organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(2,4-Di­chloro­phen­yl)acetic acid

aSchool of Chemistry and Biological Engineering, Changsha University of Science & Technology, Changsha 410004, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
*Correspondence e-mail: js_li@yahoo.com.cn

(Received 4 December 2009; accepted 6 December 2009; online 12 December 2009)

In the title compound, C8H6Cl2O2, the dihedral angle between the C—C(=O)—OH carboxyl unit and the benzene ring is 70.70 (4)°. In the crystal, mol­ecules are linked into inversion dimers by pairs of O—H⋯O hydrogen bonds. The dimers are linked into chains extending along [001] by weak C—H⋯Cl inter­actions.

Related literature

For background to carboxylic acids as supra­molecular synthons, see: Thalladi et al. (1996[Thalladi, V. R., goud, B. S., Hoy, V. J., Allen, F. H., Howard, J. A. K. & Desiraju, G. R. (1996). Chem. Commun. pp. 401-402.]). For related structures, see: Hodgson & Asplund (1991[Hodgson, D. J. & Asplund, R. O. (1991). Acta Cryst. C47, 1986-1987.]); Li et al. (2010[Li, J.-S., He, Q.-X. & Li, P.-Y. (2010). Acta Cryst. E66, o39.]).

[Scheme 1]

Experimental

Crystal data
  • C8H6Cl2O2

  • Mr = 205.03

  • Monoclinic, P 21 /n

  • a = 10.824 (2) Å

  • b = 5.6061 (11) Å

  • c = 13.820 (3) Å

  • β = 91.08 (3)°

  • V = 838.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.72 mm−1

  • T = 113 K

  • 0.24 × 0.20 × 0.12 mm

Data collection
  • Rigaku Saturn CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.846, Tmax = 0.918

  • 5321 measured reflections

  • 1484 independent reflections

  • 1237 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.075

  • S = 1.10

  • 1484 reflections

  • 111 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.82 1.85 2.6689 (16) 175
C4—H4⋯Cl1ii 0.93 2.86 3.731 (2) 156
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x+1, -y, -z+1.

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Carboxylic acid is a supramolecular synthon, widely used to construct supramolecular array with one to three different dimensions via hydrogen bonds (Thalladi et al., 1996). For our continuous research, we herein report the structure of the title compound (I).

In the title molecule, (Fig 1), the O1/O2/C7/C8 carboxyl unit forms an angle of 70.70 (4) A with the benzene ring. In the crystal packing, the molecules are linked into dimers by strong O—H···O H-bonding, which extend down the c axis by the aid of weak C—H···Cl H-bonding (Table 1 & Fig 2). For related structures, see: Hodgson & Asplund (1991) and Li et al. (2010).

Related literature top

For backgroud to carboxylic acids as supramolecular synthons, see: Thalladi et al. (1996). For related structures, see: Hodgson & Asplund (1991); Li et al. (2010).

Experimental top

The title compound was available from Hunan institute of Chemical Industry, received without further purification. Colourless blocks of (I) were obtained by evaporation from its solution of ethyl acetate/petroleum ether 1/2 (v/v).

Refinement top

All H atoms were positioned geometrically and constrained to ride on their parent atoms [C—H distances are 0.93 and 0.97Å with Uiso(H) = 1.2 Ueq(C) for aromatic and CH2 H atoms, 0.82Å with Uiso = 1.5Ueq (O) for hydroxyl H atom].

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The infinite chain formed via alternative O—H···O and C—H···Cl hydrogen bonding down the c axis.
2-(2,4-Dichlorophenyl)acetic acid top
Crystal data top
C8H6Cl2O2F(000) = 416
Mr = 205.03Dx = 1.624 Mg m3
Monoclinic, P21/nMelting point = 403–405 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 10.824 (2) ÅCell parameters from 2684 reflections
b = 5.6061 (11) Åθ = 2.4–27.9°
c = 13.820 (3) ŵ = 0.72 mm1
β = 91.08 (3)°T = 113 K
V = 838.4 (3) Å3Block, colourless
Z = 40.24 × 0.20 × 0.12 mm
Data collection top
Rigaku Saturn CCD
diffractometer
1484 independent reflections
Radiation source: rotating anode1237 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.037
Detector resolution: 7.31 pixels mm-1θmax = 25.0°, θmin = 2.4°
ω and ϕ scansh = 1212
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 66
Tmin = 0.846, Tmax = 0.918l = 1016
5321 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.075 w = 1/[σ2(Fo2) + (0.0435P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
1484 reflectionsΔρmax = 0.23 e Å3
111 parametersΔρmin = 0.22 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.073 (5)
Crystal data top
C8H6Cl2O2V = 838.4 (3) Å3
Mr = 205.03Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.824 (2) ŵ = 0.72 mm1
b = 5.6061 (11) ÅT = 113 K
c = 13.820 (3) Å0.24 × 0.20 × 0.12 mm
β = 91.08 (3)°
Data collection top
Rigaku Saturn CCD
diffractometer
1484 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
1237 reflections with I > 2σ(I)
Tmin = 0.846, Tmax = 0.918Rint = 0.037
5321 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.075H-atom parameters constrained
S = 1.10Δρmax = 0.23 e Å3
1484 reflectionsΔρmin = 0.22 e Å3
111 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.71462 (4)0.15511 (7)0.45827 (3)0.02309 (18)
Cl20.35390 (4)0.34376 (7)0.70900 (3)0.02349 (18)
O10.55180 (10)0.4443 (2)0.88848 (8)0.0230 (3)
O20.46215 (12)0.7778 (2)0.94126 (8)0.0266 (3)
H20.45930.70220.99200.040*
C10.67428 (16)0.6663 (3)0.65565 (12)0.0196 (4)
H10.71910.79770.67770.024*
C20.72229 (14)0.5277 (3)0.58229 (11)0.0203 (4)
H2A0.79770.56600.55510.024*
C30.65595 (15)0.3314 (3)0.55033 (11)0.0166 (4)
C40.54302 (14)0.2735 (3)0.58966 (11)0.0176 (4)
H40.49900.14080.56800.021*
C50.49744 (14)0.4168 (3)0.66162 (11)0.0165 (4)
C60.56134 (14)0.6155 (3)0.69727 (11)0.0155 (4)
C70.51115 (15)0.7662 (3)0.77720 (11)0.0188 (4)
H7A0.56010.91070.78260.023*
H7B0.42720.81250.76010.023*
C80.51103 (15)0.6439 (3)0.87375 (12)0.0173 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0220 (3)0.0288 (3)0.0187 (3)0.00182 (16)0.00584 (19)0.00592 (16)
Cl20.0160 (2)0.0273 (3)0.0274 (3)0.00391 (15)0.00862 (19)0.00387 (17)
O10.0288 (6)0.0256 (7)0.0146 (6)0.0115 (5)0.0033 (5)0.0024 (5)
O20.0387 (8)0.0245 (7)0.0168 (6)0.0114 (6)0.0075 (6)0.0012 (5)
C10.0210 (9)0.0183 (9)0.0195 (9)0.0041 (6)0.0008 (8)0.0001 (7)
C20.0158 (8)0.0250 (9)0.0203 (9)0.0023 (7)0.0046 (7)0.0027 (7)
C30.0194 (8)0.0192 (9)0.0114 (8)0.0035 (7)0.0018 (7)0.0015 (6)
C40.0179 (8)0.0182 (8)0.0168 (8)0.0013 (7)0.0004 (7)0.0024 (7)
C50.0130 (8)0.0213 (8)0.0153 (8)0.0004 (6)0.0017 (6)0.0047 (7)
C60.0193 (8)0.0161 (8)0.0111 (8)0.0013 (6)0.0003 (7)0.0028 (6)
C70.0210 (8)0.0163 (8)0.0191 (9)0.0007 (7)0.0004 (7)0.0005 (7)
C80.0135 (8)0.0232 (10)0.0151 (8)0.0003 (6)0.0017 (7)0.0044 (6)
Geometric parameters (Å, º) top
Cl1—C31.7405 (16)C2—H2A0.9300
Cl2—C51.7460 (16)C3—C41.386 (2)
O1—C81.2185 (19)C4—C51.377 (2)
O2—C81.316 (2)C4—H40.9300
O2—H20.8200C5—C61.396 (2)
C1—C21.386 (2)C6—C71.501 (2)
C1—C61.390 (2)C7—C81.500 (2)
C1—H10.9300C7—H7A0.9700
C2—C31.382 (2)C7—H7B0.9700
C8—O2—H2109.5C4—C5—Cl2117.86 (12)
C2—C1—C6122.16 (15)C6—C5—Cl2119.55 (13)
C2—C1—H1118.9C1—C6—C5116.81 (15)
C6—C1—H1118.9C1—C6—C7121.50 (14)
C3—C2—C1118.72 (15)C5—C6—C7121.68 (15)
C3—C2—H2A120.6C8—C7—C6113.81 (13)
C1—C2—H2A120.6C8—C7—H7A108.8
C2—C3—C4121.21 (15)C6—C7—H7A108.8
C2—C3—Cl1119.43 (13)C8—C7—H7B108.8
C4—C3—Cl1119.36 (12)C6—C7—H7B108.8
C5—C4—C3118.50 (15)H7A—C7—H7B107.7
C5—C4—H4120.7O1—C8—O2123.67 (16)
C3—C4—H4120.7O1—C8—C7124.19 (15)
C4—C5—C6122.59 (15)O2—C8—C7112.14 (13)
C6—C1—C2—C30.6 (2)C4—C5—C6—C10.9 (2)
C1—C2—C3—C40.5 (2)Cl2—C5—C6—C1179.10 (11)
C1—C2—C3—Cl1179.98 (12)C4—C5—C6—C7178.68 (14)
C2—C3—C4—C50.2 (2)Cl2—C5—C6—C71.3 (2)
Cl1—C3—C4—C5179.22 (11)C1—C6—C7—C8109.95 (17)
C3—C4—C5—C61.0 (2)C5—C6—C7—C869.59 (19)
C3—C4—C5—Cl2179.02 (11)C6—C7—C8—O12.7 (2)
C2—C1—C6—C50.1 (2)C6—C7—C8—O2177.59 (13)
C2—C1—C6—C7179.49 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.821.852.6689 (16)175
C4—H4···Cl1ii0.932.863.731 (2)156
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC8H6Cl2O2
Mr205.03
Crystal system, space groupMonoclinic, P21/n
Temperature (K)113
a, b, c (Å)10.824 (2), 5.6061 (11), 13.820 (3)
β (°) 91.08 (3)
V3)838.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.72
Crystal size (mm)0.24 × 0.20 × 0.12
Data collection
DiffractometerRigaku Saturn CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.846, 0.918
No. of measured, independent and
observed [I > 2σ(I)] reflections
5321, 1484, 1237
Rint0.037
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.075, 1.10
No. of reflections1484
No. of parameters111
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.22

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.821.852.6689 (16)175
C4—H4···Cl1ii0.932.863.731 (2)156
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y, z+1.
 

References

First citationHodgson, D. J. & Asplund, R. O. (1991). Acta Cryst. C47, 1986–1987.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLi, J.-S., He, Q.-X. & Li, P.-Y. (2010). Acta Cryst. E66, o39.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThalladi, V. R., goud, B. S., Hoy, V. J., Allen, F. H., Howard, J. A. K. & Desiraju, G. R. (1996). Chem. Commun. pp. 401–402.  CSD CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds