organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Bromo­spiro­[1,2-dioxane-4,4′-tri­cyclo­[4.3.1.13,8]undeca­ne]-3′-ol

aDiscipline of Chemistry, University of Adelaide, 5005 South Australia, Australia, bDiscipline of Wine and Horticulture, University of Adelaide, Waite Campus, Glen, Osmond 5064, South Australia, Australia, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 12 December 2009; accepted 20 December 2009; online 24 December 2009)

The title compound, C14H21BrO3, comprises a seven- (C7) and three six-membered (1 × O2C4 and 2 × C6) rings, and each adopts a conformation based on a chair. Stability to the mol­ecular structure is afforded by an intra­molecular O—H⋯Br hydrogen bond. In the crystal structure, mol­ecules are arranged into a helical supra­molecular chain along the b axis, linked by C—H⋯O inter­actions, where the O-atom acceptor is one of the dioxane O atoms. The crystal studied was found to be a racemic twin. The major component was present 94% of the time.

Related literature

For the background to endoperoxides, see: Casteel (1999[Casteel, D. A. (1999). Nat. Prod. Rep. 16, 55-73.]); Tang et al. (2004[Tang, Y., Dong, Y. & Vennerstrom, J. L. (2004). Med. Res. Rev. 24, 425-448.]). For the potential of simple 1,2-dioxines and ep­oxy-1,2-dioxanes as novel anti­malarial and anti­fungal agents, see: Taylor et al. (2004[Taylor, D. K., Avery, T. D., Greatrex, B. W., Tiekink, E. R. T., Macreadie, I. G., Macreadie, P. I., Humphries, A. D., Kalkandis, M., Fox, E. N., Klonis, N. & Tilley, L. (2004). J. Med. Chem. 47, 1833-1839.]); Crespo et al. (2008[Crespo, M. P., Avery, T. D., Hanssen, E., Fox, E., Robinson, T. V., Valente, P., Taylor, D. K. & Tilley, L. (2008). Antimicrob. Agents Chemother. 52, 98-109.]); Macreadie et al. (2006[Macreadie, P., Avery, T., Greatrex, B., Taylor, D. & Macreadie, I. (2006). Bioorg. Med. Chem. Lett. 16, 920-922.], 2008[Macreadie, I. G., Avery, T. D., Robinson, T. V., Macreadie, P., Barraclough, M., Taylor, D. K. & Tiekink, E. R. T. (2008). Tetrahedron, 64, 1225-1232.]); Avery et al. (2007[Avery, T. D., Macreadie, P. I., Greatrex, B. W., Robinson, T. V., Taylor, D. K. & Macreadie, I. G. (2007). Bioorg. Med. Chem. 15, 36-42.]). For the synthesis of related compounds, see: Robinson (2003[Robinson, T. V. (2003). B.Sc. Honours thesis, University of Adelaide, Australia.]).

[Scheme 1]

Experimental

Crystal data
  • C14H21BrO3

  • Mr = 317.22

  • Monoclinic, P 21

  • a = 8.6199 (7) Å

  • b = 6.6370 (5) Å

  • c = 11.7171 (9) Å

  • β = 105.426 (2)°

  • V = 646.19 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.18 mm−1

  • T = 293 K

  • 0.19 × 0.11 × 0.08 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, U.S.A.]) Tmin = 0.657, Tmax = 1

  • 4618 measured reflections

  • 2140 independent reflections

  • 2063 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.094

  • S = 1.04

  • 2140 reflections

  • 167 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.77 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3o⋯Br 0.84 2.36 3.128 (3) 153
C2—H2a⋯O1i 0.98 2.59 3.560 (4) 171
C14—H14b⋯O1i 0.98 2.56 3.513 (4) 165
Symmetry code: (i) [-x, y-{\script{1\over 2}}, -z+1].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, U.S.A.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, U.S.A.]); data reduction: SAINT; program(s) used to solve structure: PATTY in DIRDIF92 (Beurskens et al., 1992[Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1992). The DIRDIF Program System. Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Comment top

Endoperoxides comprise a diverse range of compounds often displaying interesting biological activities (Casteel, 1999; Tang et al., 2004). Recently, we investigated the potential of simple 1,2-dioxines and epoxy-1,2-dioxanes as novel antimalarial (Taylor et al., 2004; Crespo et al., 2008) and antifungal (Macreadie et al., 2006; Avery et al., 2007; Macreadie et al., 2008) agents. During the course of these studies other modified 1,2-dioxines were prepared, particularly by electrophilic additions to the alkene unit, which included halo-hydrins (Robinson, 2003). The title compound (I) was obtained as a minor product from the attempted bromo-hydrin addition to compound 1, presumably through carbocation migration (Fig. 1).

The molecular structure of (I), Fig. 2, features a close intramolecular O–H···Br hydrogen bond as both substituents lie to the same side of the molecule, Table 1. This interaction closes a six-membered {···HOC3Br} ring with a half-chair conformation. The six-membered O2C4 ring has a twisted chair conformation and the bromide occupies an axial position. The two six-membered C6 rings share the C7, C11, and C12 atoms, and each has a slightly twisted chair conformation. The hydroxyl group occupies a bisectional position relative to the ring to which it is connected. Finally, the seven-membered ring comprising the C1,C5–C10 atoms has a distorted chair conformation with the C5 and C8 atoms occupying positions above and below the plane defined by the remaining five atoms. In the crystal structure, the primary intermolecular interactions are of the type C—H···O, Table 1. The dioxane-O1 atom forms two close C—H···O contacts to form a supramolecular helical chain aligned along [010], Fig. 3 and Table 1.

Related literature top

For the background to endoperoxides, see: Casteel (1999); Tang et al. (2004). For the potential of simple 1,2-dioxines and epoxy-1,2-dioxanes as novel antimalarial and antifungal agents, see: Taylor et al. (2004); Crespo et al. (2008); Macreadie et al. (2006, 2008); Avery et al. (2007). For the synthesis of related compounds, see: Robinson (2003).

Experimental top

Referring to the reaction scheme shown in Fig. 1, to a stirred solution of 1 (200 mg, 0.91 mmol) in acetone (5 ml) was added water (180 mg, 10 mmol) and N-bromosuccinimde (219 mg, 1.23 mmol). The mixture was stirred at ambient temperature until TLC indicated complete consumption of starting material (ca 3 h). The reaction was then diluted with CH2Cl2 (50 ml), washed with sat. NaHCO3 solution (2 x 20 ml), and dried (Na2SO4). The solvent was removed in vacuo yielding a crude multi-component mixture which was purified by flash chromatography eluting with 3:1 CH2Cl2/hexane. Fractions of interest (Rf 0.20 in 3:1 CH2Cl2/hexane) were combined and concentrated giving a solid white residue, which was recrystallized from a slowly evaporating a 1:1 mixture of dichloromethane/heptane producing the title compound (I) as colourless needles.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C–H 0.98–0.99 Å) and were included in the refinement in the riding model approximation with Uiso(H) set to 1.2Ueq(C). The O–bound H-atom was located in a difference Fourier map and was refined with an O–H restraint of 0.840±0.001 Å, and with Uiso(H) = 1.5Ueq(O). The structure was refined as a racemic twin precluding the determination of the absolute structure.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: PATTY in DIRDIF92 (Beurskens et al., 1992); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Reaction scheme.
[Figure 2] Fig. 2. Molecular structure of (I) showing atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 3] Fig. 3. Supramolecular chain formation along the b axis in (I) mediated by C—H···O interactions (orange dashed lines).
5-Bromospiro[1,2-dioxane-4,4'-tricyclo[4.3.1.13,8]undecane]-3'-ol top
Crystal data top
C14H21BrO3F(000) = 328
Mr = 317.22Dx = 1.630 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71069 Å
Hall symbol: P 2ybCell parameters from 2705 reflections
a = 8.6199 (7) Åθ = 2.5–29.5°
b = 6.6370 (5) ŵ = 3.18 mm1
c = 11.7171 (9) ÅT = 293 K
β = 105.426 (2)°Block, colourless
V = 646.19 (9) Å30.19 × 0.11 × 0.08 mm
Z = 2
Data collection top
Bruker SMART CCD
diffractometer
2140 independent reflections
Radiation source: fine-focus sealed tube2063 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ω scansθmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1111
Tmin = 0.657, Tmax = 1k = 58
4618 measured reflectionsl = 1415
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0714P)2 + 0.0296P]
where P = (Fo2 + 2Fc2)/3
2140 reflections(Δ/σ)max = 0.001
167 parametersΔρmax = 0.77 e Å3
2 restraintsΔρmin = 0.49 e Å3
Crystal data top
C14H21BrO3V = 646.19 (9) Å3
Mr = 317.22Z = 2
Monoclinic, P21Mo Kα radiation
a = 8.6199 (7) ŵ = 3.18 mm1
b = 6.6370 (5) ÅT = 293 K
c = 11.7171 (9) Å0.19 × 0.11 × 0.08 mm
β = 105.426 (2)°
Data collection top
Bruker SMART CCD
diffractometer
2140 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2063 reflections with I > 2σ(I)
Tmin = 0.657, Tmax = 1Rint = 0.040
4618 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0342 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 1.04Δρmax = 0.77 e Å3
2140 reflectionsΔρmin = 0.49 e Å3
167 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br0.03137 (4)0.40212 (10)0.92113 (2)0.03533 (13)
O10.0876 (3)0.3711 (5)0.5673 (2)0.0309 (6)
O20.1461 (3)0.5051 (5)0.6461 (3)0.0346 (6)
O30.1635 (3)0.0061 (4)0.8367 (2)0.0295 (6)
H3o0.13310.08760.88110.044*
C10.1666 (4)0.3109 (5)0.7167 (2)0.0183 (6)
C20.0084 (4)0.2208 (5)0.6406 (3)0.0241 (7)
H2A0.03260.11300.59080.029*
H2B0.05210.16190.69230.029*
C30.0120 (4)0.6195 (6)0.7095 (4)0.0313 (8)
H3A0.04760.71840.75930.038*
H3B0.03320.69330.65340.038*
C40.1193 (4)0.4853 (5)0.7878 (3)0.0227 (6)
H40.21590.56930.82020.027*
C50.2688 (4)0.1354 (5)0.7913 (3)0.0206 (6)
C60.4047 (4)0.2092 (6)0.8964 (3)0.0254 (7)
H6A0.36590.32620.93170.031*
H6B0.42910.10260.95640.031*
C70.5598 (4)0.2675 (6)0.8661 (3)0.0259 (7)
H70.64100.30260.94060.031*
C80.5395 (4)0.4492 (5)0.7823 (3)0.0270 (7)
H8A0.64640.49660.78010.032*
H8B0.48740.55840.81450.032*
C90.4400 (3)0.4049 (7)0.6548 (2)0.0257 (6)
H90.46760.51360.60570.031*
C100.2557 (4)0.4135 (7)0.6318 (2)0.0241 (6)
H10A0.20980.35660.55280.029*
H10B0.22580.55630.62720.029*
C110.6215 (4)0.0862 (7)0.8115 (3)0.0328 (8)
H11A0.63360.02980.86490.039*
H11B0.72680.11670.79870.039*
C120.5010 (4)0.0371 (6)0.6937 (3)0.0296 (7)
H120.53920.08420.66010.035*
C130.4948 (5)0.2104 (7)0.6087 (4)0.0342 (9)
H13A0.42050.17680.53210.041*
H13B0.60190.23050.59650.041*
C140.3364 (4)0.0107 (6)0.7144 (3)0.0264 (7)
H14A0.34320.14450.75080.032*
H14B0.25780.01960.63690.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br0.03383 (19)0.0473 (2)0.02721 (17)0.00431 (19)0.01216 (12)0.00797 (18)
O10.0285 (10)0.0314 (16)0.0266 (10)0.0015 (13)0.0033 (8)0.0014 (11)
O20.0235 (12)0.0337 (15)0.0430 (15)0.0023 (11)0.0027 (11)0.0026 (12)
O30.0362 (14)0.0220 (13)0.0307 (13)0.0085 (11)0.0096 (11)0.0070 (10)
C10.0191 (13)0.0172 (14)0.0163 (12)0.0015 (12)0.0005 (11)0.0006 (11)
C20.0251 (15)0.0206 (16)0.0221 (15)0.0037 (14)0.0015 (12)0.0012 (12)
C30.0270 (17)0.0204 (17)0.0436 (19)0.0016 (14)0.0046 (15)0.0023 (15)
C40.0210 (14)0.0211 (14)0.0253 (15)0.0039 (13)0.0047 (12)0.0030 (12)
C50.0238 (14)0.0177 (15)0.0189 (13)0.0021 (13)0.0029 (11)0.0014 (11)
C60.0296 (16)0.0264 (17)0.0171 (13)0.0002 (14)0.0005 (12)0.0018 (12)
C70.0252 (15)0.0264 (18)0.0218 (14)0.0012 (14)0.0013 (12)0.0012 (13)
C80.0248 (14)0.0221 (18)0.0318 (15)0.0052 (12)0.0035 (12)0.0022 (13)
C90.0252 (13)0.0274 (15)0.0249 (12)0.005 (2)0.0075 (10)0.0022 (19)
C100.0275 (13)0.0235 (15)0.0204 (11)0.0014 (17)0.0051 (10)0.0058 (15)
C110.0257 (16)0.032 (2)0.0355 (18)0.0069 (15)0.0003 (14)0.0029 (16)
C120.0258 (16)0.0273 (17)0.0339 (17)0.0035 (14)0.0049 (14)0.0106 (15)
C130.0317 (18)0.047 (2)0.0264 (15)0.0014 (17)0.0117 (13)0.0060 (16)
C140.0318 (16)0.0157 (14)0.0285 (16)0.0014 (14)0.0024 (13)0.0049 (13)
Geometric parameters (Å, º) top
Br—C41.987 (3)C7—C111.524 (5)
O1—C21.428 (4)C7—C81.535 (5)
O1—O21.465 (4)C7—H70.9900
O2—C31.417 (5)C8—C91.540 (4)
O3—C51.449 (4)C8—H8A0.9800
O3—H3O0.8400C8—H8B0.9800
C1—C21.538 (4)C9—C131.522 (6)
C1—C41.543 (5)C9—C101.540 (4)
C1—C101.566 (4)C9—H90.9900
C1—C51.577 (4)C10—H10A0.9800
C2—H2A0.9800C10—H10B0.9800
C2—H2B0.9800C11—C121.526 (5)
C3—C41.537 (5)C11—H11A0.9800
C3—H3A0.9800C11—H11B0.9800
C3—H3B0.9800C12—C131.513 (6)
C4—H40.9900C12—C141.535 (5)
C5—C61.537 (4)C12—H120.9900
C5—C141.539 (5)C13—H13A0.9800
C6—C71.522 (5)C13—H13B0.9800
C6—H6A0.9800C14—H14A0.9800
C6—H6B0.9800C14—H14B0.9800
C2—O1—O2106.6 (2)C8—C7—H7108.2
C3—O2—O1106.6 (3)C7—C8—C9114.2 (3)
C5—O3—H3O100.1C7—C8—H8A108.7
C2—C1—C4106.5 (3)C9—C8—H8A108.7
C2—C1—C10108.0 (2)C7—C8—H8B108.7
C4—C1—C10105.2 (3)C9—C8—H8B108.7
C2—C1—C5108.2 (3)H8A—C8—H8B107.6
C4—C1—C5116.4 (2)C13—C9—C8111.2 (3)
C10—C1—C5112.2 (3)C13—C9—C10111.8 (3)
O1—C2—C1111.1 (3)C8—C9—C10116.4 (3)
O1—C2—H2A109.4C13—C9—H9105.5
C1—C2—H2A109.4C8—C9—H9105.5
O1—C2—H2B109.4C10—C9—H9105.5
C1—C2—H2B109.4C9—C10—C1122.0 (3)
H2A—C2—H2B108.0C9—C10—H10A106.8
O2—C3—C4111.8 (3)C1—C10—H10A106.8
O2—C3—H3A109.3C9—C10—H10B106.8
C4—C3—H3A109.3C1—C10—H10B106.8
O2—C3—H3B109.3H10A—C10—H10B106.7
C4—C3—H3B109.3C7—C11—C12108.6 (3)
H3A—C3—H3B107.9C7—C11—H11A110.0
C3—C4—C1111.8 (3)C12—C11—H11A110.0
C3—C4—Br104.8 (2)C7—C11—H11B110.0
C1—C4—Br115.2 (2)C12—C11—H11B110.0
C3—C4—H4108.3H11A—C11—H11B108.4
C1—C4—H4108.3C13—C12—C11109.2 (3)
Br—C4—H4108.3C13—C12—C14112.9 (3)
O3—C5—C6108.2 (3)C11—C12—C14109.6 (3)
O3—C5—C14102.3 (3)C13—C12—H12108.3
C6—C5—C14110.1 (3)C11—C12—H12108.3
O3—C5—C1109.2 (2)C14—C12—H12108.3
C6—C5—C1113.8 (3)C12—C13—C9111.8 (3)
C14—C5—C1112.6 (2)C12—C13—H13A109.3
C7—C6—C5115.1 (3)C9—C13—H13A109.3
C7—C6—H6A108.5C12—C13—H13B109.3
C5—C6—H6A108.5C9—C13—H13B109.3
C7—C6—H6B108.5H13A—C13—H13B107.9
C5—C6—H6B108.5C12—C14—C5118.2 (3)
H6A—C6—H6B107.5C12—C14—H14A107.8
C6—C7—C11108.9 (3)C5—C14—H14A107.8
C6—C7—C8113.0 (3)C12—C14—H14B107.8
C11—C7—C8110.2 (3)C5—C14—H14B107.8
C6—C7—H7108.2H14A—C14—H14B107.1
C11—C7—H7108.2
C2—O1—O2—C371.9 (3)C1—C5—C6—C783.6 (4)
O2—O1—C2—C170.2 (3)C5—C6—C7—C1158.4 (4)
C4—C1—C2—O156.4 (3)C5—C6—C7—C864.3 (4)
C10—C1—C2—O156.1 (4)C6—C7—C8—C970.6 (4)
C5—C1—C2—O1177.8 (3)C11—C7—C8—C951.5 (4)
O1—O2—C3—C463.0 (4)C7—C8—C9—C1347.0 (4)
O2—C3—C4—C152.4 (4)C7—C8—C9—C1082.7 (4)
O2—C3—C4—Br73.1 (3)C13—C9—C10—C183.5 (4)
C2—C1—C4—C345.5 (3)C8—C9—C10—C145.8 (6)
C10—C1—C4—C369.0 (3)C2—C1—C10—C9142.2 (4)
C5—C1—C4—C3166.2 (3)C4—C1—C10—C9104.4 (4)
C2—C1—C4—Br74.1 (3)C5—C1—C10—C923.0 (5)
C10—C1—C4—Br171.44 (19)C6—C7—C11—C1265.3 (4)
C5—C1—C4—Br46.6 (3)C8—C7—C11—C1259.2 (4)
C2—C1—C5—O342.1 (3)C7—C11—C12—C1364.5 (4)
C4—C1—C5—O377.7 (3)C7—C11—C12—C1459.6 (4)
C10—C1—C5—O3161.2 (3)C11—C12—C13—C961.1 (4)
C2—C1—C5—C6163.1 (3)C14—C12—C13—C961.2 (4)
C4—C1—C5—C643.4 (4)C8—C9—C13—C1251.4 (4)
C10—C1—C5—C677.8 (4)C10—C9—C13—C1280.6 (4)
C2—C1—C5—C1470.8 (3)C13—C12—C14—C573.5 (4)
C4—C1—C5—C14169.5 (3)C11—C12—C14—C548.5 (4)
C10—C1—C5—C1448.3 (3)O3—C5—C14—C12154.2 (3)
O3—C5—C6—C7154.8 (3)C6—C5—C14—C1239.3 (4)
C14—C5—C6—C743.8 (4)C1—C5—C14—C1288.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3o···Br0.842.363.128 (3)153
C2—H2a···O1i0.982.593.560 (4)171
C14—H14b···O1i0.982.563.513 (4)165
Symmetry code: (i) x, y1/2, z+1.

Experimental details

Crystal data
Chemical formulaC14H21BrO3
Mr317.22
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)8.6199 (7), 6.6370 (5), 11.7171 (9)
β (°) 105.426 (2)
V3)646.19 (9)
Z2
Radiation typeMo Kα
µ (mm1)3.18
Crystal size (mm)0.19 × 0.11 × 0.08
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.657, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
4618, 2140, 2063
Rint0.040
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.094, 1.04
No. of reflections2140
No. of parameters167
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.77, 0.49

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), PATTY in DIRDIF92 (Beurskens et al., 1992), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3o···Br0.842.363.128 (3)153
C2—H2a···O1i0.982.593.560 (4)171
C14—H14b···O1i0.982.563.513 (4)165
Symmetry code: (i) x, y1/2, z+1.
 

Footnotes

Additional correspondence author, e-mail: dennis.taylor@adelaide.edu.au.

Acknowledgements

We are grateful to the Australian Research Council for financial support. TVR thanks the Commonwealth Government of Australia for a postgraduate scholarship.

References

First citationAvery, T. D., Macreadie, P. I., Greatrex, B. W., Robinson, T. V., Taylor, D. K. & Macreadie, I. G. (2007). Bioorg. Med. Chem. 15, 36–42.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBeurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1992). The DIRDIF Program System. Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, U.S.A.  Google Scholar
First citationCasteel, D. A. (1999). Nat. Prod. Rep. 16, 55–73.  Google Scholar
First citationCrespo, M. P., Avery, T. D., Hanssen, E., Fox, E., Robinson, T. V., Valente, P., Taylor, D. K. & Tilley, L. (2008). Antimicrob. Agents Chemother. 52, 98–109.  PubMed Google Scholar
First citationMacreadie, P., Avery, T., Greatrex, B., Taylor, D. & Macreadie, I. (2006). Bioorg. Med. Chem. Lett. 16, 920–922.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacreadie, I. G., Avery, T. D., Robinson, T. V., Macreadie, P., Barraclough, M., Taylor, D. K. & Tiekink, E. R. T. (2008). Tetrahedron, 64, 1225–1232.  Web of Science CSD CrossRef CAS Google Scholar
First citationRobinson, T. V. (2003). B.Sc. Honours thesis, University of Adelaide, Australia.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTang, Y., Dong, Y. & Vennerstrom, J. L. (2004). Med. Res. Rev. 24, 425–448.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTaylor, D. K., Avery, T. D., Greatrex, B. W., Tiekink, E. R. T., Macreadie, I. G., Macreadie, P. I., Humphries, A. D., Kalkandis, M., Fox, E. N., Klonis, N. & Tilley, L. (2004). J. Med. Chem. 47, 1833–1839.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds