organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(propan-2-yl) [(1S)-1-(4-fluoro­phen­yl)-1-hydr­­oxy-2-nitro­ethyl]phospho­nate

aDepartment of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 4 December 2009; accepted 7 December 2009; online 12 December 2009)

In the title compound, C14H21FNO6P, a staggered conformation about the central P—C bond occurs, with the oxo and hydroxyl groups occupying diagonally opposite positions. The crystal structure features supra­molecular chains mediated by O—H⋯O hydrogen bonds, which propagate in the a-axis direction. A C—H⋯O inter­action consolidates the chains. Disorder was resolved for one of the isopropyl groups with a 0.60 (2):0.40 (2) occupancy ratio for the two components.

Related literature

For background to the enanti­oselective nitro­aldol reaction of α-ketophospho­nates and nitro­methane and for the synthesis, see: Mandal et al. (2007[Mandal, T., Samanta, S. & Zhao, C.-G. (2007). Org. Lett. 9, 943-945.]).

[Scheme 1]

Experimental

Crystal data
  • C14H21FNO6P

  • Mr = 349.29

  • Orthorhombic, P 21 21 21

  • a = 5.8267 (12) Å

  • b = 15.931 (3) Å

  • c = 18.273 (4) Å

  • V = 1696.2 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 173 K

  • 0.31 × 0.15 × 0.06 mm

Data collection
  • Rigaku AFC12/SATURN724 diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.790, Tmax = 1

  • 6049 measured reflections

  • 3391 independent reflections

  • 3248 reflections with I > 2σ(I)

  • Rint = 0.027

  • Standard reflections: 0

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.117

  • S = 1.04

  • 3391 reflections

  • 211 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.43 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1354 Friedel pairs

  • Flack parameter: −0.11 (13)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4o⋯O1i 0.84 1.94 2.728 (3) 156
C10—H10⋯O5ii 0.95 2.52 3.447 (4) 164
Symmetry codes: (i) x-1, y, z; (ii) x+1, y, z.

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

In connection with previous studies on the enantioselective nitroaldol reaction of α-ketophosphonates and nitromethane for the synthesis of optically active α-hydroxy-β-nitrophosphonates, the title compound, (I), was investigated. The crystal structure analysis of (I), Fig. 1, shows an S-configuration about the C7 atom. When viewed down the P–C7 axis, the molecule has a staggered conformation with the PO and OH groups being diagonally opposite. The presence of O–H···O hydrogen bonding formed between the hydroxyl-O4—H and OP atoms leads to the formation of supramolecular chains along [1 0 0], Fig. 2 and Table 1. Stability to these chains of linear topology is afforded by C–H···O contacts, Table 1.

Related literature top

For background to the enantioselective nitroaldol reaction of α-ketophosphonates and nitromethane and for the synthesis, see: Mandal et al. (2007).

Experimental top

The title compound was prepared as described in the literature (Mandal et al., 2007).

Refinement top

The C-bound H atoms were geometrically placed (C—H = 0.95–1.00 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C). The methyl H-atoms were rotated to fit the electron density. The O–H H atom was located from a difference map and refined with O–H = 0.840±0.001 Å, and with Uiso(H) = 1.5Ueq(O). Disorder is evident in the structure as seen in the anisotropic displacement parameters associated with several residues. However, multiple sites were only resolved for the C6 atom. Two distinct sites were resolved from isotropic refinement of C6/C60 with the major component having a site occupancy factor of 0.60 (2).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing displacement ellipsoids at the 50% probability level. Only the major component of the C6 position is shown (the atom was refined isotropically).
[Figure 2] Fig. 2. Supramolecular chain along the a axis in (I) mediated by O–H···O (orange dashed lines) hydrogen bonding. Colour scheme: P, pink; F, orange; O, red; N, blue; C, grey; and H, green.
Bis(propan-2-yl) [(1S)-1-(4-fluorophenyl)-1-hydroxy-2-nitroethyl]phosphonate top
Crystal data top
C14H21FNO6PF(000) = 736
Mr = 349.29Dx = 1.368 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 6077 reflections
a = 5.8267 (12) Åθ = 4.2–30.5°
b = 15.931 (3) ŵ = 0.20 mm1
c = 18.273 (4) ÅT = 173 K
V = 1696.2 (6) Å3Block, colourless
Z = 40.31 × 0.15 × 0.06 mm
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
3391 independent reflections
Radiation source: fine-focus sealed tube3248 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω scansθmax = 26.5°, θmin = 4.2°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 75
Tmin = 0.790, Tmax = 1k = 2013
6049 measured reflectionsl = 2218
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.117 w = 1/[σ2(Fo2) + (0.0528P)2 + 0.8973P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3391 reflectionsΔρmax = 0.48 e Å3
211 parametersΔρmin = 0.43 e Å3
1 restraintAbsolute structure: Flack (1983), 1354 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.11 (13)
Crystal data top
C14H21FNO6PV = 1696.2 (6) Å3
Mr = 349.29Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.8267 (12) ŵ = 0.20 mm1
b = 15.931 (3) ÅT = 173 K
c = 18.273 (4) Å0.31 × 0.15 × 0.06 mm
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
3391 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3248 reflections with I > 2σ(I)
Tmin = 0.790, Tmax = 1Rint = 0.027
6049 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.117Δρmax = 0.48 e Å3
S = 1.04Δρmin = 0.43 e Å3
3391 reflectionsAbsolute structure: Flack (1983), 1354 Friedel pairs
211 parametersAbsolute structure parameter: 0.11 (13)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
P10.90429 (11)0.45039 (4)0.97285 (3)0.02753 (16)
F11.1808 (4)0.75747 (13)0.76550 (11)0.0698 (7)
O11.1339 (3)0.41823 (11)0.95590 (10)0.0332 (4)
O20.8946 (3)0.52834 (11)1.02505 (10)0.0351 (4)
O30.7358 (3)0.38649 (12)1.00898 (10)0.0367 (5)
O40.5136 (3)0.50239 (11)0.90853 (11)0.0321 (4)
H4O0.42450.46480.92370.048*
O50.3934 (4)0.36867 (16)0.78091 (14)0.0629 (7)
O60.6260 (6)0.45661 (17)0.73135 (13)0.0832 (10)
N10.5743 (5)0.40835 (15)0.77945 (14)0.0468 (6)
C11.0726 (5)0.59419 (18)1.02606 (16)0.0428 (7)
H11.13520.60240.97560.051*
C20.9465 (7)0.6725 (2)1.0502 (2)0.0619 (10)
H2A0.82520.68561.01490.093*
H2B1.05450.71961.05290.093*
H2C0.87820.66301.09850.093*
C31.2628 (6)0.5689 (2)1.07709 (18)0.0539 (9)
H3A1.33730.51801.05850.081*
H3B1.19920.55781.12580.081*
H3C1.37580.61431.08020.081*
C40.7057 (8)0.3642 (3)1.08354 (19)0.0803 (15)0.60 (2)
H40.64890.41551.10920.096*0.60 (2)
C50.5148 (8)0.3014 (3)1.0862 (2)0.0710 (12)0.60 (2)
H5A0.39310.31831.05220.107*0.60 (2)
H5B0.45280.29871.13600.107*0.60 (2)
H5C0.57350.24601.07210.107*0.60 (2)
C60.9077 (14)0.3372 (7)1.1220 (5)0.058 (2)*0.60 (2)
H6A1.01680.38391.12510.087*0.60 (2)
H6B0.97860.29031.09570.087*0.60 (2)
H6C0.86550.31911.17150.087*0.60 (2)
C400.7057 (8)0.3642 (3)1.08354 (19)0.0803 (15)0.40 (2)
H400.61320.41431.09830.096*0.40 (2)
C500.5148 (8)0.3014 (3)1.0862 (2)0.0710 (12)0.40 (2)
H50A0.39310.31831.05220.107*0.40 (2)
H50B0.45280.29871.13600.107*0.40 (2)
H50C0.57350.24601.07210.107*0.40 (2)
C600.8713 (15)0.3703 (8)1.1382 (5)0.041 (3)*0.40 (2)
H60A0.99490.40751.12180.062*0.40 (2)
H60B0.93420.31451.14850.062*0.40 (2)
H60C0.80140.39321.18270.062*0.40 (2)
C70.7379 (4)0.47723 (15)0.88976 (14)0.0258 (5)
C80.7355 (5)0.39729 (16)0.84242 (14)0.0328 (6)
H8A0.89200.38580.82390.039*
H8B0.68630.34880.87250.039*
C90.8523 (4)0.55250 (16)0.85275 (12)0.0274 (5)
C101.0637 (5)0.54344 (19)0.81713 (14)0.0376 (6)
H101.13270.48960.81340.045*
C111.1721 (5)0.6126 (2)0.78744 (17)0.0464 (8)
H111.31490.60690.76290.056*
C121.0702 (6)0.68921 (19)0.79409 (16)0.0457 (8)
C130.8621 (6)0.70094 (18)0.82673 (16)0.0435 (7)
H130.79330.75500.82850.052*
C140.7536 (5)0.63162 (16)0.85730 (15)0.0344 (6)
H140.61060.63850.88150.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0271 (3)0.0296 (3)0.0259 (3)0.0048 (3)0.0000 (3)0.0023 (3)
F10.0853 (16)0.0602 (12)0.0640 (12)0.0366 (12)0.0008 (12)0.0286 (10)
O10.0281 (9)0.0341 (9)0.0373 (9)0.0007 (8)0.0010 (8)0.0052 (8)
O20.0347 (9)0.0391 (9)0.0316 (8)0.0100 (8)0.0013 (9)0.0067 (8)
O30.0377 (10)0.0416 (10)0.0307 (9)0.0140 (9)0.0015 (8)0.0084 (8)
O40.0241 (9)0.0320 (10)0.0402 (11)0.0023 (8)0.0052 (8)0.0023 (9)
O50.0469 (13)0.0661 (15)0.0756 (16)0.0048 (13)0.0221 (14)0.0285 (13)
O60.135 (3)0.0656 (16)0.0492 (13)0.018 (2)0.0420 (18)0.0132 (13)
N10.0594 (17)0.0359 (12)0.0451 (14)0.0120 (13)0.0185 (14)0.0116 (12)
C10.0459 (16)0.0463 (15)0.0363 (14)0.0209 (14)0.0003 (15)0.0061 (13)
C20.076 (3)0.0427 (17)0.067 (2)0.0038 (18)0.015 (2)0.0106 (16)
C30.0390 (16)0.076 (2)0.0469 (17)0.0115 (17)0.0008 (15)0.0171 (17)
C40.092 (3)0.110 (3)0.0382 (17)0.061 (3)0.021 (2)0.032 (2)
C50.081 (3)0.084 (3)0.0478 (18)0.056 (2)0.0012 (19)0.015 (2)
C400.092 (3)0.110 (3)0.0382 (17)0.061 (3)0.021 (2)0.032 (2)
C500.081 (3)0.084 (3)0.0478 (18)0.056 (2)0.0012 (19)0.015 (2)
C70.0230 (11)0.0238 (11)0.0308 (12)0.0007 (9)0.0024 (10)0.0012 (9)
C80.0378 (14)0.0271 (12)0.0334 (13)0.0034 (12)0.0096 (12)0.0024 (10)
C90.0310 (13)0.0290 (12)0.0223 (10)0.0019 (11)0.0005 (10)0.0033 (10)
C100.0320 (13)0.0476 (15)0.0333 (13)0.0033 (13)0.0049 (12)0.0111 (13)
C110.0352 (14)0.062 (2)0.0421 (15)0.0051 (14)0.0041 (14)0.0217 (15)
C120.0546 (19)0.0472 (17)0.0352 (14)0.0202 (16)0.0075 (15)0.0172 (13)
C130.060 (2)0.0307 (13)0.0398 (14)0.0088 (14)0.0010 (15)0.0025 (12)
C140.0402 (14)0.0287 (12)0.0344 (13)0.0039 (12)0.0011 (13)0.0005 (11)
Geometric parameters (Å, º) top
P1—O11.4656 (19)C5—H5C0.9800
P1—O31.5609 (19)C6—H6A0.9800
P1—O21.5670 (19)C6—H6B0.9800
P1—C71.851 (3)C6—H6C0.9800
F1—C121.368 (3)C40—C601.392 (9)
O2—C11.476 (3)C40—C501.496 (5)
O3—C401.419 (4)C40—H401.0000
O3—C41.419 (4)C50—H50A0.9800
O4—C71.409 (3)C50—H50B0.9800
O4—H4O0.8401C50—H50C0.9800
O5—N11.229 (4)C60—H60A0.9800
O6—N11.206 (4)C60—H60B0.9800
N1—C81.496 (4)C60—H60C0.9800
C1—C31.503 (5)C7—C91.529 (3)
C1—C21.514 (5)C7—C81.540 (3)
C1—H11.0000C8—H8A0.9900
C2—H2A0.9800C8—H8B0.9900
C2—H2B0.9800C9—C141.388 (4)
C2—H2C0.9800C9—C101.401 (4)
C3—H3A0.9800C10—C111.382 (4)
C3—H3B0.9800C10—H100.9500
C3—H3C0.9800C11—C121.362 (5)
C4—C61.436 (8)C11—H110.9500
C4—C51.496 (5)C12—C131.364 (5)
C4—H41.0000C13—C141.390 (4)
C5—H5A0.9800C13—H130.9500
C5—H5B0.9800C14—H140.9500
O1—P1—O3115.82 (11)C60—C40—O3125.8 (5)
O1—P1—O2116.03 (11)C60—C40—C50122.6 (4)
O3—P1—O2103.69 (10)O3—C40—C50106.9 (3)
O1—P1—C7112.66 (11)C60—C40—H4097.2
O3—P1—C799.68 (11)O3—C40—H4097.2
O2—P1—C7107.29 (11)C50—C40—H4097.2
C1—O2—P1123.06 (17)C40—C50—H50A109.5
C40—O3—P1130.3 (2)C40—C50—H50B109.5
C4—O3—P1130.3 (2)H50A—C50—H50B109.5
C7—O4—H4O116.8C40—C50—H50C109.5
O6—N1—O5123.9 (3)H50A—C50—H50C109.5
O6—N1—C8118.6 (3)H50B—C50—H50C109.5
O5—N1—C8117.5 (3)C40—C60—H60A109.5
O2—C1—C3109.6 (2)C40—C60—H60B109.5
O2—C1—C2104.4 (3)H60A—C60—H60B109.5
C3—C1—C2113.5 (3)C40—C60—H60C109.5
O2—C1—H1109.8H60A—C60—H60C109.5
C3—C1—H1109.8H60B—C60—H60C109.5
C2—C1—H1109.8O4—C7—C9106.77 (19)
C1—C2—H2A109.5O4—C7—C8111.3 (2)
C1—C2—H2B109.5C9—C7—C8113.8 (2)
H2A—C2—H2B109.5O4—C7—P1110.58 (17)
C1—C2—H2C109.5C9—C7—P1108.40 (16)
H2A—C2—H2C109.5C8—C7—P1105.94 (16)
H2B—C2—H2C109.5N1—C8—C7109.9 (2)
C1—C3—H3A109.5N1—C8—H8A109.7
C1—C3—H3B109.5C7—C8—H8A109.7
H3A—C3—H3B109.5N1—C8—H8B109.7
C1—C3—H3C109.5C7—C8—H8B109.7
H3A—C3—H3C109.5H8A—C8—H8B108.2
H3B—C3—H3C109.5C14—C9—C10119.1 (2)
O3—C4—C6116.3 (5)C14—C9—C7120.3 (2)
O3—C4—C5106.9 (3)C10—C9—C7120.5 (2)
C6—C4—C5113.2 (4)C11—C10—C9120.2 (3)
O3—C4—H4106.6C11—C10—H10119.9
C6—C4—H4106.6C9—C10—H10119.9
C5—C4—H4106.6C12—C11—C10118.7 (3)
C4—C5—H5A109.5C12—C11—H11120.6
C4—C5—H5B109.5C10—C11—H11120.6
H5A—C5—H5B109.5C11—C12—C13123.3 (3)
C4—C5—H5C109.5C11—C12—F1118.2 (3)
H5A—C5—H5C109.5C13—C12—F1118.5 (3)
H5B—C5—H5C109.5C12—C13—C14118.1 (3)
C4—C6—H6A109.5C12—C13—H13120.9
C4—C6—H6B109.5C14—C13—H13120.9
H6A—C6—H6B109.5C9—C14—C13120.6 (3)
C4—C6—H6C109.5C9—C14—H14119.7
H6A—C6—H6C109.5C13—C14—H14119.7
H6B—C6—H6C109.5
O1—P1—O2—C133.2 (2)O1—P1—C7—C855.3 (2)
O3—P1—O2—C1161.4 (2)O3—P1—C7—C868.07 (19)
C7—P1—O2—C193.7 (2)O2—P1—C7—C8175.81 (17)
O1—P1—O3—C4085.5 (4)O6—N1—C8—C769.9 (4)
O2—P1—O3—C4042.8 (4)O5—N1—C8—C7108.5 (3)
C7—P1—O3—C40153.4 (4)O4—C7—C8—N150.9 (3)
O1—P1—O3—C485.5 (4)C9—C7—C8—N169.8 (3)
O2—P1—O3—C442.8 (4)P1—C7—C8—N1171.2 (2)
C7—P1—O3—C4153.4 (4)O4—C7—C9—C1413.7 (3)
P1—O2—C1—C386.8 (3)C8—C7—C9—C14137.0 (2)
P1—O2—C1—C2151.4 (2)P1—C7—C9—C14105.4 (2)
C40—O3—C4—C60 (100)O4—C7—C9—C10169.6 (2)
P1—O3—C4—C654.1 (7)C8—C7—C9—C1046.4 (3)
C40—O3—C4—C50 (8)P1—C7—C9—C1071.2 (3)
P1—O3—C4—C5178.4 (3)C14—C9—C10—C110.4 (4)
C4—O3—C40—C600 (100)C7—C9—C10—C11176.3 (3)
P1—O3—C40—C6025.6 (9)C9—C10—C11—C120.5 (4)
C4—O3—C40—C500 (8)C10—C11—C12—C132.1 (5)
P1—O3—C40—C50178.4 (3)C10—C11—C12—F1179.0 (3)
O1—P1—C7—O4176.02 (15)C11—C12—C13—C142.7 (5)
O3—P1—C7—O452.65 (17)F1—C12—C13—C14178.4 (3)
O2—P1—C7—O455.09 (18)C10—C9—C14—C130.3 (4)
O1—P1—C7—C967.26 (19)C7—C9—C14—C13177.0 (2)
O3—P1—C7—C9169.37 (17)C12—C13—C14—C91.8 (4)
O2—P1—C7—C961.64 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4o···O1i0.841.942.728 (3)156
C10—H10···O5ii0.952.523.447 (4)164
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC14H21FNO6P
Mr349.29
Crystal system, space groupOrthorhombic, P212121
Temperature (K)173
a, b, c (Å)5.8267 (12), 15.931 (3), 18.273 (4)
V3)1696.2 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.31 × 0.15 × 0.06
Data collection
DiffractometerRigaku AFC12K/SATURN724
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.790, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
6049, 3391, 3248
Rint0.027
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.117, 1.04
No. of reflections3391
No. of parameters211
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.43
Absolute structureFlack (1983), 1354 Friedel pairs
Absolute structure parameter0.11 (13)

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4o···O1i0.841.942.728 (3)156
C10—H10···O5ii0.952.523.447 (4)164
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.
 

Footnotes

Additional correspondence author, e-mail: cong.zhao@utsa.edu.

Acknowledgements

CGZ thanks the Welch Foundation (grant No. AX-1593) and the NIH-MBRS program (S06 GM08194) for support.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMandal, T., Samanta, S. & Zhao, C.-G. (2007). Org. Lett. 9, 943–945.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds