organic compounds
8-Methoxy-4-(4-methoxyphenyl)quinoline
aLaboratorio 223, Departamento de Química, Universidad Simón Bolívar (USB), Apartado 89000, Caracas 1080-A, Venezuela, bCentro de Química, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado 21827, Caracas 1020-A, Venezuela, and cDepartment of Chemistry, Center for Photochemical Sciences, Bowling Green State University (BGSU), Bowling Green, OH 43-403, USA.
*Correspondence e-mail: slopez@usb.ve
In the title compound, C17H15NO2, the dihedral angle between the quinoline and benzene ring systems is 62.17 (1)°. In the crystal, zigzag chains propagating in c are linked by C—H⋯O hydrogen bonds, and weak C—H⋯π interactions link the chains.
Related literature
The title compound was prepared as an intermediate for the synthesis of aluminium(III) quinolinolate complexes, which are important for their semiconductor properties and as electron-transport layer materials in organic light-emitting devices (OLEDs) (Montes et al., 2006). For related literature, see: Dienys et al. (1977); Muscia et al. (2006); Pérez-Bolívar et al. (2006).
Experimental
Crystal data
|
Refinement
|
Data collection: CrystalClear (Rigaku/MSC, 2005)); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536809052623/hb5272sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809052623/hb5272Isup2.hkl
A solution of 3-dimethylamino-1-(4-methoxy-phenyl)-propan-1-one (300 mg, 1.45 mmol) and 2-methoxy-phenylamine (180 mg, 1.46 mmol) in ethanol (15 ml) was stirred at room temperature in a round bottom flask. After 15 minutes, concentrated hydrochloric acid (0.5 ml) was added dropwise and the mixture stirred under reflux for 8 h. The reaction mixture was cooled to room temperature and poured into an ice bath. The yellow solution was neutralized with a
of sodium bicarbonate to pH 7, extracted with ethyl acetate (20 ml × 3), and washed with water (20 ml × 3) and brine (10 ml × 2). The aqueous layer was extracted with dichloromethane (20 ml × 2). The organic layers were dried over anhydrous magnesium sulfate, filtered through cotton and the filtrate concentrated under vacuum to provide a reddish oil. The oil was purified by on silica gel (mobile phase: ethyl acetate-hexane, 6:4) to afford a light-brown solid (100 mg, 26%). M.p. 146–147 °C; 1H NMR (500 MHz, CDCl3), d(p.p.m.): 3.82 (s, 3H), 4.05 (s, 3H), 6.99 (t, 3H, J= 8.5 Hz), 7.27 (d, 1H, J= 4.4 Hz), 7.34 (t, 1H, J= 8.2 Hz), 7.37 (d, 2H, J= 8.7 Hz), 7.47 (d, 1H, J= 8.6 Hz), 8.88 (d, 1H, J= 4.4 Hz). 13C NMR (126 MHz, CDCl3), d (p.p.m.): 55.29 (C17), 55.99 (C16), 107.21 (C7), 113.90 (C12 and C14), 117.59 (C5), 121.91 (C6), 126.37 (C2), 127.93 (C4), 130.48 (C9), 130.73 (C11 and C15), 140.67 (C3), 147.95 (C10), 148.68 (C1), 155.55 (C8), 159.72 (C13). IR (KBr, cm-1) 3004, 2934, 2838, 1673, 1607, 1501, 1249. EI—MS: m/z (%): 266 (100) [M+], 251 (40) [M—CH3+].Light brown blocks of (I) were obtained by slow evaporation of dichloromethane/hexane
All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.93 (aromatic) and 0.96 Å (methyl) and with Uiso(H) = 1.5 (1.2 for aromatic H atoms) times Ueq(C).
Data collection: CrystalClear (Rigaku/MSC, 2005)); cell
CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXLTL (Sheldrick, 2008); program(s) used to refine structure: SHELXLTL (Sheldrick, 2008); molecular graphics: SHELXLTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXLTL (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. The molecular structure of (I), showing displacement elipsoids drawn at the 35% probability level and H atoms are shown as spheres of arbitrary radii. |
C17H15NO2 | F(000) = 560 |
Mr = 265.30 | Dx = 1.300 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71070 Å |
Hall symbol: -P 2ybc | Cell parameters from 8153 reflections |
a = 9.362 (2) Å | θ = 4.4–55.8° |
b = 10.355 (2) Å | µ = 0.09 mm−1 |
c = 14.276 (4) Å | T = 295 K |
β = 101.556 (6)° | Block, light brown |
V = 1355.9 (5) Å3 | 0.45 × 0.42 × 0.40 mm |
Z = 4 |
Rigaku AFC-7S Mercury diffractometer | 2785 independent reflections |
Radiation source: Normal-focus sealed tube | 1868 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.037 |
ω scans | θmax = 28.1°, θmin = 56.1° |
Absorption correction: multi-scan (ABSCOR; Jacobson, 1998) | h = −12→12 |
Tmin = 0.940, Tmax = 0.980 | k = −13→13 |
15093 measured reflections | l = −18→18 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.057 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.145 | H-atom parameters constrained |
S = 1.12 | w = 1/[σ2(Fo2) + (0.0538P)2 + 0.3325P] where P = (Fo2 + 2Fc2)/3 |
2785 reflections | (Δ/σ)max < 0.001 |
181 parameters | Δρmax = 0.14 e Å−3 |
0 restraints | Δρmin = −0.23 e Å−3 |
C17H15NO2 | V = 1355.9 (5) Å3 |
Mr = 265.30 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 9.362 (2) Å | µ = 0.09 mm−1 |
b = 10.355 (2) Å | T = 295 K |
c = 14.276 (4) Å | 0.45 × 0.42 × 0.40 mm |
β = 101.556 (6)° |
Rigaku AFC-7S Mercury diffractometer | 2785 independent reflections |
Absorption correction: multi-scan (ABSCOR; Jacobson, 1998) | 1868 reflections with I > 2σ(I) |
Tmin = 0.940, Tmax = 0.980 | Rint = 0.037 |
15093 measured reflections |
R[F2 > 2σ(F2)] = 0.057 | 0 restraints |
wR(F2) = 0.145 | H-atom parameters constrained |
S = 1.12 | Δρmax = 0.14 e Å−3 |
2785 reflections | Δρmin = −0.23 e Å−3 |
181 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.42442 (15) | 0.09277 (15) | 0.26653 (10) | 0.0576 (4) | |
O2 | −0.41766 (17) | 0.34353 (16) | 0.58150 (11) | 0.0644 (5) | |
N1 | 0.22017 (18) | 0.27365 (17) | 0.23541 (12) | 0.0507 (5) | |
C1 | 0.1179 (2) | 0.3624 (2) | 0.22134 (16) | 0.0554 (6) | |
H1A | 0.1163 | 0.4196 | 0.1709 | 0.066* | |
C2 | 0.0111 (2) | 0.3774 (2) | 0.27655 (15) | 0.0522 (5) | |
H2A | −0.0583 | 0.4424 | 0.2618 | 0.063* | |
C3 | 0.0082 (2) | 0.29631 (19) | 0.35232 (14) | 0.0427 (5) | |
C4 | 0.1152 (2) | 0.19600 (18) | 0.36953 (13) | 0.0397 (5) | |
C5 | 0.1192 (2) | 0.10133 (19) | 0.44199 (14) | 0.0456 (5) | |
H5A | 0.0515 | 0.1042 | 0.4815 | 0.055* | |
C6 | 0.2215 (2) | 0.0066 (2) | 0.45375 (15) | 0.0493 (5) | |
H6A | 0.2217 | −0.0556 | 0.5007 | 0.059* | |
C7 | 0.3275 (2) | 0.0006 (2) | 0.39636 (15) | 0.0495 (5) | |
H7A | 0.3978 | −0.0641 | 0.4066 | 0.059* | |
C8 | 0.3271 (2) | 0.08987 (19) | 0.32555 (14) | 0.0441 (5) | |
C9 | 0.2189 (2) | 0.18964 (19) | 0.30946 (13) | 0.0414 (5) | |
C10 | −0.1047 (2) | 0.31030 (19) | 0.41186 (14) | 0.0447 (5) | |
C11 | −0.2518 (2) | 0.2989 (2) | 0.37074 (15) | 0.0504 (5) | |
H11A | −0.2788 | 0.2841 | 0.3053 | 0.060* | |
C12 | −0.3598 (2) | 0.3091 (2) | 0.42425 (15) | 0.0512 (5) | |
H12A | −0.4574 | 0.3001 | 0.3950 | 0.061* | |
C13 | −0.3213 (2) | 0.33263 (19) | 0.52103 (16) | 0.0491 (5) | |
C14 | −0.1750 (2) | 0.3464 (2) | 0.56353 (16) | 0.0554 (6) | |
H14A | −0.1487 | 0.3634 | 0.6287 | 0.066* | |
C15 | −0.0685 (2) | 0.3350 (2) | 0.50986 (15) | 0.0524 (5) | |
H15A | 0.0289 | 0.3440 | 0.5394 | 0.063* | |
C16 | 0.5389 (2) | −0.0015 (2) | 0.28179 (17) | 0.0632 (7) | |
H16A | 0.5999 | 0.0110 | 0.2359 | 0.095* | |
H16B | 0.4973 | −0.0865 | 0.2745 | 0.095* | |
H16C | 0.5962 | 0.0080 | 0.3452 | 0.095* | |
C17 | −0.5693 (2) | 0.3254 (2) | 0.54239 (18) | 0.0653 (7) | |
H17A | −0.6242 | 0.3361 | 0.5919 | 0.098* | |
H17B | −0.5847 | 0.2401 | 0.5161 | 0.098* | |
H17C | −0.6007 | 0.3879 | 0.4929 | 0.098* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0497 (8) | 0.0726 (10) | 0.0547 (9) | 0.0123 (7) | 0.0206 (7) | 0.0055 (8) |
O2 | 0.0592 (10) | 0.0763 (11) | 0.0643 (10) | −0.0038 (8) | 0.0281 (8) | −0.0167 (8) |
N1 | 0.0478 (10) | 0.0584 (11) | 0.0476 (10) | 0.0007 (9) | 0.0135 (8) | 0.0117 (9) |
C1 | 0.0549 (13) | 0.0598 (14) | 0.0523 (13) | 0.0004 (11) | 0.0127 (11) | 0.0194 (11) |
C2 | 0.0478 (12) | 0.0542 (13) | 0.0549 (13) | 0.0060 (10) | 0.0113 (10) | 0.0133 (10) |
C3 | 0.0396 (10) | 0.0438 (11) | 0.0442 (11) | −0.0042 (9) | 0.0074 (9) | 0.0013 (9) |
C4 | 0.0384 (10) | 0.0414 (11) | 0.0387 (10) | −0.0056 (8) | 0.0067 (8) | −0.0004 (8) |
C5 | 0.0474 (11) | 0.0458 (11) | 0.0455 (11) | −0.0047 (9) | 0.0136 (9) | 0.0041 (9) |
C6 | 0.0557 (12) | 0.0451 (11) | 0.0470 (11) | −0.0009 (10) | 0.0101 (10) | 0.0065 (10) |
C7 | 0.0498 (12) | 0.0463 (12) | 0.0521 (12) | 0.0068 (9) | 0.0099 (10) | 0.0020 (10) |
C8 | 0.0405 (11) | 0.0498 (12) | 0.0425 (11) | −0.0012 (9) | 0.0095 (9) | −0.0013 (9) |
C9 | 0.0396 (10) | 0.0450 (11) | 0.0394 (10) | −0.0053 (9) | 0.0073 (9) | 0.0018 (9) |
C10 | 0.0454 (11) | 0.0423 (11) | 0.0477 (12) | 0.0003 (9) | 0.0125 (9) | 0.0029 (9) |
C11 | 0.0474 (12) | 0.0601 (14) | 0.0447 (11) | 0.0037 (10) | 0.0116 (10) | 0.0042 (10) |
C12 | 0.0441 (11) | 0.0561 (13) | 0.0543 (13) | 0.0033 (10) | 0.0117 (10) | 0.0022 (10) |
C13 | 0.0523 (13) | 0.0434 (11) | 0.0558 (13) | 0.0006 (10) | 0.0210 (11) | −0.0056 (10) |
C14 | 0.0600 (14) | 0.0581 (14) | 0.0496 (12) | −0.0061 (11) | 0.0147 (11) | −0.0129 (10) |
C15 | 0.0481 (12) | 0.0558 (13) | 0.0533 (13) | −0.0051 (10) | 0.0097 (10) | −0.0078 (10) |
C16 | 0.0515 (13) | 0.0772 (17) | 0.0623 (14) | 0.0151 (12) | 0.0149 (11) | −0.0052 (13) |
C17 | 0.0538 (14) | 0.0707 (16) | 0.0780 (17) | 0.0002 (12) | 0.0290 (12) | −0.0118 (13) |
O1—C8 | 1.360 (2) | C7—H7A | 0.9300 |
O1—C16 | 1.434 (3) | C8—C9 | 1.433 (3) |
O2—C13 | 1.373 (2) | C10—C11 | 1.390 (3) |
O2—C17 | 1.429 (3) | C10—C15 | 1.396 (3) |
N1—C1 | 1.313 (3) | C11—C12 | 1.388 (3) |
N1—C9 | 1.371 (2) | C11—H11A | 0.9300 |
C1—C2 | 1.401 (3) | C12—C13 | 1.378 (3) |
C1—H1A | 0.9300 | C12—H12A | 0.9300 |
C2—C3 | 1.374 (3) | C13—C14 | 1.390 (3) |
C2—H2A | 0.9300 | C14—C15 | 1.379 (3) |
C3—C4 | 1.430 (3) | C14—H14A | 0.9300 |
C3—C10 | 1.490 (3) | C15—H15A | 0.9300 |
C4—C9 | 1.419 (3) | C16—H16A | 0.9600 |
C4—C5 | 1.420 (3) | C16—H16B | 0.9600 |
C5—C6 | 1.358 (3) | C16—H16C | 0.9600 |
C5—H5A | 0.9300 | C17—H17A | 0.9600 |
C6—C7 | 1.409 (3) | C17—H17B | 0.9600 |
C6—H6A | 0.9300 | C17—H17C | 0.9600 |
C7—C8 | 1.369 (3) | ||
C8—O1—C16 | 117.66 (17) | C11—C10—C15 | 117.36 (19) |
C13—O2—C17 | 118.02 (17) | C11—C10—C3 | 120.48 (18) |
C1—N1—C9 | 116.31 (17) | C15—C10—C3 | 122.16 (18) |
N1—C1—C2 | 124.90 (19) | C12—C11—C10 | 122.1 (2) |
N1—C1—H1A | 117.5 | C12—C11—H11A | 119.0 |
C2—C1—H1A | 117.5 | C10—C11—H11A | 119.0 |
C3—C2—C1 | 120.3 (2) | C13—C12—C11 | 119.5 (2) |
C3—C2—H2A | 119.9 | C13—C12—H12A | 120.3 |
C1—C2—H2A | 119.9 | C11—C12—H12A | 120.3 |
C2—C3—C4 | 117.12 (18) | O2—C13—C12 | 124.90 (19) |
C2—C3—C10 | 121.17 (18) | O2—C13—C14 | 115.56 (19) |
C4—C3—C10 | 121.69 (17) | C12—C13—C14 | 119.5 (2) |
C9—C4—C5 | 119.13 (17) | C15—C14—C13 | 120.5 (2) |
C9—C4—C3 | 118.05 (17) | C15—C14—H14A | 119.7 |
C5—C4—C3 | 122.80 (18) | C13—C14—H14A | 119.7 |
C6—C5—C4 | 120.22 (19) | C14—C15—C10 | 121.0 (2) |
C6—C5—H5A | 119.9 | C14—C15—H15A | 119.5 |
C4—C5—H5A | 119.9 | C10—C15—H15A | 119.5 |
C5—C6—C7 | 121.45 (19) | O1—C16—H16A | 109.5 |
C5—C6—H6A | 119.3 | O1—C16—H16B | 109.5 |
C7—C6—H6A | 119.3 | H16A—C16—H16B | 109.5 |
C8—C7—C6 | 120.08 (19) | O1—C16—H16C | 109.5 |
C8—C7—H7A | 120.0 | H16A—C16—H16C | 109.5 |
C6—C7—H7A | 120.0 | H16B—C16—H16C | 109.5 |
O1—C8—C7 | 124.69 (18) | O2—C17—H17A | 109.5 |
O1—C8—C9 | 115.14 (17) | O2—C17—H17B | 109.5 |
C7—C8—C9 | 120.16 (18) | H17A—C17—H17B | 109.5 |
N1—C9—C4 | 123.31 (18) | O2—C17—H17C | 109.5 |
N1—C9—C8 | 117.77 (17) | H17A—C17—H17C | 109.5 |
C4—C9—C8 | 118.92 (17) | H17B—C17—H17C | 109.5 |
Cg2and Cg3 are the centroids of the C4–C9 and C10–C14 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C17—H17A···O1i | 0.96 | 2.55 | 3.322 (3) | 137 |
C2—H2A···Cg2ii | 0.93 | 2.81 | 3.622 (2) | 146 |
C6—H6A···Cg3iii | 0.93 | 2.80 | 3.592 (2) | 144 |
C17—H17B···Cg2iv | 0.96 | 2.78 | 3.580 (3) | 142 |
Symmetry codes: (i) x−1, −y+1/2, z+1/2; (ii) −x, y+1/2, −z+1/2; (iii) −x, −y, −z+1; (iv) x−1, y, z. |
Experimental details
Crystal data | |
Chemical formula | C17H15NO2 |
Mr | 265.30 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 295 |
a, b, c (Å) | 9.362 (2), 10.355 (2), 14.276 (4) |
β (°) | 101.556 (6) |
V (Å3) | 1355.9 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.45 × 0.42 × 0.40 |
Data collection | |
Diffractometer | Rigaku AFC-7S Mercury diffractometer |
Absorption correction | Multi-scan (ABSCOR; Jacobson, 1998) |
Tmin, Tmax | 0.940, 0.980 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 15093, 2785, 1868 |
Rint | 0.037 |
(sin θ/λ)max (Å−1) | 0.662 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.057, 0.145, 1.12 |
No. of reflections | 2785 |
No. of parameters | 181 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.14, −0.23 |
Computer programs: CrystalClear (Rigaku/MSC, 2005)), CrystalClear (Rigaku/MSC, 2005), SHELXLTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999), SHELXLTL (Sheldrick, 2008) and PLATON (Spek, 2009).
Cg2and Cg3 are the centroids of the C4–C9 and C10–C14 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C17—H17A···O1i | 0.96 | 2.55 | 3.322 (3) | 137 |
C2—H2A···Cg2ii | 0.93 | 2.81 | 3.622 (2) | 146 |
C6—H6A···Cg3iii | 0.93 | 2.80 | 3.592 (2) | 144 |
C17—H17B···Cg2iv | 0.96 | 2.78 | 3.580 (3) | 142 |
Symmetry codes: (i) x−1, −y+1/2, z+1/2; (ii) −x, y+1/2, −z+1/2; (iii) −x, −y, −z+1; (iv) x−1, y, z. |
Acknowledgements
The authors thank the Decanato de Investigación y Desarrollo (DID-USB, Caracas) and FONACIT-MCT (Project: LAB-99700821) for financial support. LL thanks the Decanato de Estudios de Postgrado (USB, Caracas) for a travel-training fellowship.
References
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn,Germany. Google Scholar
Dienys, G., Gureviciene, J., Cekuoliene, L. & Steponavicius, J. (1977). Liet. TSR Mokslu Akad. Darb. Ser. B, 1, 33–38. Google Scholar
Jacobson, R. (1998). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Montes, V. A., Pohl, R., Shinar, J. & Anzenbacher, P. Jr (2006). Chem. Eur. J. 12, 4523–4535. Web of Science CSD CrossRef PubMed CAS Google Scholar
Muscia, G. C., Bollini, M., Carnevale, J. P., Bruno, A. M. & Asis, S. E. (2006). Tetrahedron Lett. 47, 8811–8815. Web of Science CrossRef CAS Google Scholar
Pérez-Bolívar, C., Montes, V. A. & Anzenbacher, P. (2006). Inorg. Chem. 45, 9610–9612. Web of Science PubMed Google Scholar
Rigaku/MSC (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title compound (I), was prepared as a valued intermediate for the synthesis of aluminium (III) quinolinolate complexes, important for their semiconductor properties and useful properties as electron-transport layer materials in organic light-emitting devices (OLEDs) (Montes et al., 2006).
The molecular structure of (I) is shown in Figure 1 with their respective labels. All bond lenghts are in good agreement with the tabulated standard values (Table 1). In this structure quinoline motif is essentially planar (with a mean deviation 0.0213 Å), in which the maximum deviation is around atoms C1 (0.0277 Å) and C6 (0.0333 Å), respectively (see Figure 1). The methoxyphenyl substituent make a dihedral angle of 62.17 (1)° with respect to the quinoline group. Other strinking feature of (I) is that the plane defined by atoms contained for the metoxy groups C16/O1/C8/C9 and C17/O2/C13/C14 are almost co-planar with the phenyl rings with values of dihedral angle 1.73 (3) and 1.42 (2)°, respectively.