organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Bromo-2-chloro­aniline

aThe Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
*Correspondence e-mail: yejl@xmu.edu.cn

(Received 17 December 2009; accepted 21 December 2009; online 24 December 2009)

The title compound, C6H5BrClN, is almost planar (r.m.s. deviation = 0.018 Å). In the crystal, mol­ecules are linked by inter­molecular N—H⋯N and weak N—H⋯Br hydrogen bonds, generating sheets.

Related literature

For background to halogentaed aromatic compounds, see: Katritzky et al. (1994[Katritzky, A. R., Li, J., Stevens, C. V. & Ager, D. (1994). J. Org. Prep. Proced. Int., 26, 439-444.]). For related structures, see: Cox (2001[Cox, P. J. (2001). Acta Cryst. E57, o1203-o1205.]); Parkin et al. (2005[Parkin, A., Spanswick, C. K., Pulham, C. R. & Wilson, C. C. (2005). Acta Cryst. E61, o1087-o1089.]); Ng (2005[Ng, S. W. (2005). Acta Cryst. E61, o2299-o2300.]); Ferguson et al. (1998[Ferguson, G., Low, J. N., Penner, G. H. & Wardell, J. L. (1998). Acta Cryst. C54, 1974-1977.]). For the synthesis, see: Ault & Kraig (1966[Ault, A. & Kraig, R. (1966). J. Chem. Educ. 43, 213-214.]).

[Scheme 1]

Experimental

Crystal data
  • C6H5BrClN

  • Mr = 206.47

  • Orthorhombic, P 21 21 21

  • a = 10.965 (4) Å

  • b = 15.814 (6) Å

  • c = 4.0232 (15) Å

  • V = 697.7 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 6.17 mm−1

  • T = 298 K

  • 0.7 × 0.19 × 0.15 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.254, Tmax = 0.396

  • 5799 measured reflections

  • 1710 independent reflections

  • 1333 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.081

  • S = 0.99

  • 1710 reflections

  • 83 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.48 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 511 Friedel pairs

  • Flack parameter: 0.035 (15)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯Br1i 0.86 3.04 3.719 (3) 137
N1—H1A⋯N1ii 0.86 2.34 3.172 (4) 164
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+{\script{3\over 2}}, -y+1, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Halogenated aromatic compounds is an important class of intermediates for the synthesis of bio-active substances such as antibacterial, antioxidizing, antiviral agents (e.g. Katritzky et al., 1994). Despite their simple structures, the X-ray structures of halogenated aniline compounds periodically were reported, such as 2,5-dichloroaniline (Cox, 2001), 2-iodoaniline (Parkin et al., 2005) and 5-chloro-2-nitroaniline (Ng, 2005). We now report the title compound, (I).

The packing of molecules in the crystal structure is stabilized and linked into a two-dimensional texture by intermolecular N—H···N and N—H···Br hydrogen bonds. The N···N distance is 3.172 (4) Å in hydrogen bond N—H···N, which are similar to that observed in 2,4-dibromo-6- chloroaniline (Ferguson et al., 1998), 3.150 (11) Å and 2-iodoaniline (Parkin et al., 2005), 3.161 (14) Å.

Related literature top

For background to halogentaed aromatic compounds, see: Katritzky et al. (1994). For related structures, see: Cox (2001); Parkin et al. (2005); Ng (2005); Ferguson et al. (1998). For the synthesis, see: Ault & Kraig (1966).

Experimental top

The tiltle compound was prepared according to a previously reported method (Ault & Kraig, 1966). Colourless needles of (I) were obtained by slow evaporation of a petroleum ether solution.

Refinement top

The hydrogen atoms were positioned geometrically, with C—H = 0.93, 0.98, 0.97 and 0.96 Å for phenyl, methine, methylene and methyl H atoms, respectively, and were included in the refinement in the riding model approximation. The displacement parameters of methyl H atoms were set to 1.5Ueq(C), while those of other H atoms were set to 1.2Ueq(C). In the absence of significant anomalous scattering effects, Friedel pairs were merged.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The packing of (I), viewed down the c axis. N—H···N and N—H···Br hydrogen bond interactions are shown as dashed lines.
4-Bromo-2-chloroaniline top
Crystal data top
C6H5BrClNF(000) = 424
Mr = 206.47Dx = 1.965 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1199 reflections
a = 10.965 (4) Åθ = 2.3–29.8°
b = 15.814 (6) ŵ = 6.17 mm1
c = 4.0232 (15) ÅT = 298 K
V = 697.7 (4) Å3Needle, colourless
Z = 40.7 × 0.19 × 0.15 mm
Data collection top
Bruker SMART CCD
diffractometer
1710 independent reflections
Radiation source: fine-focus sealed tube1333 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ϕ and ω scanθmax = 29.8°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1414
Tmin = 0.254, Tmax = 0.396k = 2021
5799 measured reflectionsl = 55
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.033 w = 1/[σ2(Fo2) + (0.0374P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.081(Δ/σ)max = 0.008
S = 0.99Δρmax = 0.33 e Å3
1710 reflectionsΔρmin = 0.48 e Å3
83 parametersExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.246 (8)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 511 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.035 (15)
Crystal data top
C6H5BrClNV = 697.7 (4) Å3
Mr = 206.47Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 10.965 (4) ŵ = 6.17 mm1
b = 15.814 (6) ÅT = 298 K
c = 4.0232 (15) Å0.7 × 0.19 × 0.15 mm
Data collection top
Bruker SMART CCD
diffractometer
1710 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1333 reflections with I > 2σ(I)
Tmin = 0.254, Tmax = 0.396Rint = 0.044
5799 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.081Δρmax = 0.33 e Å3
S = 0.99Δρmin = 0.48 e Å3
1710 reflectionsAbsolute structure: Flack (1983), 511 Friedel pairs
83 parametersAbsolute structure parameter: 0.035 (15)
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.28337 (3)0.74386 (2)0.51936 (10)0.0646 (2)
Cl10.42519 (8)0.41363 (5)0.4648 (3)0.0588 (3)
C10.3957 (3)0.65802 (18)0.6258 (8)0.0432 (7)
C20.4999 (3)0.6770 (2)0.7973 (9)0.0494 (8)
H2A0.51510.73220.86560.059*
C30.5812 (3)0.6145 (2)0.8673 (9)0.0456 (8)
H3A0.65180.62760.98460.055*
C40.5613 (3)0.5320 (2)0.7681 (8)0.0428 (8)
C50.4548 (3)0.51544 (19)0.5957 (8)0.0395 (7)
C60.3728 (2)0.57746 (17)0.5249 (7)0.0431 (7)
H6A0.30180.56490.40870.052*
N10.6464 (2)0.47087 (18)0.8346 (8)0.0565 (8)
H1A0.71240.48380.93830.068*
H1B0.63380.41960.77260.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0770 (3)0.0451 (2)0.0717 (3)0.01789 (15)0.0064 (2)0.0025 (2)
Cl10.0638 (5)0.0349 (4)0.0776 (6)0.0034 (3)0.0023 (5)0.0047 (5)
C10.0509 (17)0.0347 (16)0.0438 (16)0.0061 (14)0.0043 (14)0.0027 (13)
C20.0582 (18)0.0357 (18)0.054 (2)0.0081 (15)0.0075 (16)0.0027 (15)
C30.0368 (15)0.0481 (19)0.0520 (18)0.0064 (14)0.0002 (14)0.0008 (15)
C40.0399 (16)0.0430 (18)0.0455 (18)0.0005 (14)0.0086 (14)0.0040 (13)
C50.0416 (15)0.0344 (15)0.0424 (16)0.0028 (12)0.0053 (13)0.0012 (12)
C60.0424 (14)0.0406 (15)0.0461 (16)0.0022 (12)0.0007 (16)0.0016 (16)
N10.0434 (15)0.0500 (17)0.076 (2)0.0101 (13)0.0015 (15)0.0006 (15)
Geometric parameters (Å, º) top
Br1—C11.883 (3)C3—H3A0.9300
Cl1—C51.725 (3)C4—N11.369 (4)
C1—C61.361 (4)C4—C51.383 (4)
C1—C21.368 (5)C5—C61.361 (4)
C2—C31.361 (5)C6—H6A0.9300
C2—H2A0.9300N1—H1A0.8600
C3—C41.382 (4)N1—H1B0.8600
C6—C1—C2120.7 (3)C3—C4—C5117.1 (3)
C6—C1—Br1119.1 (2)C6—C5—C4121.8 (3)
C2—C1—Br1120.2 (2)C6—C5—Cl1119.0 (2)
C3—C2—C1119.4 (3)C4—C5—Cl1119.2 (2)
C3—C2—H2A120.3C1—C6—C5119.4 (3)
C1—C2—H2A120.3C1—C6—H6A120.3
C2—C3—C4121.6 (3)C5—C6—H6A120.3
C2—C3—H3A119.2C4—N1—H1A120.0
C4—C3—H3A119.2C4—N1—H1B120.0
N1—C4—C3120.2 (3)H1A—N1—H1B120.0
N1—C4—C5122.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···Br1i0.863.043.719 (3)137
N1—H1A···N1ii0.862.343.172 (4)164
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+3/2, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC6H5BrClN
Mr206.47
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)10.965 (4), 15.814 (6), 4.0232 (15)
V3)697.7 (4)
Z4
Radiation typeMo Kα
µ (mm1)6.17
Crystal size (mm)0.7 × 0.19 × 0.15
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.254, 0.396
No. of measured, independent and
observed [I > 2σ(I)] reflections
5799, 1710, 1333
Rint0.044
(sin θ/λ)max1)0.698
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.081, 0.99
No. of reflections1710
No. of parameters83
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.48
Absolute structureFlack (1983), 511 Friedel pairs
Absolute structure parameter0.035 (15)

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXTL (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···Br1i0.863.043.719 (3)137
N1—H1A···N1ii0.862.343.172 (4)164
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+3/2, y+1, z+1/2.
 

Acknowledgements

The authors thank the Natural Science Foundation of China (No. 20602028) and the NFFTBS (No. J0630429) for financial support.

References

First citationAult, A. & Kraig, R. (1966). J. Chem. Educ. 43, 213–214.  CrossRef CAS Google Scholar
First citationBruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCox, P. J. (2001). Acta Cryst. E57, o1203–o1205.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFerguson, G., Low, J. N., Penner, G. H. & Wardell, J. L. (1998). Acta Cryst. C54, 1974–1977.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKatritzky, A. R., Li, J., Stevens, C. V. & Ager, D. (1994). J. Org. Prep. Proced. Int., 26, 439–444.  CrossRef CAS Google Scholar
First citationNg, S. W. (2005). Acta Cryst. E61, o2299–o2300.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationParkin, A., Spanswick, C. K., Pulham, C. R. & Wilson, C. C. (2005). Acta Cryst. E61, o1087–o1089.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds