
| | | |
O2—P1—O3 | 121.63 (9) | C4—C5—C8 | 121.8 (2) |
O2—P1—O4 | 106.02 (10) | C6—C5—C8 | 120.0 (2) |
O3—P1—O4 | 111.25 (9) | C1—C6—C5 | 119.6 (2) |
O2—P1—O1 | 109.87 (9) | C1—C6—H6 | 120.2 |
O3—P1—O1 | 106.24 (8) | C5—C6—H6 | 120.2 |
O4—P1—O1 | 99.66 (10) | C3—C7—H7A | 109.5 |
O5—P2—O6 | 120.50 (10) | C3—C7—H7B | 109.5 |
O5—P2—O4 | 106.25 (9) | H7A—C7—H7B | 109.5 |
O6—P2—O4 | 109.92 (11) | C3—C7—H7C | 109.5 |
O5—P2—O7 | 111.32 (9) | H7A—C7—H7C | 109.5 |
O6—P2—O7 | 104.90 (9) | H7B—C7—H7C | 109.5 |
O4—P2—O7 | 102.57 (10) | C5—C8—H8A | 109.5 |
O9—P3—O8 | 115.72 (10) | C5—C8—H8B | 109.5 |
O9—P3—O7 | 106.50 (8) | H8A—C8—H8B | 109.5 |
O8—P3—O7 | 108.87 (10) | C5—C8—H8C | 109.5 |
O9—P3—O1i | 113.06 (8) | H8A—C8—H8C | 109.5 |
O8—P3—O1i | 108.80 (9) | H8B—C8—H8C | 109.5 |
O7—P3—O1i | 103.02 (9) | C14—C9—C10 | 121.9 (2) |
P3i—O1—P1 | 125.79 (9) | C14—C9—N2 | 118.34 (18) |
P2—O4—P1 | 137.54 (11) | C10—C9—N2 | 119.63 (18) |
P3—O7—P2 | 136.74 (10) | C9—C10—C11 | 119.6 (2) |
P3—O8—H8 | 109.5 | C9—C10—H10 | 120.2 |
H2W—O1W—H1W | 111.4 (19) | C11—C10—H10 | 120.2 |
C1—N1—H1A | 109.5 | C10—C11—C12 | 118.5 (2) |
C1—N1—H1B | 109.5 | C10—C11—C15 | 120.4 (2) |
H1A—N1—H1B | 109.5 | C12—C11—C15 | 121.1 (2) |
C1—N1—H1C | 109.5 | C11—C12—C13 | 122.0 (2) |
H1A—N1—H1C | 109.5 | C11—C12—H12 | 119.0 |
H1B—N1—H1C | 109.5 | C13—C12—H12 | 119.0 |
C9—N2—H2A | 109.5 | C14—C13—C12 | 118.4 (2) |
C9—N2—H2B | 109.5 | C14—C13—C16 | 120.5 (2) |
H2A—N2—H2B | 109.5 | C12—C13—C16 | 121.2 (2) |
C9—N2—H2C | 109.5 | C9—C14—C13 | 119.6 (2) |
H2A—N2—H2C | 109.5 | C9—C14—H14 | 120.2 |
H2B—N2—H2C | 109.5 | C13—C14—H14 | 120.2 |
C2—C1—C6 | 121.79 (18) | C11—C15—H15A | 109.5 |
C2—C1—N1 | 118.35 (17) | C11—C15—H15B | 109.5 |
C6—C1—N1 | 119.83 (17) | H15A—C15—H15B | 109.5 |
C1—C2—C3 | 119.47 (19) | C11—C15—H15C | 109.5 |
C1—C2—H2 | 120.3 | H15A—C15—H15C | 109.5 |
C3—C2—H2 | 120.3 | H15B—C15—H15C | 109.5 |
C2—C3—C4 | 118.8 (2) | C13—C16—H16A | 109.5 |
C2—C3—C7 | 119.8 (2) | C13—C16—H16B | 109.5 |
C4—C3—C7 | 121.4 (2) | H16A—C16—H16B | 109.5 |
C3—C4—C5 | 122.1 (2) | C13—C16—H16C | 109.5 |
C3—C4—H4 | 118.9 | H16A—C16—H16C | 109.5 |
C5—C4—H4 | 118.9 | H16B—C16—H16C | 109.5 |
C4—C5—C6 | 118.2 (2) | | |
Symmetry code: (i) −x, −y+1, −z+1. |
Hydrogen-bond geometry (Å, º) top D—H···A | D—H | H···A | D···A | D—H···A |
O8—H8···O6ii | 0.82 | 1.71 | 2.421 (2) | 144 |
O1W—H2W···O9 | 0.85 (1) | 2.01 (1) | 2.831 (2) | 164 (2) |
O1W—H1W···O5i | 0.85 (1) | 2.00 (1) | 2.829 (2) | 165 (2) |
N1—H1A···O9iii | 0.89 | 2.03 | 2.910 (2) | 170 |
N1—H1B···O1W | 0.89 | 1.89 | 2.769 (2) | 169 |
N1—H1C···O3 | 0.89 | 1.93 | 2.738 (2) | 151 |
N2—H2A···O3ii | 0.89 | 1.94 | 2.801 (2) | 161 |
N2—H2B···O2iv | 0.89 | 1.97 | 2.768 (2) | 148 |
N2—H2C···O5 | 0.89 | 1.83 | 2.719 (2) | 175 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) x, −y+3/2, z−1/2; (iii) x, −y+1/2, z+1/2; (iv) −x, y+1/2, −z+3/2. |
Experimental details
Crystal data |
Chemical formula | 4C8H12N+·H2P6O184−·2H2O |
Mr | 1000.61 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 17.254 (3), 11.763 (5), 11.556 (2) |
β (°) | 106.41 (3) |
V (Å3) | 2249.9 (11) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.32 |
Crystal size (mm) | 0.35 × 0.20 × 0.01 |
|
Data collection |
Diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10097, 9844, 5567 |
Rint | 0.039 |
(sin θ/λ)max (Å−1) | 0.806 |
|
Refinement |
R[F2 > 2σ(F2)], wR(F2), S | 0.052, 0.141, 1.02 |
No. of reflections | 9844 |
No. of parameters | 295 |
No. of restraints | 3 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.50, −0.51 |
Hydrogen-bond geometry (Å, º) top D—H···A | D—H | H···A | D···A | D—H···A |
O8—H8···O6i | 0.82 | 1.71 | 2.421 (2) | 144 |
O1W—H2W···O9 | 0.847 (9) | 2.007 (11) | 2.831 (2) | 164 (2) |
O1W—H1W···O5ii | 0.846 (9) | 2.002 (12) | 2.829 (2) | 165 (2) |
N1—H1A···O9iii | 0.89 | 2.03 | 2.910 (2) | 170 |
N1—H1B···O1W | 0.89 | 1.89 | 2.769 (2) | 169 |
N1—H1C···O3 | 0.89 | 1.93 | 2.738 (2) | 151 |
N2—H2A···O3i | 0.89 | 1.94 | 2.801 (2) | 161 |
N2—H2B···O2iv | 0.89 | 1.97 | 2.768 (2) | 148 |
N2—H2C···O5 | 0.89 | 1.83 | 2.719 (2) | 175 |
Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) −x, −y+1, −z+1; (iii) x, −y+1/2, z+1/2; (iv) −x, y+1/2, −z+3/2. |
References
Amri, O., Abid, S. & Rzaigui, M. (2008). Anal. Sci. X. 24, x277–x278. CSD CrossRef CAS Google Scholar
Baur, W. H. (1974). Acta Cryst. B30, 1195–1215. CrossRef CAS IUCr Journals Web of Science Google Scholar
Brown, I. D. (1976). Acta Cryst. A32, 24–31. CrossRef IUCr Journals Web of Science Google Scholar
Enraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
Janiak, J. (2000). J. Chem. Soc. Dalton Trans. p. 3885–3896. CrossRef Google Scholar
Khederi, L., Marouani, H. & Rzaigui, M. (2001). Z. Kristallogr. New Cryst. Struct. 216, 429–430. CAS Google Scholar
Rayes, A., Ben Naser, C. & Rzaigui, M. (2004). Mater. Res. Bull. 39, 1113–1121. Web of Science CSD CrossRef CAS Google Scholar
Schülke, U. & Kayser, R. (1985). Z. Anorg. Allg. Chem. 531, 167–175. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
| CRYSTALLOGRAPHIC COMMUNICATIONS |
ISSN: 2056-9890
Open
access
Following investigations of Schülke and Kayser (Schulke, et al., 1985)on the condensation-cyclization on LiH2PO4 into Li6P6O18, the crystal chemistry of cyclohexaphosphates developed rapidly. In the present investigation we report synthesis and crystal structure of a first cyclohexaphosphate acid, [3,5-(CH3)2C6H3NH3]4H2P6O18.2H2O, (I).
The title compound, is built up from H2P6O184- anion, four organic 3,5-xylidiniuium cations and two water molecules (Fig. 1). A half of the anion, two organic cations and a water molecule constitute the asymmetric unit of (I).
The atomic arrangement is a typical organization in layers as shows the figure 2. These corrugated layers are constituted of anions and water molecules that develop in the same way to plans (b,c) in x = 0. Charge compensation of these layers is achieved by the incorporation of the protonated 3,5-xylidinium cation in the interlayer spaces establishing H-bonds via their NH3 groups with H2P6O18 rings and water molecules. Inside such a structure, the phosphoric ring has an -1 internal symmetry. It develops around the inversion centers (0,0,0) and (0,1/2,1/2), so it is built up by only three independent tetrahedra. Among the P—O distances in PO4 tetrahedra, we can distinguish three different types. The longest ones correspond to the bridging oxygen atom, the intermediate one, corresponds to the P—OH bonding and the shortest, correspond to the external oxygen atoms. The calculated average values of the distortion indices (Baur, 1974) corresponding to the different angles and distances in the PO4 tetrahedra [DI (OPO) = 0.040; DI (PO) = 0.037; and DI (OO) = 0.016], show a pronounced distortion of the PO distances and OPO angles if compared to OO distances. So, the phosphate group can be considered as a rigid regular arrangement of oxygen atoms, with the phosphorus atom displaced from the gravity centre. It is worth noting that the strong H-bond between phosphoric rings (Table 1)(dO···O = 2.421 (2) Å < 2.73 Å) is never observed in cyclohexaphosphates.
With regards to the organic cation arrangement, these groups are in opposition, by creating thus a local invesion center. Interatomic bond lengths and angles of these groups spread within the respective ranges of 1.371 (3)–1.466 (2) Å and 118.2 (2)–122.1 (2)°. These values are similar to those obtained with the same isomers [Khederi, et al., 2001, Rayes, et al., 2004, Amri, et al., 2008] The aromatic ring of the protonated used amine display an almost coplanar configuration with mean plane deviation of 0.000085 Å and 0.000245 Å. The interplanar distance between the aryl rings of the organic cations is in the vicinity of 4.00 Å, which is significantly longer than 3.80 Å for the π-π interaction (Janiak, 2000). The cohesion forces in this compound are assured by electrostatic interactions, van der Waals contacts and hydrogen bonds (O—H···O, N—H···O).