organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 1| January 2010| Pages o150-o151

(2E)-N′-Benzoyl-3-(4-nitro­phen­yl)prop-2-enohydrazide

aInstituto de Química, Universidade Federal do Rio de Janeiro, 21949-900 Rio de Janeiro, RJ, Brazil, bDepartamento de Síntese Orgánica, Instituto de Tecnologia em Fármacos FIOCRUZ, Manguinhos, Rua Sizenando Nabuco 100, Manguinhos, 21041-250 Rio de Janeiro, RJ, Brazil, cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, dCentro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Av. Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil, and eCHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 9 December 2009; accepted 11 December 2009; online 16 December 2009)

In the title compound, C16H13N3O4, the dihedral angle between the terminal benzene rings is 14.02 (7)°. The carbonyl groups are anti with respect to each other, which facilitates their participation in the formation of supra­molecular chains. Each side of the –C(=O)N(H)N(H)C(=O)– residue associates with a centrosymmetrically related mol­ecule, resulting in the formation of essentially flat ten-membered {⋯O=CNN(H)}2 synthons. The resultant chains are further consolidated in the crystal structure via C—H⋯O contacts.

Related literature

For background to the biological activity of trans-cinnamic acid derivatives, see: Bezerra et al. (2006[Bezerra, D. P., Castro, F. O., Alves, A. P. N. N., Pessoa, C., Moraes, M. O., Silveira, E. R., Lima, M. A. S., Elmiro, F. J. M. & Costa-Lotufo, L. V. (2006). Braz. J. Med. Biol. Res. 39, 801-807.]); Chung & Shin (2007[Chung, H. S. & Shin, J. C. (2007). Food Chem. 104, 1670-1677.]); Naz et al. (2006[Naz, S., Ahmad, S., Rasool, S. A., Sayeed, S. A. & Siddiqi, R. (2006). Microb. Res. 161, 43-48.]). For background to the development of hydrazide derivatives for biological evaluation, see: Carvalho et al. (2008[Carvalho, S. R., da Silva, E. F., de Souza, M. V. N., Lourenço, M. C. S. & Vicente, F. R. (2008). Bioorg. Med. Chem. Lett. 18, 538-541.], 2009[Carvalho, S. A., da Silva, E. F., Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2009). Acta Cryst. E65, o3118.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13N3O4

  • Mr = 311.29

  • Triclinic, [P \overline 1]

  • a = 6.8263 (2) Å

  • b = 9.6483 (3) Å

  • c = 10.8571 (3) Å

  • α = 95.535 (2)°

  • β = 102.701 (2)°

  • γ = 91.728 (2)°

  • V = 693.35 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 120 K

  • 0.50 × 0.40 × 0.20 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.664, Tmax = 0.746

  • 15199 measured reflections

  • 3157 independent reflections

  • 2495 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.127

  • S = 1.06

  • 3157 reflections

  • 214 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2n⋯O4 0.88 (1) 2.27 (1) 2.6470 (16) 106 (1)
N2—H2n⋯O4i 0.88 (1) 2.05 (1) 2.8721 (15) 155 (1)
N3—H3n⋯O3 0.88 (1) 2.35 (1) 2.6687 (15) 101 (1)
N3—H3n⋯O3ii 0.88 (1) 2.07 (1) 2.9269 (15) 165 (1)
C12—H12⋯O4iii 0.95 2.56 3.4257 (18) 151
C14—H14⋯O1iv 0.95 2.58 3.2851 (19) 132
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y, -z+1; (iii) -x+2, -y+1, -z+1; (iv) x+2, y, z-1.

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

Tuberculosis (TB) remains among the world's great public health challenges. Worldwide resurgence of TB is due to two major problems: the AIDS epidemic, which started in the mid-1980 s, and the outbreak of multi-drug resistant (MDR) TB (Bezerra et al., 2006; Chung & Shin 2007; Naz et al., 2006). In connection with on-going studies designed to generate novel therapeutic anti-malarial agents, we recently described a new class of isonicotinic and benzoic acid N'-(3-phenyl-acryloyl)-hydrazide derivatives as attractive anti-tubercular agents (Carvalho et al., 2008). Allied with these investigations are structural studies: the structure of N'-[(2E)-3-phenylprop-2-enoyl]benzohydrazide was recently reported by us (Carvalho et al., 2009) and now we report the structure of title compound, (I).

The molecular structure of (I), Fig. 1, shows small but significant deviations from co-planarity. Thus, the central moiety is essentially planar as seen in the sequence of C1–C7–C8–C9, C7–C8–C9–N2 and C9–N2–N3–C10 torsion angles of 175.50 (12), 173.72 (12) and 172.40 (12) °, respectively. However, the terminal amide-bound benzene ring is significantly twisted out of the plane of the remaining molecule: the N3–C10–C11–C12 torsion angle = -153.50 (13) °. This contrasts the co-planarity of the nitro-substituted benzene ring: the C2–C1–C7–C8 torsion angle = -179.69 (13) °. However the nitro group is twisted out of the plane of the benzene ring to which it is attached: the O1–N1–C4–C3 torsion angle is -17.9 (2) °. The overall twist in the molecule is reflected in the dihedral angle formed between the benzene rings of 14.02 (7) °. The conformation about the C7C8 bond [1.3360 (19) Å] is E. The carbonyl groups are anti with respect to each other, a conformation that allows their participation in the stabilization of supramolecular chains. Each side of the –C(O)N(H)N(H)C(O)- residue associates with a centrosymmetrically related molecule resulting in the formation of essentially flat ten-membered {···OCNN(H)}2 synthons, Fig. 2 and Table 1. The overall topology of the chain orientation along the b axis is flat. The N–H···O hydrogen bonds are not linear as might be expected owing to the presence of weaker intramolecular N–H···O contacts, Table 1. Supramolecular chains are connected into a layer motif via CphenylH···Onitro contacts, Fig. 3 and Table 1. It is assumed that the twist of the nitro group from the plane of the benzene ring (see above) arises to optimize this contact. These supramolecular arrays are linked into the three-dimensional structure via CphenylH···Ocarbonyl interactions, Fig. 4 and Table 1.

Related literature top

For background to the biological activity of trans-cinnamic acid derivatives, see: Bezerra et al. (2006); Chung & Shin (2007); Naz et al. (2006). For background to the development of hydrazide derivatives for biological evaluation, see: Carvalho et al. (2008, 2009).

Experimental top

4-Nitrophenyl (2E)-3-(4-nitrophenyl)-2-propenoate (2 g), prepared by successive treatments of trans-4-nitrocinnamic acid with thionyl chloride and 4-nitrophenol, was added to a solution of PhCONHNH2 (1.1 equiv.) in pyridine (40 ml). After refluxing the reaction mixture for 6 h, the pyridine was removed under vacuum and H2O (20 ml) was added. The precipitate was collected, washed with H2O (yield 80%) and recrystallized from EtOH to yield orange blocks of (I), m.pt. 551–552 K. 1H NMR (500.00 MHz, DMSO-d6) δ: 7.00 (1H, d, J = 16.0 Hz), 7.61 (3H, m), 7.74 (1H, d, J = 16.0 Hz), 7.96 (2H, d, J = 7.5 Hz), 7.99 (2H, d, J = 8.5 Hz), 8.36 (2H, d, J = 8.5 Hz), 10.55 (1H, s, NH), 10.71 (1H, s, NH) p.p.m.. 13C NMR (125 MHz, DMSO-d6) δ: 166.02, 164.06, 147.67, 140.73, 138.35, 132.09, 131.88, 128.81, 128.54, 127.30, 123.99, 123.14 p.p.m.

Refinement top

The C-bound H atoms were geometrically placed (C–H = 0.95 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The N–H atoms were located in a difference map and refined with the distance restraint N–H = 0.88±0.01 and with Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of the supramolecular chain in (I) mediated by N–H···O hydrogen bonding (orange dashed lines). Colour code: O, red; N, blue; C, grey; and H, green.
[Figure 3] Fig. 3. A view of the supramolecular array in (I) with N–H···O hydrogen bonding and C–H···N contacts shown as orange and blue dashed lines, respectively. Colour code: O, red; N, blue; C, grey; and H, green.
[Figure 4] Fig. 4. A view of the stacking of layers (illustrated in Fig. 3) in (I) with the C—H···O contacts shown as green dashed lines. Colour code: O, red; N, blue; C, grey; and H, green.
(2E)-N'-Benzoyl-3-(4-nitrophenyl)prop-2-enohydrazide top
Crystal data top
C16H13N3O4Z = 2
Mr = 311.29F(000) = 324
Triclinic, P1Dx = 1.491 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.8263 (2) ÅCell parameters from 7821 reflections
b = 9.6483 (3) Åθ = 2.9–27.5°
c = 10.8571 (3) ŵ = 0.11 mm1
α = 95.535 (2)°T = 120 K
β = 102.701 (2)°Block, orange
γ = 91.728 (2)°0.50 × 0.40 × 0.20 mm
V = 693.35 (4) Å3
Data collection top
Nonius KappaCCD
diffractometer
3157 independent reflections
Radiation source: Enraf Nonius FR591 rotating anode2495 reflections with I > 2σ(I)
10 cm confocal mirrors monochromatorRint = 0.047
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.0°
ϕ and ω scansh = 88
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
k = 1212
Tmin = 0.664, Tmax = 0.746l = 1413
15199 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0687P)2 + 0.1871P]
where P = (Fo2 + 2Fc2)/3
3157 reflections(Δ/σ)max < 0.001
214 parametersΔρmax = 0.31 e Å3
2 restraintsΔρmin = 0.31 e Å3
Crystal data top
C16H13N3O4γ = 91.728 (2)°
Mr = 311.29V = 693.35 (4) Å3
Triclinic, P1Z = 2
a = 6.8263 (2) ÅMo Kα radiation
b = 9.6483 (3) ŵ = 0.11 mm1
c = 10.8571 (3) ÅT = 120 K
α = 95.535 (2)°0.50 × 0.40 × 0.20 mm
β = 102.701 (2)°
Data collection top
Nonius KappaCCD
diffractometer
3157 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
2495 reflections with I > 2σ(I)
Tmin = 0.664, Tmax = 0.746Rint = 0.047
15199 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0432 restraints
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.31 e Å3
3157 reflectionsΔρmin = 0.31 e Å3
214 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.61174 (17)0.25925 (13)1.01283 (12)0.0338 (3)
O20.39300 (16)0.42685 (11)1.10137 (10)0.0231 (3)
O30.30141 (14)0.06073 (10)0.52732 (10)0.0185 (2)
O40.68693 (15)0.44415 (10)0.44917 (10)0.0214 (3)
N10.45702 (18)0.33067 (13)1.01817 (12)0.0203 (3)
N20.44535 (17)0.27625 (12)0.53463 (11)0.0154 (3)
H2N0.444 (2)0.3677 (10)0.5437 (15)0.018*
N30.56991 (17)0.22492 (12)0.45712 (11)0.0155 (3)
H3N0.585 (2)0.1348 (10)0.4560 (15)0.019*
C10.1035 (2)0.22612 (15)0.75127 (13)0.0150 (3)
C20.2558 (2)0.13309 (15)0.76568 (13)0.0180 (3)
H20.27770.04480.71660.022*
C30.3753 (2)0.16829 (16)0.85096 (14)0.0204 (3)
H30.47840.10480.86100.024*
C40.3414 (2)0.29731 (15)0.92086 (13)0.0169 (3)
C50.1974 (2)0.39458 (15)0.90566 (14)0.0191 (3)
H50.18080.48430.95230.023*
C60.0783 (2)0.35802 (15)0.82096 (14)0.0194 (3)
H60.02190.42320.80990.023*
C70.0287 (2)0.17919 (14)0.66696 (13)0.0153 (3)
H70.00280.08690.62580.018*
C80.1816 (2)0.25341 (14)0.64252 (13)0.0160 (3)
H80.20780.34840.67640.019*
C90.3096 (2)0.18722 (14)0.56259 (13)0.0142 (3)
C100.6883 (2)0.31779 (14)0.41785 (13)0.0149 (3)
C110.8125 (2)0.25900 (14)0.33038 (13)0.0151 (3)
C120.9921 (2)0.33116 (15)0.32771 (14)0.0180 (3)
H121.03780.41220.38500.022*
C131.1038 (2)0.28350 (16)0.24048 (15)0.0220 (3)
H131.22700.33120.23930.026*
C141.0350 (2)0.16644 (16)0.15541 (15)0.0241 (3)
H141.10970.13580.09460.029*
C150.8579 (2)0.09389 (16)0.15851 (15)0.0248 (3)
H150.81250.01300.10100.030*
C160.7471 (2)0.14018 (15)0.24624 (14)0.0197 (3)
H160.62610.09040.24870.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0268 (6)0.0377 (7)0.0412 (7)0.0068 (5)0.0216 (5)0.0036 (6)
O20.0277 (6)0.0234 (6)0.0190 (5)0.0054 (4)0.0076 (4)0.0003 (4)
O30.0205 (5)0.0113 (5)0.0255 (5)0.0010 (4)0.0099 (4)0.0008 (4)
O40.0240 (5)0.0109 (5)0.0323 (6)0.0005 (4)0.0144 (5)0.0002 (4)
N10.0190 (6)0.0233 (7)0.0209 (6)0.0034 (5)0.0092 (5)0.0024 (5)
N20.0185 (6)0.0106 (6)0.0209 (6)0.0027 (5)0.0125 (5)0.0007 (5)
N30.0173 (6)0.0114 (6)0.0208 (6)0.0021 (5)0.0111 (5)0.0007 (5)
C10.0144 (6)0.0171 (7)0.0145 (6)0.0026 (5)0.0040 (5)0.0032 (5)
C20.0181 (7)0.0159 (7)0.0198 (7)0.0014 (5)0.0059 (6)0.0013 (5)
C30.0169 (7)0.0218 (7)0.0239 (7)0.0040 (6)0.0090 (6)0.0005 (6)
C40.0147 (7)0.0207 (7)0.0169 (7)0.0028 (5)0.0069 (5)0.0013 (6)
C50.0212 (7)0.0151 (7)0.0219 (7)0.0009 (6)0.0079 (6)0.0012 (6)
C60.0192 (7)0.0166 (7)0.0250 (7)0.0014 (5)0.0107 (6)0.0020 (6)
C70.0156 (7)0.0149 (7)0.0156 (7)0.0021 (5)0.0042 (5)0.0013 (5)
C80.0182 (7)0.0127 (7)0.0185 (7)0.0031 (5)0.0069 (5)0.0010 (5)
C90.0133 (6)0.0142 (7)0.0154 (6)0.0008 (5)0.0037 (5)0.0023 (5)
C100.0148 (6)0.0131 (7)0.0173 (7)0.0008 (5)0.0046 (5)0.0019 (5)
C110.0174 (7)0.0139 (7)0.0168 (6)0.0039 (5)0.0077 (5)0.0048 (5)
C120.0176 (7)0.0166 (7)0.0210 (7)0.0011 (5)0.0059 (6)0.0034 (6)
C130.0185 (7)0.0237 (8)0.0282 (8)0.0039 (6)0.0119 (6)0.0088 (6)
C140.0312 (8)0.0234 (8)0.0244 (8)0.0090 (6)0.0182 (7)0.0063 (6)
C150.0373 (9)0.0172 (7)0.0228 (7)0.0019 (6)0.0133 (7)0.0003 (6)
C160.0232 (7)0.0159 (7)0.0223 (7)0.0008 (6)0.0104 (6)0.0022 (6)
Geometric parameters (Å, º) top
O1—N11.2309 (16)C5—H50.9500
O2—N11.2282 (16)C6—H60.9500
O3—C91.2392 (16)C7—C81.3360 (19)
O4—C101.2346 (16)C7—H70.9500
N1—C41.4695 (17)C8—C91.4784 (18)
N2—C91.3469 (17)C8—H80.9500
N2—N31.3914 (16)C10—C111.4905 (18)
N2—H2N0.879 (9)C11—C161.3913 (19)
N3—C101.3490 (18)C11—C121.399 (2)
N3—H3N0.878 (9)C12—C131.394 (2)
C1—C21.3974 (19)C12—H120.9500
C1—C61.402 (2)C13—C141.388 (2)
C1—C71.4717 (18)C13—H130.9500
C2—C31.3884 (19)C14—C151.387 (2)
C2—H20.9500C14—H140.9500
C3—C41.379 (2)C15—C161.391 (2)
C3—H30.9500C15—H150.9500
C4—C51.386 (2)C16—H160.9500
C5—C61.3834 (19)
O2—N1—O1123.49 (12)C1—C7—H7116.8
O2—N1—C4118.41 (11)C7—C8—C9119.74 (13)
O1—N1—C4118.09 (12)C7—C8—H8120.1
C9—N2—N3118.46 (11)C9—C8—H8120.1
C9—N2—H2N125.6 (11)O3—C9—N2121.75 (12)
N3—N2—H2N114.0 (11)O3—C9—C8124.24 (12)
C10—N3—N2117.73 (11)N2—C9—C8113.95 (12)
C10—N3—H3N126.1 (11)O4—C10—N3121.47 (12)
N2—N3—H3N114.1 (11)O4—C10—C11122.51 (12)
C2—C1—C6118.84 (12)N3—C10—C11115.96 (12)
C2—C1—C7118.38 (13)C16—C11—C12119.75 (13)
C6—C1—C7122.74 (12)C16—C11—C10121.48 (12)
C3—C2—C1120.74 (13)C12—C11—C10118.62 (13)
C3—C2—H2119.6C13—C12—C11119.66 (14)
C1—C2—H2119.6C13—C12—H12120.2
C4—C3—C2118.63 (13)C11—C12—H12120.2
C4—C3—H3120.7C14—C13—C12120.04 (14)
C2—C3—H3120.7C14—C13—H13120.0
C3—C4—C5122.36 (13)C12—C13—H13120.0
C3—C4—N1118.74 (12)C13—C14—C15120.45 (13)
C5—C4—N1118.87 (13)C13—C14—H14119.8
C6—C5—C4118.45 (13)C15—C14—H14119.8
C6—C5—H5120.8C14—C15—C16119.70 (14)
C4—C5—H5120.8C14—C15—H15120.2
C5—C6—C1120.90 (13)C16—C15—H15120.2
C5—C6—H6119.5C15—C16—C11120.37 (13)
C1—C6—H6119.5C15—C16—H16119.8
C8—C7—C1126.49 (13)C11—C16—H16119.8
C8—C7—H7116.8
C9—N2—N3—C10172.40 (12)N3—N2—C9—O34.2 (2)
C6—C1—C2—C32.4 (2)N3—N2—C9—C8178.39 (11)
C7—C1—C2—C3175.31 (13)C7—C8—C9—O39.0 (2)
C1—C2—C3—C40.3 (2)C7—C8—C9—N2173.72 (12)
C2—C3—C4—C52.4 (2)N2—N3—C10—O40.0 (2)
C2—C3—C4—N1175.32 (13)N2—N3—C10—C11177.37 (11)
O2—N1—C4—C3161.15 (13)O4—C10—C11—C16146.43 (14)
O1—N1—C4—C317.9 (2)N3—C10—C11—C1630.87 (19)
O2—N1—C4—C516.63 (19)O4—C10—C11—C1229.2 (2)
O1—N1—C4—C5164.35 (13)N3—C10—C11—C12153.50 (13)
C3—C4—C5—C62.8 (2)C16—C11—C12—C130.1 (2)
N1—C4—C5—C6174.94 (12)C10—C11—C12—C13175.56 (12)
C4—C5—C6—C10.5 (2)C11—C12—C13—C141.1 (2)
C2—C1—C6—C52.0 (2)C12—C13—C14—C151.7 (2)
C7—C1—C6—C5175.60 (13)C13—C14—C15—C161.0 (2)
C2—C1—C7—C8179.69 (13)C14—C15—C16—C110.3 (2)
C6—C1—C7—C82.1 (2)C12—C11—C16—C150.8 (2)
C1—C7—C8—C9175.50 (12)C10—C11—C16—C15174.75 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2n···O40.88 (1)2.27 (1)2.6470 (16)106 (1)
N2—H2n···O4i0.88 (1)2.05 (1)2.8721 (15)155 (1)
N3—H3n···O30.88 (1)2.35 (1)2.6687 (15)101 (1)
N3—H3n···O3ii0.88 (1)2.07 (1)2.9269 (15)165 (1)
C12—H12···O4iii0.952.563.4257 (18)151
C14—H14···O1iv0.952.583.2851 (19)132
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1; (iii) x+2, y+1, z+1; (iv) x+2, y, z1.

Experimental details

Crystal data
Chemical formulaC16H13N3O4
Mr311.29
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)6.8263 (2), 9.6483 (3), 10.8571 (3)
α, β, γ (°)95.535 (2), 102.701 (2), 91.728 (2)
V3)693.35 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.50 × 0.40 × 0.20
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.664, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
15199, 3157, 2495
Rint0.047
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.127, 1.06
No. of reflections3157
No. of parameters214
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.31

Computer programs: , DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2n···O40.879 (10)2.273 (14)2.6470 (16)105.5 (11)
N2—H2n···O4i0.879 (10)2.050 (11)2.8721 (15)155.4 (13)
N3—H3n···O30.878 (10)2.354 (14)2.6687 (15)101.3 (10)
N3—H3n···O3ii0.878 (10)2.070 (11)2.9269 (15)165.0 (13)
C12—H12···O4iii0.952.563.4257 (18)151
C14—H14···O1iv0.952.583.2851 (19)132
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1; (iii) x+2, y+1, z+1; (iv) x+2, y, z1.
 

Footnotes

Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.

Acknowledgements

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES (Brazil).

References

First citationBezerra, D. P., Castro, F. O., Alves, A. P. N. N., Pessoa, C., Moraes, M. O., Silveira, E. R., Lima, M. A. S., Elmiro, F. J. M. & Costa-Lotufo, L. V. (2006). Braz. J. Med. Biol. Res. 39, 801-807.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCarvalho, S. R., da Silva, E. F., de Souza, M. V. N., Lourenço, M. C. S. & Vicente, F. R. (2008). Bioorg. Med. Chem. Lett. 18, 538–541.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCarvalho, S. A., da Silva, E. F., Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2009). Acta Cryst. E65, o3118.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChung, H. S. & Shin, J. C. (2007). Food Chem. 104, 1670–1677.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationNaz, S., Ahmad, S., Rasool, S. A., Sayeed, S. A. & Siddiqi, R. (2006). Microb. Res. 161, 43-48.  Web of Science CrossRef CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 1| January 2010| Pages o150-o151
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds