organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-Formyl-2-naphthyl cis-1,5,7-tri­methyl-2,4-dioxo-3-aza­bi­cyclo­[3.3.1]nonane-7-carboxyl­ate

aSchool of Chemistry & Materials Science, Ludong University, Yantai of Shandong, People's Republic of China
*Correspondence e-mail: xushengguangldu@yahoo.cn

(Received 5 December 2009; accepted 20 December 2009; online 24 December 2009)

In the title compound, C23H23NO5, the C5N ring adopts an envelope conformation with a C atom as the flap, whilst the saturated C6 ring fused to it adopts a chair conformation. In the crystal, inversion dimers linked by pairs of N—H⋯O hydrogen bonds generate R22(8) loops.

Related literature

For further information on the title compound as a building block in a dynamic combinatorial library, see: Xu & Giuseppone (2008[Xu, S.-G. & Giuseppone, N. (2008). J. Am. Chem. Soc. 130, 1826-1827.]). For further synthetic details, see: Askew et al. (1989[Askew, B., Ballester, P., Buhr, C., Jeong, K. S., Jones, S., Parris, K., Williams, K. & Rebek, J. Jr (1989). J. Am. Chem. Soc. 111, 1082-1090.]); Rebek et al. (1987[Rebek, J. Jr, Askew, B., Killoran, M., Nemeth, D. & Lin, F. T. (1987). J. Am. Chem. Soc. 109, 2426-2431.]); Steglich & Höfle (1969[Steglich, W. & Höfle, G. (1969). Angew. Chem. Int. Ed. Engl. 8, 981.]); Williams et al. (1989[Williams, K., Askew, B., Ballester, P., Buhr, C., Jeong, K. S., Jones, S. & Rebek, J. Jr (1989). J. Am. Chem. Soc. 111, 1090-1094.]); Chamontin et al. (1999[Chamontin, K., Lokshin, V., Rossollin, V., Samat, A. & Guglielmetti, R. (1999). Tetrahedron, 55, 5821-5830.]).

[Scheme 1]

Experimental

Crystal data
  • C23H23NO5

  • Mr = 393.42

  • Monoclinic, P 21 /c

  • a = 11.896 (2) Å

  • b = 11.692 (2) Å

  • c = 16.636 (2) Å

  • β = 121.124 (9)°

  • V = 1980.8 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.28 × 0.20 × 0.20 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.974, Tmax = 0.982

  • 10443 measured reflections

  • 3897 independent reflections

  • 3217 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.105

  • S = 1.03

  • 3897 reflections

  • 265 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H22⋯O5i 0.87 2.02 2.8776 (14) 166
Symmetry code: (i) -x+1, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound (6-formylnaphthalen-2-yl cis-1,5,7-trimethyl-2,4-dioxo-3-aza-bicyclo[3.3.1]nonane-7-carboxylate), reported by Xu and Giuseppone (Xu et al., 2008) as a key building block in a dynamic combinatorial library in which one product was self-amplified via self-complementary process, contains a steric bulk and a imide functional group which is a good receptor for adenine through the hydrogen bonding interaction like a base pairing. Herein we report the molecular and crystal structure of the title compound.

The unit structure of the title compound is illustrated in Fig. 1. The asymmetry of the title compound contains two ten-member rings: a naphthalene ring and a V conformation ring, which are connected each other via the carboxylate (O2—C12—O3). The naphth ring is approximately planar. In addition, the molecures are linked by the N1—H···O5 hrdrogen bond, forming inversion dimers.

Related literature top

For further information on the title compound as a building block in a dynamic combinatorial library, see: Xu & Giuseppone (2008). For further synthetic details, see: Askew et al. (1989); Rebek et al. (1987); Steglich & Höfle (1969); Williams et al. (1989); Chamontin et al. (1999).

Experimental top

As delineated in Scheme 1, the product was synthesized (Rebek et al., 1987; Askew et al., 1989; Williams et al., 1989) from the starting material Kemp's triacid (01) which is commercially available. Firstly, anhydride acid (02) was prepared after dehydration of Kemp Triacid (01) under reflux 17 h in xylenes under N2. After anhydride acid (02) was treated with concentrated aqueous ammonium hydroxide (NH4OH) and 4-(dimthylamino)pyridine (DMAP) (Steglich et al., 1969) at 383 K overnight, Imide Acid (03) was gained. Then we got Imide Acid Chloride (04) after the solution of Imide Acid (03) in fresh thionylchloride was reflux under nitrogen atmosphere for 3 h. At the end the target Materiel Al1 was prepared from Imide Acid Chloride (04) reacted with 6-hydroxy-2-naphthaldehyde (Chamontin et al., 1999) catalyzed by sodium hydride (NaH).

Product, yielding 60%. 1H NMR (400MHz,CDCl3, TMS) δ 10.069 (s, 1H), δ 8.244 (s, 1H), δ 7.930–7.818 (m, 3H), δ 7.589 (s, 1H), δ 7.589 (s, 1H), δ 7.540–7.535 (d, 1H), δ 7.234–7.206 (m, 1H), δ 2.822–2.787 (d, 2H), δ 2.029–1.996 (d, 1H), δ 1.488–1.267 (m, 12H); 13C NMR (CDCl3) δ 191.97, 176.06, 173.75,150.71, 137.03, 134.04, 133.97, 131.06, 130.68, 128.88, 123.60, 122.10, 118.76,44.329, 43.799, 42.625, 40.178, 30.529, 24.313; ESI-TOF Eaxct Mass for C23H23NO5 [M+Li]+: calcd 399.1722, 400.1731, 401.1764, 402.1791, found 399.1740, 400.1769, 401.1801, 402.1832.

Refinement top

All H atoms were positioned in calculated positions,with N—H distance of

0.86 Å, C—H distances of 0.96 Å (methyl), 0.97Å (methylene), and with

Uiso~(H) =1.2 or 1.5 Ueq(C, N).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Displacement ellipsoid plot (50% probability level) of (I).
[Figure 2] Fig. 2. The packing diagram of (I) (viewed down the b axis)
[Figure 3] Fig. 3. The formation of the title compound.
6-Formyl-2-naphthyl cis-1,5,7-trimethyl-2,4-dioxo-3-azabicyclo[3.3.1]nonane-7-carboxylate top
Crystal data top
C23H23NO5F(000) = 832
Mr = 393.42Dx = 1.319 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4643 reflections
a = 11.896 (2) Åθ = 2.5–27.6°
b = 11.692 (2) ŵ = 0.09 mm1
c = 16.636 (2) ÅT = 298 K
β = 121.124 (9)°Block, colourless
V = 1980.8 (5) Å30.28 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3897 independent reflections
Radiation source: fine-focus sealed tube3217 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ϕ and ω scanθmax = 26.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1114
Tmin = 0.974, Tmax = 0.982k = 1414
10443 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0518P)2 + 0.4083P]
where P = (Fo2 + 2Fc2)/3
3897 reflections(Δ/σ)max < 0.001
265 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C23H23NO5V = 1980.8 (5) Å3
Mr = 393.42Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.896 (2) ŵ = 0.09 mm1
b = 11.692 (2) ÅT = 298 K
c = 16.636 (2) Å0.28 × 0.20 × 0.20 mm
β = 121.124 (9)°
Data collection top
Bruker APEXII CCD
diffractometer
3897 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
3217 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 0.982Rint = 0.018
10443 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.03Δρmax = 0.19 e Å3
3897 reflectionsΔρmin = 0.22 e Å3
265 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.13914 (15)1.52850 (10)0.66763 (9)0.0827 (4)
O20.79931 (9)0.84989 (8)0.48814 (7)0.0446 (2)
O30.71422 (10)0.81424 (10)0.57896 (7)0.0535 (3)
O40.56292 (11)0.98673 (8)0.30018 (7)0.0501 (3)
O50.40949 (11)0.87877 (9)0.48523 (8)0.0535 (3)
N10.48608 (11)0.92723 (9)0.39106 (8)0.0393 (3)
H220.50940.99260.42020.047*
C11.14643 (17)1.43589 (14)0.70153 (12)0.0571 (4)
H11.20611.42680.76540.069*
C21.06708 (14)1.33579 (12)0.64863 (10)0.0419 (3)
C31.08892 (14)1.23220 (12)0.69289 (10)0.0434 (3)
H31.15151.22680.75660.052*
C41.01832 (12)1.13362 (11)0.64376 (9)0.0382 (3)
C50.92258 (12)1.14345 (11)0.54671 (9)0.0354 (3)
C60.90366 (13)1.25141 (12)0.50278 (10)0.0434 (3)
H60.84271.25840.43890.052*
C70.97267 (14)1.34465 (12)0.55196 (10)0.0442 (3)
H70.95771.41490.52180.053*
C80.84911 (12)1.04604 (12)0.49738 (9)0.0393 (3)
H80.78531.05150.43400.047*
C90.87159 (13)0.94461 (12)0.54251 (9)0.0393 (3)
C100.96829 (15)0.93151 (13)0.63736 (10)0.0500 (4)
H100.98420.86040.66630.060*
C111.03874 (15)1.02504 (13)0.68656 (10)0.0509 (4)
H111.10191.01720.74990.061*
C120.72086 (12)0.79239 (11)0.51122 (9)0.0363 (3)
C130.65192 (13)0.69261 (10)0.44424 (9)0.0362 (3)
C140.75342 (16)0.59438 (13)0.48707 (12)0.0572 (4)
H14A0.71850.52730.44860.086*
H14B0.77180.57800.54930.086*
H14C0.83300.61690.48990.086*
C150.61823 (13)0.71551 (11)0.34325 (9)0.0369 (3)
H15A0.60670.64250.31230.044*
H15B0.69280.75320.34590.044*
C160.49451 (13)0.78899 (10)0.28177 (8)0.0359 (3)
C170.37796 (13)0.73661 (11)0.28312 (9)0.0382 (3)
H17A0.36160.66020.25670.046*
H17B0.30010.78240.24470.046*
C180.40466 (13)0.73080 (10)0.38319 (9)0.0360 (3)
C190.52754 (13)0.65756 (11)0.44435 (9)0.0389 (3)
H19A0.54680.66010.50850.047*
H19B0.50710.57890.42330.047*
C200.51756 (13)0.90892 (10)0.32291 (8)0.0358 (3)
C210.43114 (13)0.85050 (11)0.42433 (9)0.0374 (3)
C220.47044 (18)0.79546 (14)0.18231 (10)0.0546 (4)
H22A0.39590.84340.14430.082*
H22B0.45390.72010.15570.082*
H22C0.54650.82690.18440.082*
C230.28802 (16)0.68016 (14)0.38570 (12)0.0558 (4)
H23A0.30610.68130.44900.084*
H23B0.27400.60270.36330.084*
H23C0.21080.72470.34630.084*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.1151 (11)0.0470 (7)0.0734 (9)0.0257 (7)0.0398 (8)0.0030 (6)
O20.0485 (6)0.0427 (5)0.0449 (5)0.0134 (4)0.0257 (5)0.0075 (4)
O30.0559 (6)0.0680 (7)0.0351 (5)0.0186 (5)0.0224 (5)0.0079 (5)
O40.0676 (7)0.0338 (5)0.0467 (6)0.0063 (5)0.0280 (5)0.0051 (4)
O50.0652 (7)0.0502 (6)0.0614 (7)0.0137 (5)0.0441 (6)0.0232 (5)
N10.0515 (7)0.0253 (5)0.0403 (6)0.0041 (5)0.0232 (5)0.0089 (4)
C10.0697 (10)0.0489 (9)0.0525 (9)0.0152 (8)0.0315 (8)0.0069 (7)
C20.0436 (7)0.0406 (7)0.0456 (8)0.0052 (6)0.0258 (6)0.0029 (6)
C30.0428 (7)0.0473 (8)0.0339 (7)0.0055 (6)0.0155 (6)0.0003 (6)
C40.0345 (6)0.0408 (7)0.0354 (7)0.0020 (5)0.0153 (6)0.0017 (5)
C50.0294 (6)0.0405 (7)0.0348 (7)0.0003 (5)0.0155 (5)0.0020 (5)
C60.0354 (7)0.0472 (8)0.0378 (7)0.0017 (6)0.0120 (6)0.0091 (6)
C70.0413 (7)0.0381 (7)0.0512 (8)0.0016 (6)0.0226 (7)0.0088 (6)
C80.0334 (6)0.0463 (8)0.0329 (7)0.0039 (6)0.0133 (5)0.0013 (6)
C90.0367 (7)0.0406 (7)0.0400 (7)0.0073 (6)0.0194 (6)0.0045 (6)
C100.0502 (8)0.0401 (8)0.0460 (8)0.0035 (6)0.0150 (7)0.0094 (6)
C110.0486 (8)0.0484 (8)0.0344 (7)0.0061 (7)0.0062 (6)0.0068 (6)
C120.0347 (6)0.0360 (7)0.0320 (6)0.0002 (5)0.0129 (5)0.0054 (5)
C130.0392 (7)0.0280 (6)0.0387 (7)0.0009 (5)0.0182 (6)0.0028 (5)
C140.0540 (9)0.0398 (8)0.0697 (11)0.0108 (7)0.0262 (8)0.0125 (7)
C150.0438 (7)0.0304 (6)0.0418 (7)0.0015 (5)0.0259 (6)0.0060 (5)
C160.0458 (7)0.0309 (6)0.0289 (6)0.0017 (5)0.0179 (6)0.0042 (5)
C170.0394 (7)0.0328 (6)0.0356 (7)0.0032 (5)0.0146 (6)0.0097 (5)
C180.0382 (7)0.0320 (6)0.0394 (7)0.0071 (5)0.0212 (6)0.0095 (5)
C190.0484 (8)0.0291 (6)0.0396 (7)0.0067 (5)0.0229 (6)0.0000 (5)
C200.0409 (7)0.0285 (6)0.0294 (6)0.0013 (5)0.0121 (5)0.0024 (5)
C210.0368 (7)0.0350 (7)0.0398 (7)0.0035 (5)0.0192 (6)0.0096 (5)
C220.0745 (11)0.0542 (9)0.0339 (7)0.0095 (8)0.0272 (7)0.0063 (7)
C230.0519 (9)0.0570 (9)0.0674 (10)0.0215 (7)0.0370 (8)0.0208 (8)
Geometric parameters (Å, º) top
O1—C11.2031 (19)C12—C131.5267 (18)
O2—C121.3569 (15)C13—C151.5358 (18)
O2—C91.4071 (16)C13—C191.5363 (18)
O3—C121.1971 (16)C13—C141.5477 (19)
O4—C201.2136 (15)C14—H14A0.9600
O5—C211.2132 (15)C14—H14B0.9600
N1—C211.3828 (17)C14—H14C0.9600
N1—C201.3822 (17)C15—C161.5473 (18)
N1—H220.8701C15—H15A0.9700
C1—C21.475 (2)C15—H15B0.9700
C1—H10.9300C16—C201.5218 (17)
C2—C31.3707 (19)C16—C171.5264 (19)
C2—C71.411 (2)C16—C221.5284 (18)
C3—C41.4115 (19)C17—C181.5266 (18)
C3—H30.9300C17—H17A0.9700
C4—C111.4138 (19)C17—H17B0.9700
C4—C51.4199 (18)C18—C211.5177 (17)
C5—C81.4118 (18)C18—C231.5289 (19)
C5—C61.4169 (18)C18—C191.5388 (19)
C6—C71.356 (2)C19—H19A0.9700
C6—H60.9300C19—H19B0.9700
C7—H70.9300C22—H22A0.9600
C8—C91.3542 (19)C22—H22B0.9600
C8—H80.9300C22—H22C0.9600
C9—C101.400 (2)C23—H23A0.9600
C10—C111.363 (2)C23—H23B0.9600
C10—H100.9300C23—H23C0.9600
C11—H110.9300
C12—O2—C9119.29 (10)H14A—C14—H14C109.5
C21—N1—C20127.75 (10)H14B—C14—H14C109.5
C21—N1—H22115.3C13—C15—C16116.17 (10)
C20—N1—H22116.7C13—C15—H15A108.2
O1—C1—C2124.44 (16)C16—C15—H15A108.2
O1—C1—H1117.8C13—C15—H15B108.2
C2—C1—H1117.8C16—C15—H15B108.2
C3—C2—C7119.69 (13)H15A—C15—H15B107.4
C3—C2—C1119.70 (13)C20—C16—C17108.48 (10)
C7—C2—C1120.56 (13)C20—C16—C22109.31 (11)
C2—C3—C4121.31 (13)C17—C16—C22111.87 (11)
C2—C3—H3119.3C20—C16—C15109.00 (10)
C4—C3—H3119.3C17—C16—C15109.17 (10)
C3—C4—C11123.08 (12)C22—C16—C15108.96 (11)
C3—C4—C5118.67 (12)C16—C17—C18110.81 (10)
C11—C4—C5118.26 (12)C16—C17—H17A109.5
C8—C5—C6122.23 (12)C18—C17—H17A109.5
C8—C5—C4119.16 (12)C16—C17—H17B109.5
C6—C5—C4118.61 (12)C18—C17—H17B109.5
C7—C6—C5121.33 (12)H17A—C17—H17B108.1
C7—C6—H6119.3C21—C18—C17109.17 (10)
C5—C6—H6119.3C21—C18—C23108.94 (11)
C6—C7—C2120.38 (12)C17—C18—C23111.52 (11)
C6—C7—H7119.8C21—C18—C19108.07 (10)
C2—C7—H7119.8C17—C18—C19109.68 (10)
C9—C8—C5119.91 (12)C23—C18—C19109.38 (12)
C9—C8—H8120.0C13—C19—C18115.92 (10)
C5—C8—H8120.0C13—C19—H19A108.3
C8—C9—C10122.17 (12)C18—C19—H19A108.3
C8—C9—O2116.93 (12)C13—C19—H19B108.3
C10—C9—O2120.76 (12)C18—C19—H19B108.3
C11—C10—C9118.73 (13)H19A—C19—H19B107.4
C11—C10—H10120.6O4—C20—N1119.48 (11)
C9—C10—H10120.6O4—C20—C16123.81 (12)
C10—C11—C4121.71 (13)N1—C20—C16116.71 (10)
C10—C11—H11119.1O5—C21—N1120.38 (11)
C4—C11—H11119.1O5—C21—C18122.93 (12)
O3—C12—O2123.39 (12)N1—C21—C18116.66 (11)
O3—C12—C13125.33 (12)C16—C22—H22A109.5
O2—C12—C13111.13 (11)C16—C22—H22B109.5
C12—C13—C15113.79 (10)H22A—C22—H22B109.5
C12—C13—C19110.93 (10)C16—C22—H22C109.5
C15—C13—C19109.93 (11)H22A—C22—H22C109.5
C12—C13—C14103.54 (11)H22B—C22—H22C109.5
C15—C13—C14109.47 (11)C18—C23—H23A109.5
C19—C13—C14108.91 (11)C18—C23—H23B109.5
C13—C14—H14A109.5H23A—C23—H23B109.5
C13—C14—H14B109.5C18—C23—H23C109.5
H14A—C14—H14B109.5H23A—C23—H23C109.5
C13—C14—H14C109.5H23B—C23—H23C109.5
O1—C1—C2—C3175.94 (17)C12—C13—C15—C1679.40 (14)
O1—C1—C2—C71.4 (3)C19—C13—C15—C1645.71 (14)
C7—C2—C3—C40.3 (2)C14—C13—C15—C16165.31 (11)
C1—C2—C3—C4177.65 (13)C13—C15—C16—C2064.94 (14)
C2—C3—C4—C11179.38 (14)C13—C15—C16—C1753.40 (14)
C2—C3—C4—C50.3 (2)C13—C15—C16—C22175.85 (11)
C3—C4—C5—C8178.46 (12)C20—C16—C17—C1859.52 (13)
C11—C4—C5—C81.79 (19)C22—C16—C17—C18179.83 (11)
C3—C4—C5—C61.19 (19)C15—C16—C17—C1859.14 (13)
C11—C4—C5—C6178.56 (13)C16—C17—C18—C2158.72 (13)
C8—C5—C6—C7178.15 (13)C16—C17—C18—C23179.15 (11)
C4—C5—C6—C71.5 (2)C16—C17—C18—C1959.53 (13)
C5—C6—C7—C20.9 (2)C12—C13—C19—C1881.06 (13)
C3—C2—C7—C60.0 (2)C15—C13—C19—C1845.66 (14)
C1—C2—C7—C6177.36 (13)C14—C13—C19—C18165.61 (12)
C6—C5—C8—C9179.57 (13)C21—C18—C19—C1365.35 (14)
C4—C5—C8—C90.79 (19)C17—C18—C19—C1353.57 (14)
C5—C8—C9—C101.3 (2)C23—C18—C19—C13176.18 (11)
C5—C8—C9—O2177.05 (11)C21—N1—C20—O4178.38 (13)
C12—O2—C9—C8121.10 (13)C21—N1—C20—C162.65 (19)
C12—O2—C9—C1063.13 (17)C17—C16—C20—O4150.00 (13)
C8—C9—C10—C112.4 (2)C22—C16—C20—O427.77 (19)
O2—C9—C10—C11177.95 (13)C15—C16—C20—O491.23 (15)
C9—C10—C11—C41.3 (2)C17—C16—C20—N131.08 (15)
C3—C4—C11—C10179.53 (15)C22—C16—C20—N1153.30 (12)
C5—C4—C11—C100.7 (2)C15—C16—C20—N187.70 (14)
C9—O2—C12—O33.89 (19)C20—N1—C21—O5179.58 (13)
C9—O2—C12—C13179.69 (11)C20—N1—C21—C181.5 (2)
O3—C12—C13—C15150.90 (13)C17—C18—C21—O5152.91 (13)
O2—C12—C13—C1533.39 (14)C23—C18—C21—O530.91 (18)
O3—C12—C13—C1926.33 (18)C19—C18—C21—O587.84 (15)
O2—C12—C13—C19157.96 (10)C17—C18—C21—N129.08 (16)
O3—C12—C13—C1490.35 (16)C23—C18—C21—N1151.08 (13)
O2—C12—C13—C1485.35 (13)C19—C18—C21—N190.17 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H22···O5i0.872.022.8776 (14)166
Symmetry code: (i) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC23H23NO5
Mr393.42
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)11.896 (2), 11.692 (2), 16.636 (2)
β (°) 121.124 (9)
V3)1980.8 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.28 × 0.20 × 0.20
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.974, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
10443, 3897, 3217
Rint0.018
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.105, 1.03
No. of reflections3897
No. of parameters265
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.22

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H22···O5i0.872.022.8776 (14)166
Symmetry code: (i) x+1, y+2, z+1.
 

Acknowledgements

This work was supported by the Natural Science Foundation of Ludong University and the Students Research Fund of Ludong University.

References

First citationAskew, B., Ballester, P., Buhr, C., Jeong, K. S., Jones, S., Parris, K., Williams, K. & Rebek, J. Jr (1989). J. Am. Chem. Soc. 111, 1082–1090.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChamontin, K., Lokshin, V., Rossollin, V., Samat, A. & Guglielmetti, R. (1999). Tetrahedron, 55, 5821–5830.  Web of Science CrossRef CAS Google Scholar
First citationRebek, J. Jr, Askew, B., Killoran, M., Nemeth, D. & Lin, F. T. (1987). J. Am. Chem. Soc. 109, 2426–2431.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteglich, W. & Höfle, G. (1969). Angew. Chem. Int. Ed. Engl. 8, 981.  CrossRef Web of Science Google Scholar
First citationWilliams, K., Askew, B., Ballester, P., Buhr, C., Jeong, K. S., Jones, S. & Rebek, J. Jr (1989). J. Am. Chem. Soc. 111, 1090–1094.  CrossRef CAS Web of Science Google Scholar
First citationXu, S.-G. & Giuseppone, N. (2008). J. Am. Chem. Soc. 130, 1826–1827.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds