organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­kis(3,5-xylidinium) di­hydrogen cyclo­hexa­phosphate dihydrate

aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna Bizerte, Tunisia
*Correspondence e-mail: houda.marouani@fsb.rnu.tn

(Received 2 December 2009; accepted 17 December 2009; online 24 December 2009)

In the title compound, 4C8H12N+·H2P6O184−·2H2O, the complete cyclo­hexa­phosphate anion is generated by inversion symmetry. Crystal cohesion and stability are supported by electrostatic inter­actions which, together with N—H⋯O and O—H⋯O hydrogen bonds, build up a three-dimensional network.

Related literature

For related structures, see: Khederi et al. (2001[Khederi, L., Marouani, H. & Rzaigui, M. (2001). Z. Kristallogr. New Cryst. Struct. 216, 429-430.]); Rayes et al. (2004[Rayes, A., Ben Naser, C. & Rzaigui, M. (2004). Mater. Res. Bull. 39, 1113-1121.]); Amri et al. (2008[Amri, O., Abid, S. & Rzaigui, M. (2008). Anal. Sci. X. 24, x277-x278.]); Janiak et al. (2000[Janiak, J. (2000). J. Chem. Soc. Dalton Trans. p. 3885-3896.]). For a discussion on hydrogen bonding, see: Brown (1976[Brown, I. D. (1976). Acta Cryst. A32, 24-31.]). For tetra­hedral distortions, see: Baur (1974[Baur, W. H. (1974). Acta Cryst. B30, 1195-1215.]). For the preparation of cyclo­hexa­phospho­ric acid, see: Schülke & Kayser (1985[Schülke, U. & Kayser, R. (1985). Z. Anorg. Allg. Chem. 531, 167-175.]).

[Scheme 1]

Experimental

Crystal data
  • 4C8H12N+·H2P6O184−·2H2O

  • Mr = 1000.61

  • Monoclinic, P 21 /c

  • a = 17.254 (3) Å

  • b = 11.763 (5) Å

  • c = 11.556 (2) Å

  • β = 106.41 (3)°

  • V = 2249.9 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 293 K

  • 0.35 × 0.20 × 0.01 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • 10097 measured reflections

  • 9844 independent reflections

  • 5567 reflections with I > 2σ(I)

  • Rint = 0.039

  • 2 standard reflections every 120 min intensity decay: 11%

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.141

  • S = 1.02

  • 9844 reflections

  • 295 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O8—H8⋯O6i 0.82 1.71 2.421 (2) 144
O1W—H2W⋯O9 0.85 (1) 2.01 (1) 2.831 (2) 164 (2)
O1W—H1W⋯O5ii 0.85 (1) 2.00 (1) 2.829 (2) 165 (2)
N1—H1A⋯O9iii 0.89 2.03 2.910 (2) 170
N1—H1B⋯O1W 0.89 1.89 2.769 (2) 169
N1—H1C⋯O3 0.89 1.93 2.738 (2) 151
N2—H2A⋯O3i 0.89 1.94 2.801 (2) 161
N2—H2B⋯O2iv 0.89 1.97 2.768 (2) 148
N2—H2C⋯O5 0.89 1.83 2.719 (2) 175
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) -x, -y+1, -z+1; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Following investigations of Schülke and Kayser (Schulke, et al., 1985)on the condensation-cyclization on LiH2PO4 into Li6P6O18, the crystal chemistry of cyclohexaphosphates developed rapidly. In the present investigation we report synthesis and crystal structure of a first cyclohexaphosphate acid, [3,5-(CH3)2C6H3NH3]4H2P6O18.2H2O, (I).

The title compound, is built up from H2P6O184- anion, four organic 3,5-xylidiniuium cations and two water molecules (Fig. 1). A half of the anion, two organic cations and a water molecule constitute the asymmetric unit of (I).

The atomic arrangement is a typical organization in layers as shows the figure 2. These corrugated layers are constituted of anions and water molecules that develop in the same way to plans (b,c) in x = 0. Charge compensation of these layers is achieved by the incorporation of the protonated 3,5-xylidinium cation in the interlayer spaces establishing H-bonds via their NH3 groups with H2P6O18 rings and water molecules. Inside such a structure, the phosphoric ring has an -1 internal symmetry. It develops around the inversion centers (0,0,0) and (0,1/2,1/2), so it is built up by only three independent tetrahedra. Among the P—O distances in PO4 tetrahedra, we can distinguish three different types. The longest ones correspond to the bridging oxygen atom, the intermediate one, corresponds to the P—OH bonding and the shortest, correspond to the external oxygen atoms. The calculated average values of the distortion indices (Baur, 1974) corresponding to the different angles and distances in the PO4 tetrahedra [DI (OPO) = 0.040; DI (PO) = 0.037; and DI (OO) = 0.016], show a pronounced distortion of the PO distances and OPO angles if compared to OO distances. So, the phosphate group can be considered as a rigid regular arrangement of oxygen atoms, with the phosphorus atom displaced from the gravity centre. It is worth noting that the strong H-bond between phosphoric rings (Table 1)(dO···O = 2.421 (2) Å < 2.73 Å) is never observed in cyclohexaphosphates.

With regards to the organic cation arrangement, these groups are in opposition, by creating thus a local invesion center. Interatomic bond lengths and angles of these groups spread within the respective ranges of 1.371 (3)–1.466 (2) Å and 118.2 (2)–122.1 (2)°. These values are similar to those obtained with the same isomers [Khederi, et al., 2001, Rayes, et al., 2004, Amri, et al., 2008] The aromatic ring of the protonated used amine display an almost coplanar configuration with mean plane deviation of 0.000085 Å and 0.000245 Å. The interplanar distance between the aryl rings of the organic cations is in the vicinity of 4.00 Å, which is significantly longer than 3.80 Å for the π-π interaction (Janiak, 2000). The cohesion forces in this compound are assured by electrostatic interactions, van der Waals contacts and hydrogen bonds (O—H···O, N—H···O).

Related literature top

For related structures, see: Khederi et al. (2001); Rayes et al. (2004); Amri et al. (2008); Janiak et al. (2000). For a discussion on hydrogen bonding, see: Brown (1976). For tetrahedral distortions, see: Baur (1974). For the preparation of cyclohexaphosphoric acid, see: Schulke & Kayser (1985).

Experimental top

The title compound, [3,5-(CH3)2C6H3NH3]4H2P6O18.2H2O was synthesized by reaction of the cyclohexaphosphoric acid on 3,5-xylidine in an aqueous solution. The used acid was produced from a Li6P6O18 (Schulke et al., 1985) solution by cation exchange on resins (Amberlite IR 120). The obtained H6P6O18 was added until the a pH between 1 and 2 in the final solution resulted. The same method of preparation was used for the synthesis of [3,5-(CH3)2C6H3NH3]6P6O18.6H2O, but in a less acidic medium (Khederi, et al., 2001). Then this solution was slowly evaporated at room temperature for several days until the formation of transparent prisms of (I) were obtained.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of (I) with displacement ellipsoids drawn at the 30% probability level. Symmetry code: (i) - x, - y, - z.
[Figure 2] Fig. 2. Projection of (I) along the c axis.
Tetrakis(3,5-xylidinium) dihydrogen cyclohexaphosphate dihydrate top
Crystal data top
4C8H12N+·H2P6O184·2H2OF(000) = 1048
Mr = 1000.61Dx = 1.477 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 17.254 (3) Åθ = 6.3–10.1°
b = 11.763 (5) ŵ = 0.32 mm1
c = 11.556 (2) ÅT = 293 K
β = 106.41 (3)°Prism, colourless
V = 2249.9 (11) Å30.35 × 0.20 × 0.01 mm
Z = 2
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.039
Radiation source: Enraf Nonius FR590θmax = 35.0°, θmin = 3.0°
Graphite monochromatorh = 027
non–profiled ω scansk = 180
10097 measured reflectionsl = 1817
9844 independent reflections2 standard reflections every 120 min
5567 reflections with I > 2σ(I) intensity decay: 11%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0664P)2 + 0.0078P]
where P = (Fo2 + 2Fc2)/3
9844 reflections(Δ/σ)max = 0.001
295 parametersΔρmax = 0.50 e Å3
3 restraintsΔρmin = 0.51 e Å3
Crystal data top
4C8H12N+·H2P6O184·2H2OV = 2249.9 (11) Å3
Mr = 1000.61Z = 2
Monoclinic, P21/cMo Kα radiation
a = 17.254 (3) ŵ = 0.32 mm1
b = 11.763 (5) ÅT = 293 K
c = 11.556 (2) Å0.35 × 0.20 × 0.01 mm
β = 106.41 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.039
10097 measured reflections2 standard reflections every 120 min
9844 independent reflections intensity decay: 11%
5567 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0523 restraints
wR(F2) = 0.141H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.50 e Å3
9844 reflectionsΔρmin = 0.51 e Å3
295 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.00136 (3)0.52037 (4)0.73695 (4)0.02425 (10)
P20.09276 (3)0.68827 (4)0.63729 (4)0.02327 (10)
P30.13602 (3)0.55149 (4)0.45087 (4)0.02452 (10)
O10.04452 (9)0.43770 (12)0.62693 (12)0.0358 (3)
O20.05542 (9)0.55967 (13)0.80125 (13)0.0383 (3)
O30.07729 (8)0.46237 (12)0.80005 (12)0.0331 (3)
O40.01792 (9)0.62742 (15)0.66154 (17)0.0516 (5)
O50.06005 (9)0.77774 (12)0.54796 (13)0.0355 (3)
O60.15290 (10)0.71634 (14)0.75342 (13)0.0463 (4)
O70.13336 (10)0.58897 (13)0.58091 (12)0.0411 (4)
O80.18549 (10)0.63572 (15)0.40517 (15)0.0470 (4)
H80.15630.67030.34760.071*
O90.16580 (8)0.43352 (11)0.46188 (12)0.0299 (3)
O1W0.10923 (9)0.23683 (13)0.55367 (13)0.0350 (3)
H2W0.1207 (13)0.3026 (12)0.534 (2)0.049 (8)*
H1W0.0587 (6)0.226 (2)0.535 (2)0.051 (8)*
N10.15651 (10)0.26040 (14)0.80220 (14)0.0286 (3)
H1A0.15450.19740.84380.043*
H1B0.14440.24390.72400.043*
H1C0.12110.31070.81460.043*
N20.13845 (10)0.97750 (14)0.54343 (15)0.0330 (3)
H2A0.12911.00560.46920.050*
H2B0.12251.02750.58990.050*
H2C0.11110.91290.54080.050*
C10.23806 (11)0.30866 (16)0.84216 (16)0.0277 (3)
C20.26029 (13)0.38692 (18)0.76896 (19)0.0374 (5)
H20.22420.40770.69580.045*
C30.33672 (15)0.4345 (2)0.8052 (2)0.0442 (5)
C40.38869 (14)0.4024 (2)0.9153 (2)0.0448 (5)
H40.44010.43420.93970.054*
C50.36648 (13)0.3244 (2)0.9902 (2)0.0389 (5)
C60.28937 (12)0.27755 (18)0.95214 (18)0.0338 (4)
H60.27260.22551.00070.041*
C70.3613 (2)0.5219 (3)0.7259 (3)0.0738 (10)
H7A0.33670.59360.73360.111*
H7B0.34380.49740.64340.111*
H7C0.41900.53010.75050.111*
C80.42344 (16)0.2895 (3)1.1093 (2)0.0611 (8)
H8A0.45520.22591.09730.092*
H8B0.39300.26831.16380.092*
H8C0.45840.35191.14280.092*
C90.22502 (12)0.95537 (16)0.59349 (17)0.0301 (4)
C100.26548 (14)0.99879 (18)0.70482 (18)0.0376 (5)
H100.23871.04540.74600.045*
C110.34615 (15)0.9726 (2)0.7550 (2)0.0457 (5)
C120.38358 (15)0.9013 (2)0.6916 (2)0.0508 (6)
H120.43760.88230.72530.061*
C130.34264 (15)0.8571 (2)0.5790 (2)0.0454 (5)
C140.26241 (14)0.88654 (19)0.5298 (2)0.0391 (5)
H140.23400.85980.45400.047*
C150.3918 (2)1.0199 (3)0.8766 (3)0.0760 (10)
H15A0.40731.09700.86740.114*
H15B0.43920.97490.91010.114*
H15C0.35791.01790.92960.114*
C160.3838 (2)0.7769 (3)0.5129 (3)0.0766 (10)
H16A0.34640.71930.47310.115*
H16B0.42930.74190.56950.115*
H16C0.40210.81860.45420.115*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0263 (2)0.0223 (2)0.0234 (2)0.00168 (17)0.00594 (16)0.00207 (16)
P20.0260 (2)0.01997 (19)0.02237 (19)0.00016 (16)0.00439 (16)0.00186 (15)
P30.0315 (2)0.0211 (2)0.01944 (19)0.00324 (17)0.00459 (17)0.00015 (15)
O10.0347 (7)0.0350 (7)0.0313 (7)0.0121 (6)0.0010 (6)0.0107 (6)
O20.0436 (8)0.0418 (8)0.0324 (7)0.0089 (7)0.0154 (6)0.0037 (6)
O30.0305 (7)0.0324 (7)0.0315 (7)0.0082 (6)0.0007 (5)0.0033 (5)
O40.0324 (8)0.0516 (10)0.0708 (11)0.0029 (7)0.0147 (8)0.0358 (9)
O50.0356 (7)0.0252 (6)0.0419 (8)0.0001 (6)0.0045 (6)0.0094 (6)
O60.0525 (10)0.0407 (9)0.0335 (8)0.0069 (7)0.0078 (7)0.0156 (6)
O70.0591 (10)0.0392 (8)0.0218 (6)0.0212 (7)0.0061 (6)0.0037 (6)
O80.0470 (9)0.0448 (9)0.0454 (9)0.0054 (8)0.0066 (7)0.0210 (7)
O90.0348 (7)0.0230 (6)0.0306 (6)0.0049 (5)0.0073 (5)0.0017 (5)
O1W0.0338 (8)0.0331 (8)0.0359 (7)0.0025 (6)0.0064 (6)0.0061 (6)
N10.0291 (8)0.0261 (7)0.0294 (7)0.0014 (6)0.0061 (6)0.0001 (6)
N20.0352 (9)0.0279 (8)0.0350 (8)0.0015 (7)0.0085 (7)0.0026 (7)
C10.0264 (8)0.0258 (8)0.0294 (8)0.0014 (7)0.0055 (7)0.0015 (7)
C20.0392 (11)0.0373 (11)0.0323 (10)0.0051 (9)0.0044 (8)0.0045 (8)
C30.0442 (12)0.0455 (13)0.0428 (12)0.0135 (10)0.0122 (10)0.0040 (10)
C40.0312 (11)0.0496 (13)0.0508 (13)0.0097 (10)0.0067 (10)0.0007 (11)
C50.0313 (10)0.0422 (12)0.0380 (11)0.0008 (9)0.0015 (8)0.0005 (9)
C60.0322 (10)0.0350 (10)0.0324 (9)0.0008 (8)0.0059 (8)0.0036 (8)
C70.071 (2)0.080 (2)0.0672 (19)0.0334 (17)0.0143 (16)0.0215 (16)
C80.0433 (14)0.078 (2)0.0486 (14)0.0039 (13)0.0086 (11)0.0127 (13)
C90.0334 (9)0.0254 (8)0.0316 (9)0.0034 (7)0.0091 (7)0.0019 (7)
C100.0438 (12)0.0372 (11)0.0306 (9)0.0016 (9)0.0087 (9)0.0024 (8)
C110.0446 (12)0.0513 (14)0.0341 (11)0.0006 (11)0.0003 (9)0.0010 (10)
C120.0362 (12)0.0537 (15)0.0579 (15)0.0039 (11)0.0057 (11)0.0023 (12)
C130.0438 (12)0.0412 (12)0.0558 (14)0.0026 (10)0.0217 (11)0.0076 (11)
C140.0423 (12)0.0380 (11)0.0377 (10)0.0082 (9)0.0124 (9)0.0095 (9)
C150.070 (2)0.090 (2)0.0484 (15)0.0066 (18)0.0148 (14)0.0129 (16)
C160.0589 (18)0.082 (2)0.098 (3)0.0113 (17)0.0369 (18)0.028 (2)
Geometric parameters (Å, º) top
P1—O21.4619 (15)C3—C71.515 (3)
P1—O31.4744 (14)C4—C51.388 (3)
P1—O41.6024 (16)C4—H40.9300
P1—O11.6187 (15)C5—C61.392 (3)
P2—O51.4706 (15)C5—C81.505 (3)
P2—O61.4832 (15)C6—H60.9300
P2—O41.5692 (16)C7—H7A0.9600
P2—O71.5930 (15)C7—H7B0.9600
P3—O91.4728 (15)C7—H7C0.9600
P3—O81.4980 (16)C8—H8A0.9600
P3—O71.5790 (14)C8—H8B0.9600
P3—O1i1.5859 (15)C8—H8C0.9600
O1—P3i1.5859 (15)C9—C141.371 (3)
O8—H80.8200C9—C101.377 (3)
O1W—H2W0.847 (9)C10—C111.383 (3)
O1W—H1W0.846 (9)C10—H100.9300
N1—C11.466 (2)C11—C121.387 (4)
N1—H1A0.8900C11—C151.510 (3)
N1—H1B0.8900C12—C131.393 (3)
N1—H1C0.8900C12—H120.9300
N2—C91.465 (3)C13—C141.384 (3)
N2—H2A0.8900C13—C161.512 (4)
N2—H2B0.8900C14—H140.9300
N2—H2C0.8900C15—H15A0.9600
C1—C21.376 (3)C15—H15B0.9600
C1—C61.377 (3)C15—H15C0.9600
C2—C31.384 (3)C16—H16A0.9600
C2—H20.9300C16—H16B0.9600
C3—C41.386 (3)C16—H16C0.9600
O2—P1—O3121.63 (9)C4—C5—C8121.8 (2)
O2—P1—O4106.02 (10)C6—C5—C8120.0 (2)
O3—P1—O4111.25 (9)C1—C6—C5119.6 (2)
O2—P1—O1109.87 (9)C1—C6—H6120.2
O3—P1—O1106.24 (8)C5—C6—H6120.2
O4—P1—O199.66 (10)C3—C7—H7A109.5
O5—P2—O6120.50 (10)C3—C7—H7B109.5
O5—P2—O4106.25 (9)H7A—C7—H7B109.5
O6—P2—O4109.92 (11)C3—C7—H7C109.5
O5—P2—O7111.32 (9)H7A—C7—H7C109.5
O6—P2—O7104.90 (9)H7B—C7—H7C109.5
O4—P2—O7102.57 (10)C5—C8—H8A109.5
O9—P3—O8115.72 (10)C5—C8—H8B109.5
O9—P3—O7106.50 (8)H8A—C8—H8B109.5
O8—P3—O7108.87 (10)C5—C8—H8C109.5
O9—P3—O1i113.06 (8)H8A—C8—H8C109.5
O8—P3—O1i108.80 (9)H8B—C8—H8C109.5
O7—P3—O1i103.02 (9)C14—C9—C10121.9 (2)
P3i—O1—P1125.79 (9)C14—C9—N2118.34 (18)
P2—O4—P1137.54 (11)C10—C9—N2119.63 (18)
P3—O7—P2136.74 (10)C9—C10—C11119.6 (2)
P3—O8—H8109.5C9—C10—H10120.2
H2W—O1W—H1W111.4 (19)C11—C10—H10120.2
C1—N1—H1A109.5C10—C11—C12118.5 (2)
C1—N1—H1B109.5C10—C11—C15120.4 (2)
H1A—N1—H1B109.5C12—C11—C15121.1 (2)
C1—N1—H1C109.5C11—C12—C13122.0 (2)
H1A—N1—H1C109.5C11—C12—H12119.0
H1B—N1—H1C109.5C13—C12—H12119.0
C9—N2—H2A109.5C14—C13—C12118.4 (2)
C9—N2—H2B109.5C14—C13—C16120.5 (2)
H2A—N2—H2B109.5C12—C13—C16121.2 (2)
C9—N2—H2C109.5C9—C14—C13119.6 (2)
H2A—N2—H2C109.5C9—C14—H14120.2
H2B—N2—H2C109.5C13—C14—H14120.2
C2—C1—C6121.79 (18)C11—C15—H15A109.5
C2—C1—N1118.35 (17)C11—C15—H15B109.5
C6—C1—N1119.83 (17)H15A—C15—H15B109.5
C1—C2—C3119.47 (19)C11—C15—H15C109.5
C1—C2—H2120.3H15A—C15—H15C109.5
C3—C2—H2120.3H15B—C15—H15C109.5
C2—C3—C4118.8 (2)C13—C16—H16A109.5
C2—C3—C7119.8 (2)C13—C16—H16B109.5
C4—C3—C7121.4 (2)H16A—C16—H16B109.5
C3—C4—C5122.1 (2)C13—C16—H16C109.5
C3—C4—H4118.9H16A—C16—H16C109.5
C5—C4—H4118.9H16B—C16—H16C109.5
C4—C5—C6118.2 (2)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8···O6ii0.821.712.421 (2)144
O1W—H2W···O90.85 (1)2.01 (1)2.831 (2)164 (2)
O1W—H1W···O5i0.85 (1)2.00 (1)2.829 (2)165 (2)
N1—H1A···O9iii0.892.032.910 (2)170
N1—H1B···O1W0.891.892.769 (2)169
N1—H1C···O30.891.932.738 (2)151
N2—H2A···O3ii0.891.942.801 (2)161
N2—H2B···O2iv0.891.972.768 (2)148
N2—H2C···O50.891.832.719 (2)175
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+3/2, z1/2; (iii) x, y+1/2, z+1/2; (iv) x, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formula4C8H12N+·H2P6O184·2H2O
Mr1000.61
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)17.254 (3), 11.763 (5), 11.556 (2)
β (°) 106.41 (3)
V3)2249.9 (11)
Z2
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.35 × 0.20 × 0.01
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10097, 9844, 5567
Rint0.039
(sin θ/λ)max1)0.806
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.141, 1.02
No. of reflections9844
No. of parameters295
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.50, 0.51

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS86 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8···O6i0.821.712.421 (2)144
O1W—H2W···O90.847 (9)2.007 (11)2.831 (2)164 (2)
O1W—H1W···O5ii0.846 (9)2.002 (12)2.829 (2)165 (2)
N1—H1A···O9iii0.892.032.910 (2)170
N1—H1B···O1W0.891.892.769 (2)169
N1—H1C···O30.891.932.738 (2)151
N2—H2A···O3i0.891.942.801 (2)161
N2—H2B···O2iv0.891.972.768 (2)148
N2—H2C···O50.891.832.719 (2)175
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+1, z+1; (iii) x, y+1/2, z+1/2; (iv) x, y+1/2, z+3/2.
 

References

First citationAmri, O., Abid, S. & Rzaigui, M. (2008). Anal. Sci. X. 24, x277–x278.  CSD CrossRef CAS Google Scholar
First citationBaur, W. H. (1974). Acta Cryst. B30, 1195–1215.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBrown, I. D. (1976). Acta Cryst. A32, 24–31.  CrossRef IUCr Journals Web of Science Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationJaniak, J. (2000). J. Chem. Soc. Dalton Trans. p. 3885–3896.  CrossRef Google Scholar
First citationKhederi, L., Marouani, H. & Rzaigui, M. (2001). Z. Kristallogr. New Cryst. Struct. 216, 429–430.  CAS Google Scholar
First citationRayes, A., Ben Naser, C. & Rzaigui, M. (2004). Mater. Res. Bull. 39, 1113–1121.  Web of Science CSD CrossRef CAS Google Scholar
First citationSchülke, U. & Kayser, R. (1985). Z. Anorg. Allg. Chem. 531, 167–175.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds