organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(4-Chloro­phen­yl)-1H-pyrazol-3-ol

aChemical Engineering Department, Weifang Vocational College, Weifang 261000, People's Republic of China, bBioengineering School, Weifang University, Weifang 261061, People's Republic of China, and cThe 7th Middle School, Weifang 261000, People's Republic of China
*Correspondence e-mail: rxy718@126.com

(Received 11 December 2009; accepted 13 December 2009; online 19 December 2009)

In the title compound, C9H7ClN2O, the dihedral angle between the aromatic ring planes is 11.0 (2)°. In the crystal, inversion dimers linked by pairs of O—H⋯N hydrogen bonds generate R22(8) loops.

Related literature

For a related structure, see: Jian et al. (2005[Jian, F.-F., Bai, Z.-S., Li, K. & Xiao, H.-L. (2005). Acta Cryst. E61, o393-o395.]). For background to herbicides and plant-growth promoters related to the title compound, see: Shi et al. (1995[Shi, Y. N., Lu, Y. C. & Fang, J. X. (1995). Chem. J. Chin. Univ. 16, 1710-1713.]); Xu et al. (2002[Xu, L. Z., Zhang, S. S., Li, H. J. & Jiao, K. (2002). Chem. Res. Chin. Univ. 18, 284-286.]).

[Scheme 1]

Experimental

Crystal data
  • C9H7ClN2O

  • Mr = 194.62

  • Monoclinic, P 21 /c

  • a = 9.6461 (19) Å

  • b = 13.833 (3) Å

  • c = 6.5045 (13) Å

  • β = 94.33 (3)°

  • V = 865.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 293 K

  • 0.11 × 0.09 × 0.08 mm

Data collection
  • Bruker SMART CCD diffractometer

  • 5771 measured reflections

  • 1357 independent reflections

  • 1171 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.146

  • S = 1.24

  • 1357 reflections

  • 122 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N2i 0.86 (4) 1.89 (4) 2.744 (4) 173 (4)
Symmetry code: (i) -x+1, -y, -z+1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL .

Supporting information


Comment top

p-Chlorophenyl hydrazine hydrochloride is an important biologically active compound used in herbicides and plant growth substances (Shi et al.,1995; Xu, et al.,2002). Here we report the crystal structure of the title compound (I).

In the title compound (I) (Fig. 1), the The dihedral angle between the pheny ring (C4,C5,C6,C7,C8 and C9) and ring 1(N1,N2,C1,C2 and C3) is 11.0 (2)°. The C—N bonds length in the range of (1.321 (5) Å-1.416 (5) Å) are in agreement with that observed before (Jian et al., 2005).

Related literature top

For a related structure, see: Jian et al. (2005). For background to herbicides and plant-growth promoters related to the title compound, see: Shi et al. (1995); Xu et al. (2002).

Experimental top

A mixture of p-Chlorophenylhydrazing hydrochloride (0.02 mol) and methyl acrylate (0.02 mol) was stirred in ethanol (30 ml) at 353 K for 2 h to afford the title compound (yield 50%). Colourless bars of (I) were obtained by recrystallization from acetone at room temperature.

Refinement top

The O-bound H atom was located in a difference map and freely refined. The C-bound H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93–0.96 Å and with Uiso(H) = 1.2Ueq of the parent atoms.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 30% probability level.
1-(4-Chlorophenyl)-1H-pyrazol-3-ol top
Crystal data top
C9H7ClN2OF(000) = 400
Mr = 194.62Dx = 1.494 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1171 reflections
a = 9.6461 (19) Åθ = 3.5–27.5°
b = 13.833 (3) ŵ = 0.40 mm1
c = 6.5045 (13) ÅT = 293 K
β = 94.33 (3)°Bar, colourless
V = 865.4 (3) Å30.11 × 0.09 × 0.08 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
1171 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.038
Graphite monochromatorθmax = 24.5°, θmin = 3.5°
ω scansh = 1111
5771 measured reflectionsk = 1616
1357 independent reflectionsl = 77
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.059H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.146 w = 1/[σ2(Fo2) + (0.0166P)2 + 1.7755P]
where P = (Fo2 + 2Fc2)/3
S = 1.24(Δ/σ)max < 0.001
1357 reflectionsΔρmax = 0.23 e Å3
122 parametersΔρmin = 0.32 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.049 (5)
Crystal data top
C9H7ClN2OV = 865.4 (3) Å3
Mr = 194.62Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.6461 (19) ŵ = 0.40 mm1
b = 13.833 (3) ÅT = 293 K
c = 6.5045 (13) Å0.11 × 0.09 × 0.08 mm
β = 94.33 (3)°
Data collection top
Bruker SMART CCD
diffractometer
1171 reflections with I > 2σ(I)
5771 measured reflectionsRint = 0.038
1357 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.146H atoms treated by a mixture of independent and constrained refinement
S = 1.24Δρmax = 0.23 e Å3
1357 reflectionsΔρmin = 0.32 e Å3
122 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.03021 (14)0.13637 (11)0.3127 (2)0.0771 (6)
O10.3291 (3)0.0636 (2)0.5246 (5)0.0508 (8)
H10.377 (5)0.019 (3)0.588 (7)0.061*
N10.5047 (3)0.1156 (2)0.1005 (5)0.0361 (8)
N20.5009 (3)0.0759 (2)0.2928 (5)0.0380 (8)
C10.3807 (4)0.1554 (3)0.0396 (7)0.0458 (10)
H1A0.35880.18680.08510.055*
C20.2936 (4)0.1420 (3)0.1900 (6)0.0443 (10)
H2B0.20150.16170.19080.053*
C30.3726 (4)0.0919 (3)0.3442 (6)0.0386 (9)
C40.6308 (4)0.1525 (3)0.1997 (6)0.0423 (10)
H4A0.54760.17070.27100.051*
C50.7541 (5)0.1583 (3)0.2943 (6)0.0467 (11)
H5A0.75390.18070.42920.056*
C60.8760 (5)0.1314 (3)0.1905 (7)0.0475 (11)
C70.8777 (4)0.0988 (3)0.0093 (7)0.0489 (11)
H7A0.96130.08080.07920.059*
C80.7556 (4)0.0929 (3)0.1066 (6)0.0414 (10)
H8A0.75700.07100.24190.050*
C90.6311 (4)0.1195 (2)0.0022 (6)0.0339 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0584 (9)0.1009 (11)0.0757 (10)0.0004 (7)0.0298 (7)0.0190 (7)
O10.0422 (17)0.065 (2)0.0469 (18)0.0123 (14)0.0141 (15)0.0138 (14)
N10.0355 (18)0.0400 (17)0.0322 (17)0.0012 (13)0.0011 (15)0.0040 (13)
N20.0361 (19)0.0440 (18)0.0338 (18)0.0036 (13)0.0011 (15)0.0065 (14)
C10.044 (2)0.051 (2)0.040 (2)0.0064 (18)0.009 (2)0.0060 (18)
C20.034 (2)0.051 (2)0.048 (3)0.0073 (17)0.000 (2)0.0012 (18)
C30.036 (2)0.038 (2)0.042 (2)0.0023 (16)0.0044 (19)0.0017 (16)
C40.045 (2)0.045 (2)0.035 (2)0.0016 (17)0.007 (2)0.0043 (16)
C50.058 (3)0.048 (2)0.035 (2)0.0062 (19)0.007 (2)0.0046 (17)
C60.048 (3)0.045 (2)0.052 (3)0.0038 (18)0.015 (2)0.0037 (19)
C70.039 (2)0.052 (2)0.055 (3)0.0012 (18)0.004 (2)0.008 (2)
C80.042 (2)0.047 (2)0.035 (2)0.0014 (17)0.0012 (19)0.0063 (17)
C90.039 (2)0.0323 (19)0.030 (2)0.0027 (15)0.0007 (17)0.0013 (14)
Geometric parameters (Å, º) top
Cl1—C61.740 (4)C4—C51.382 (6)
O1—C31.334 (5)C4—C91.390 (5)
O1—H10.86 (5)C4—H4A0.9300
N1—C11.349 (5)C5—C61.363 (6)
N1—N21.369 (4)C5—H5A0.9300
N1—C91.420 (5)C6—C71.374 (6)
N2—C31.325 (5)C7—C81.381 (6)
C1—C21.349 (6)C7—H7A0.9300
C1—H1A0.9300C8—C91.384 (5)
C2—C31.396 (5)C8—H8A0.9300
C2—H2B0.9300
C3—O1—H1116 (3)C9—C4—H4A120.0
C1—N1—N2110.4 (3)C6—C5—C4120.2 (4)
C1—N1—C9128.7 (3)C6—C5—H5A119.9
N2—N1—C9120.6 (3)C4—C5—H5A119.9
C3—N2—N1104.7 (3)C5—C6—C7120.4 (4)
N1—C1—C2108.5 (4)C5—C6—Cl1119.9 (3)
N1—C1—H1A125.7C7—C6—Cl1119.7 (4)
C2—C1—H1A125.7C6—C7—C8120.2 (4)
C1—C2—C3104.7 (4)C6—C7—H7A119.9
C1—C2—H2B127.7C8—C7—H7A119.9
C3—C2—H2B127.7C7—C8—C9119.9 (4)
N2—C3—O1122.3 (3)C7—C8—H8A120.1
N2—C3—C2111.8 (3)C9—C8—H8A120.1
O1—C3—C2125.9 (4)C8—C9—C4119.4 (4)
C5—C4—C9119.9 (4)C8—C9—N1120.8 (3)
C5—C4—H4A120.0C4—C9—N1119.8 (3)
C1—N1—N2—C30.5 (4)C5—C6—C7—C80.2 (6)
C9—N1—N2—C3174.5 (3)Cl1—C6—C7—C8178.8 (3)
N2—N1—C1—C20.3 (4)C6—C7—C8—C90.2 (6)
C9—N1—C1—C2173.7 (3)C7—C8—C9—C40.3 (6)
N1—C1—C2—C30.1 (5)C7—C8—C9—N1178.9 (3)
N1—N2—C3—O1179.6 (3)C5—C4—C9—C80.1 (6)
N1—N2—C3—C20.6 (4)C5—C4—C9—N1178.6 (3)
C1—C2—C3—N20.4 (5)C1—N1—C9—C8165.9 (4)
C1—C2—C3—O1179.4 (4)N2—N1—C9—C86.9 (5)
C9—C4—C5—C60.3 (6)C1—N1—C9—C412.7 (6)
C4—C5—C6—C70.4 (6)N2—N1—C9—C4174.5 (3)
C4—C5—C6—Cl1178.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N2i0.86 (4)1.89 (4)2.744 (4)173 (4)
Symmetry code: (i) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC9H7ClN2O
Mr194.62
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)9.6461 (19), 13.833 (3), 6.5045 (13)
β (°) 94.33 (3)
V3)865.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.40
Crystal size (mm)0.11 × 0.09 × 0.08
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5771, 1357, 1171
Rint0.038
(sin θ/λ)max1)0.583
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.146, 1.24
No. of reflections1357
No. of parameters122
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.32

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N2i0.86 (4)1.89 (4)2.744 (4)173 (4)
Symmetry code: (i) x+1, y, z+1.
 

Acknowledgements

The author thanks for the Scientific and Technological Foundation of Weifang Vacational College (No. WZKJ200907).

References

First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJian, F.-F., Bai, Z.-S., Li, K. & Xiao, H.-L. (2005). Acta Cryst. E61, o393–o395.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, Y. N., Lu, Y. C. & Fang, J. X. (1995). Chem. J. Chin. Univ. 16, 1710-1713.  CAS Google Scholar
First citationXu, L. Z., Zhang, S. S., Li, H. J. & Jiao, K. (2002). Chem. Res. Chin. Univ. 18, 284-286.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds