metal-organic compounds
Chlorido[3,3′-dibutyl-5,5′-(pyridine-2,6-diyl)dipyrazol-1-ido]gold(III)
aOrganisch-Chemisches Institut, Ruprecht-Karls Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
*Correspondence e-mail: hashmi@hashmi.de
The Au atom in the C2-symmetric pincer-type title complex, [AuCl(C19H23N5)], is in the +3 The ligand is composed of one pyridine unit and two n-butyl-substituted pyrazoles (pyrz). Both pyrazoles are deprotonated, thus forming a neutral compound. To the best of our knowledge, this is the first AuIII–bispyrazolate complex. According to the special geometry in the N,N′,N′′-tridentate ligand, containing two five-membered heterocycles, the complex deviates from an ideal square-planar coordination geometry; the Npyrz—Au—Npyrz angle is 160.8 (3)°, indicating a distortion of nearly 20°.
Related literature
For the importance of gold catalysis, see: Hashmi & Hutchings (2006a,b); Hashmi (2007). For the role of the gold(I) see: Ito et al. (1986) and for the use of gold(III) pre-catalysts, see: Hashmi et al. (2004a,b).
Experimental
Crystal data
|
Data collection: SMART (Siemens, 1996); cell SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008a); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536809050995/hg2593sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809050995/hg2593Isup2.hkl
2,6-bis(5-butyl-1H-pyrazol-3-yl)pyridine (200 mg, µmol) was dissolved in acetone (5 ml). After this HAuCl4*xH2O (248 mg, 618 µmol, 49% metal content) in acetonitrile (3 ml) and NaOH (2.5 M in H2O, 741 µl) were added consecutively. The mixture was warmed to 60 °C for 20 min, during this time the initially formed yellow precipitate dissolved. The mixture was subjected to hot filtration and the solvent was removed under reduced pressure. The crude complex was purified by recrystallization from acetone to yield the title compound as red crystals (96.0 mg, 173 µmol, 28%). The compound is stable at RT in air.
1H NMR (300 MHz, acetone): δ=0.93 (t, J=7.3 Hz, 6H, CH3), 1.4 (dm, J=8.5, 7.1 Hz, 4H, CH2), 1.65 (m, 4H, CH2), 2.66 (t, J=7.5 Hz, 4H, CH2), 7.71 (d, J=7.9 Hz, 2H, ArH), 8.25 (t, J=7.9 Hz, 1H, ArH); 13C NMR (75 MHz, acetone): δ = 14.27, 23.13, 32.87, 106.97, 116.38 (no further signals observed, one signal overlapping with solvent at about 29 p.p.m.)
Carbon-bound H-atoms were placed in calculated positions (C–H 0.95– 0.99 Å) and were included in the
in the riding model approximation with Uiso(H) set to 1.2–1.5Ueq(C). A staggered group model was used for the methyl groups.Data collection: SMART (Siemens, 1996); cell
SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXTL (Sheldrick, 2008a); program(s) used to refine structure: SHELXTL (Sheldrick, 2008a); molecular graphics: SHELXTL (Sheldrick, 2008a); software used to prepare material for publication: SHELXTL (Sheldrick, 2008a).Fig. 1. Thermal ellipsoid representation of the title compound. Displacement ellipsoids were plotted at 50% probability level. |
[AuCl(C19H23N5)] | Z = 4 |
Mr = 553.84 | F(000) = 1072 |
Monoclinic, P21/c | Dx = 1.850 Mg m−3 |
Hall symbol: -P 2ybc | Mo Kα radiation, λ = 0.71073 Å |
a = 9.0003 (3) Å | Cell parameters from 6701 reflections |
b = 24.2220 (7) Å | µ = 7.55 mm−1 |
c = 9.3042 (3) Å | T = 200 K |
β = 101.372 (1)° | Polyhedron, orange |
V = 1988.54 (11) Å3 | 0.16 × 0.04 × 0.04 mm |
Bruker SMART CCD diffractometer | 4539 independent reflections |
Radiation source: fine-focus sealed tube | 3103 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.091 |
ω scans | θmax = 27.5°, θmin = 1.7° |
Absorption correction: multi-scan SADABS (Sheldrick, 2008b) | h = −11→11 |
Tmin = 0.378, Tmax = 0.752 | k = −31→31 |
19560 measured reflections | l = −12→12 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.048 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.089 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0241P)2 + 2.5681P] where P = (Fo2 + 2Fc2)/3 |
4539 reflections | (Δ/σ)max = 0.001 |
235 parameters | Δρmax = 0.91 e Å−3 |
0 restraints | Δρmin = −1.01 e Å−3 |
[AuCl(C19H23N5)] | V = 1988.54 (11) Å3 |
Mr = 553.84 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 9.0003 (3) Å | µ = 7.55 mm−1 |
b = 24.2220 (7) Å | T = 200 K |
c = 9.3042 (3) Å | 0.16 × 0.04 × 0.04 mm |
β = 101.372 (1)° |
Bruker SMART CCD diffractometer | 4539 independent reflections |
Absorption correction: multi-scan SADABS (Sheldrick, 2008b) | 3103 reflections with I > 2σ(I) |
Tmin = 0.378, Tmax = 0.752 | Rint = 0.091 |
19560 measured reflections |
R[F2 > 2σ(F2)] = 0.048 | 0 restraints |
wR(F2) = 0.089 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.91 e Å−3 |
4539 reflections | Δρmin = −1.01 e Å−3 |
235 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Au1 | 0.28448 (3) | 0.481560 (12) | 0.61190 (3) | 0.03110 (10) | |
Cl1 | 0.3449 (3) | 0.44522 (9) | 0.8400 (2) | 0.0514 (6) | |
N1 | 0.2300 (7) | 0.5101 (2) | 0.4082 (6) | 0.0347 (15) | |
C2 | 0.1273 (8) | 0.5513 (3) | 0.3826 (8) | 0.0328 (17) | |
C3 | 0.0815 (9) | 0.5696 (3) | 0.2393 (8) | 0.040 (2) | |
H3 | 0.0069 | 0.5977 | 0.2156 | 0.048* | |
C4 | 0.1478 (11) | 0.5458 (3) | 0.1317 (9) | 0.050 (2) | |
H4 | 0.1166 | 0.5578 | 0.0331 | 0.060* | |
C5 | 0.2585 (10) | 0.5050 (3) | 0.1635 (9) | 0.044 (2) | |
H5 | 0.3070 | 0.4906 | 0.0897 | 0.053* | |
C6 | 0.2952 (8) | 0.4865 (3) | 0.3063 (8) | 0.0344 (18) | |
C11 | 0.0767 (8) | 0.5693 (3) | 0.5158 (7) | 0.0316 (18) | |
N12 | 0.1375 (7) | 0.5411 (2) | 0.6419 (6) | 0.0319 (14) | |
N13 | 0.0917 (6) | 0.5633 (2) | 0.7583 (6) | 0.0293 (14) | |
C14 | −0.0014 (8) | 0.6050 (3) | 0.7037 (8) | 0.0311 (17) | |
C15 | −0.0165 (8) | 0.6099 (3) | 0.5537 (8) | 0.0328 (18) | |
H15 | −0.0773 | 0.6355 | 0.4906 | 0.039* | |
C16 | −0.0734 (9) | 0.6395 (3) | 0.8036 (8) | 0.040 (2) | |
H16A | 0.0009 | 0.6458 | 0.8958 | 0.048* | |
H16B | −0.1601 | 0.6190 | 0.8284 | 0.048* | |
C17 | −0.1289 (9) | 0.6948 (3) | 0.7383 (9) | 0.042 (2) | |
H17A | −0.2064 | 0.6882 | 0.6485 | 0.050* | |
H17B | −0.0429 | 0.7142 | 0.7085 | 0.050* | |
C18 | −0.1964 (9) | 0.7326 (3) | 0.8389 (9) | 0.048 (2) | |
H18A | −0.1224 | 0.7370 | 0.9322 | 0.057* | |
H18B | −0.2881 | 0.7149 | 0.8618 | 0.057* | |
C19 | −0.2390 (11) | 0.7898 (4) | 0.7739 (11) | 0.066 (3) | |
H19A | −0.1466 | 0.8108 | 0.7709 | 0.098* | |
H19B | −0.2990 | 0.8094 | 0.8349 | 0.098* | |
H19C | −0.2986 | 0.7858 | 0.6743 | 0.098* | |
C21 | 0.3986 (9) | 0.4418 (3) | 0.3670 (8) | 0.041 (2) | |
N22 | 0.4106 (7) | 0.4319 (3) | 0.5137 (7) | 0.0386 (16) | |
N23 | 0.5062 (8) | 0.3898 (3) | 0.5598 (8) | 0.0465 (18) | |
C24 | 0.5559 (9) | 0.3730 (3) | 0.4398 (11) | 0.049 (2) | |
C25 | 0.4926 (9) | 0.4040 (3) | 0.3161 (10) | 0.049 (2) | |
H25 | 0.5099 | 0.4002 | 0.2191 | 0.058* | |
C26 | 0.6668 (11) | 0.3245 (4) | 0.4558 (13) | 0.071 (3) | |
H26A | 0.7227 | 0.3261 | 0.3744 | 0.085* | |
H26B | 0.7416 | 0.3291 | 0.5484 | 0.085* | |
C27 | 0.6011 (12) | 0.2719 (4) | 0.4563 (15) | 0.093 (4) | |
H27A | 0.5352 | 0.2656 | 0.3592 | 0.112* | |
H27B | 0.5353 | 0.2718 | 0.5299 | 0.112* | |
C28 | 0.7134 (12) | 0.2229 (5) | 0.4898 (16) | 0.094 (4) | |
H28A | 0.7856 | 0.2244 | 0.4221 | 0.113* | |
H28B | 0.7723 | 0.2265 | 0.5911 | 0.113* | |
C29 | 0.6347 (14) | 0.1689 (5) | 0.4739 (15) | 0.114 (5) | |
H29A | 0.5526 | 0.1693 | 0.5293 | 0.171* | |
H29B | 0.7069 | 0.1396 | 0.5119 | 0.171* | |
H29C | 0.5924 | 0.1620 | 0.3701 | 0.171* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Au1 | 0.03813 (17) | 0.03202 (16) | 0.02527 (15) | 0.00177 (16) | 0.01141 (11) | −0.00274 (16) |
Cl1 | 0.0686 (15) | 0.0563 (14) | 0.0304 (11) | 0.0218 (12) | 0.0125 (10) | 0.0075 (10) |
N1 | 0.051 (4) | 0.032 (4) | 0.024 (3) | −0.006 (3) | 0.015 (3) | −0.003 (3) |
C2 | 0.039 (5) | 0.034 (4) | 0.029 (4) | −0.008 (4) | 0.016 (3) | −0.001 (3) |
C3 | 0.053 (5) | 0.040 (5) | 0.026 (4) | 0.001 (4) | 0.005 (4) | 0.005 (4) |
C4 | 0.079 (7) | 0.041 (5) | 0.032 (5) | −0.014 (5) | 0.019 (5) | −0.003 (4) |
C5 | 0.072 (6) | 0.039 (5) | 0.030 (4) | −0.021 (4) | 0.031 (4) | −0.012 (4) |
C6 | 0.045 (5) | 0.040 (5) | 0.024 (4) | −0.014 (4) | 0.021 (3) | −0.010 (4) |
C11 | 0.043 (5) | 0.034 (4) | 0.019 (4) | −0.003 (3) | 0.010 (3) | 0.008 (3) |
N12 | 0.038 (4) | 0.033 (3) | 0.027 (3) | 0.007 (3) | 0.013 (3) | −0.002 (3) |
N13 | 0.029 (3) | 0.039 (4) | 0.022 (3) | 0.001 (3) | 0.010 (3) | −0.008 (3) |
C14 | 0.032 (4) | 0.037 (5) | 0.024 (4) | 0.000 (3) | 0.007 (3) | 0.000 (3) |
C15 | 0.041 (5) | 0.035 (4) | 0.021 (4) | 0.005 (4) | 0.003 (3) | 0.002 (3) |
C16 | 0.041 (5) | 0.048 (5) | 0.031 (4) | 0.005 (4) | 0.006 (4) | −0.003 (4) |
C17 | 0.045 (5) | 0.041 (5) | 0.038 (5) | 0.011 (4) | 0.004 (4) | −0.006 (4) |
C18 | 0.051 (6) | 0.050 (5) | 0.039 (5) | 0.009 (4) | 0.003 (4) | −0.014 (4) |
C19 | 0.080 (7) | 0.042 (6) | 0.067 (7) | 0.018 (5) | −0.005 (5) | −0.018 (5) |
C21 | 0.054 (5) | 0.041 (5) | 0.031 (5) | −0.012 (4) | 0.020 (4) | −0.014 (4) |
N22 | 0.046 (4) | 0.032 (4) | 0.041 (4) | 0.002 (3) | 0.018 (3) | −0.007 (3) |
N23 | 0.047 (4) | 0.034 (4) | 0.067 (5) | 0.001 (3) | 0.031 (4) | 0.001 (4) |
C24 | 0.046 (5) | 0.031 (5) | 0.079 (7) | −0.007 (4) | 0.036 (5) | −0.016 (5) |
C25 | 0.050 (6) | 0.040 (5) | 0.064 (6) | −0.007 (4) | 0.031 (5) | −0.016 (5) |
C26 | 0.075 (7) | 0.041 (6) | 0.106 (9) | −0.002 (5) | 0.041 (6) | −0.018 (6) |
C27 | 0.055 (7) | 0.064 (8) | 0.170 (13) | 0.009 (6) | 0.042 (7) | 0.025 (8) |
C28 | 0.062 (7) | 0.071 (9) | 0.152 (12) | 0.032 (6) | 0.027 (7) | 0.030 (8) |
C29 | 0.104 (11) | 0.092 (11) | 0.141 (13) | 0.044 (9) | 0.011 (9) | 0.018 (10) |
Au1—N1 | 1.985 (6) | C17—H17B | 0.9900 |
Au1—N22 | 1.994 (6) | C18—C19 | 1.529 (11) |
Au1—N12 | 2.014 (6) | C18—H18A | 0.9900 |
Au1—Cl1 | 2.263 (2) | C18—H18B | 0.9900 |
N1—C6 | 1.338 (8) | C19—H19A | 0.9800 |
N1—C2 | 1.349 (9) | C19—H19B | 0.9800 |
C2—C3 | 1.389 (10) | C19—H19C | 0.9800 |
C2—C11 | 1.469 (9) | C21—N22 | 1.369 (9) |
C3—C4 | 1.387 (11) | C21—C25 | 1.390 (11) |
C3—H3 | 0.9500 | N22—N23 | 1.349 (9) |
C4—C5 | 1.394 (12) | N23—C24 | 1.346 (10) |
C4—H4 | 0.9500 | C24—C25 | 1.398 (12) |
C5—C6 | 1.379 (10) | C24—C26 | 1.530 (12) |
C5—H5 | 0.9500 | C25—H25 | 0.9500 |
C6—C21 | 1.466 (11) | C26—C27 | 1.403 (12) |
C11—N12 | 1.374 (9) | C26—H26A | 0.9900 |
C11—C15 | 1.383 (10) | C26—H26B | 0.9900 |
N12—N13 | 1.345 (7) | C27—C28 | 1.551 (13) |
N13—C14 | 1.346 (9) | C27—H27A | 0.9900 |
C14—C15 | 1.381 (9) | C27—H27B | 0.9900 |
C14—C16 | 1.490 (10) | C28—C29 | 1.482 (15) |
C15—H15 | 0.9500 | C28—H28A | 0.9900 |
C16—C17 | 1.515 (10) | C28—H28B | 0.9900 |
C16—H16A | 0.9900 | C29—H29A | 0.9800 |
C16—H16B | 0.9900 | C29—H29B | 0.9800 |
C17—C18 | 1.519 (10) | C29—H29C | 0.9800 |
C17—H17A | 0.9900 | ||
N1—Au1—N22 | 80.1 (3) | C17—C18—C19 | 113.6 (7) |
N1—Au1—N12 | 80.6 (2) | C17—C18—H18A | 108.8 |
N22—Au1—N12 | 160.8 (3) | C19—C18—H18A | 108.8 |
N1—Au1—Cl1 | 177.47 (18) | C17—C18—H18B | 108.8 |
N22—Au1—Cl1 | 98.2 (2) | C19—C18—H18B | 108.8 |
N12—Au1—Cl1 | 101.06 (18) | H18A—C18—H18B | 107.7 |
C6—N1—C2 | 124.9 (6) | C18—C19—H19A | 109.5 |
C6—N1—Au1 | 117.9 (5) | C18—C19—H19B | 109.5 |
C2—N1—Au1 | 117.3 (5) | H19A—C19—H19B | 109.5 |
N1—C2—C3 | 118.0 (7) | C18—C19—H19C | 109.5 |
N1—C2—C11 | 112.7 (6) | H19A—C19—H19C | 109.5 |
C3—C2—C11 | 129.2 (7) | H19B—C19—H19C | 109.5 |
C4—C3—C2 | 118.1 (8) | N22—C21—C25 | 106.9 (8) |
C4—C3—H3 | 120.9 | N22—C21—C6 | 115.6 (6) |
C2—C3—H3 | 120.9 | C25—C21—C6 | 137.5 (8) |
C3—C4—C5 | 122.2 (8) | N23—N22—C21 | 111.6 (6) |
C3—C4—H4 | 118.9 | N23—N22—Au1 | 134.0 (5) |
C5—C4—H4 | 118.9 | C21—N22—Au1 | 114.3 (5) |
C6—C5—C4 | 117.5 (7) | C24—N23—N22 | 105.1 (7) |
C6—C5—H5 | 121.3 | N23—C24—C25 | 111.9 (7) |
C4—C5—H5 | 121.3 | N23—C24—C26 | 117.9 (9) |
N1—C6—C5 | 119.2 (8) | C25—C24—C26 | 130.2 (8) |
N1—C6—C21 | 112.1 (6) | C21—C25—C24 | 104.5 (8) |
C5—C6—C21 | 128.7 (7) | C21—C25—H25 | 127.8 |
N12—C11—C15 | 107.2 (6) | C24—C25—H25 | 127.8 |
N12—C11—C2 | 115.8 (7) | C27—C26—C24 | 115.5 (9) |
C15—C11—C2 | 137.0 (7) | C27—C26—H26A | 108.4 |
N13—N12—C11 | 110.8 (6) | C24—C26—H26A | 108.4 |
N13—N12—Au1 | 135.4 (5) | C27—C26—H26B | 108.4 |
C11—N12—Au1 | 113.6 (5) | C24—C26—H26B | 108.4 |
N12—N13—C14 | 105.2 (5) | H26A—C26—H26B | 107.5 |
N13—C14—C15 | 112.1 (6) | C26—C27—C28 | 115.9 (9) |
N13—C14—C16 | 120.0 (6) | C26—C27—H27A | 108.3 |
C15—C14—C16 | 127.9 (7) | C28—C27—H27A | 108.3 |
C14—C15—C11 | 104.6 (6) | C26—C27—H27B | 108.3 |
C14—C15—H15 | 127.7 | C28—C27—H27B | 108.3 |
C11—C15—H15 | 127.7 | H27A—C27—H27B | 107.4 |
C14—C16—C17 | 113.3 (6) | C29—C28—C27 | 112.1 (9) |
C14—C16—H16A | 108.9 | C29—C28—H28A | 109.2 |
C17—C16—H16A | 108.9 | C27—C28—H28A | 109.2 |
C14—C16—H16B | 108.9 | C29—C28—H28B | 109.2 |
C17—C16—H16B | 108.9 | C27—C28—H28B | 109.2 |
H16A—C16—H16B | 107.7 | H28A—C28—H28B | 107.9 |
C16—C17—C18 | 115.2 (7) | C28—C29—H29A | 109.5 |
C16—C17—H17A | 108.5 | C28—C29—H29B | 109.5 |
C18—C17—H17A | 108.5 | H29A—C29—H29B | 109.5 |
C16—C17—H17B | 108.5 | C28—C29—H29C | 109.5 |
C18—C17—H17B | 108.5 | H29A—C29—H29C | 109.5 |
H17A—C17—H17B | 107.5 | H29B—C29—H29C | 109.5 |
Experimental details
Crystal data | |
Chemical formula | [AuCl(C19H23N5)] |
Mr | 553.84 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 200 |
a, b, c (Å) | 9.0003 (3), 24.2220 (7), 9.3042 (3) |
β (°) | 101.372 (1) |
V (Å3) | 1988.54 (11) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 7.55 |
Crystal size (mm) | 0.16 × 0.04 × 0.04 |
Data collection | |
Diffractometer | Bruker SMART CCD diffractometer |
Absorption correction | Multi-scan SADABS (Sheldrick, 2008b) |
Tmin, Tmax | 0.378, 0.752 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 19560, 4539, 3103 |
Rint | 0.091 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.048, 0.089, 1.07 |
No. of reflections | 4539 |
No. of parameters | 235 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.91, −1.01 |
Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXTL (Sheldrick, 2008a).
Acknowledgements
Gold salts were donated by Umicore AG & Co. KG.
References
Hashmi, A. S. K. (2007). Chem. Rev. 107, 3180–3211. Web of Science CrossRef PubMed CAS Google Scholar
Hashmi, A. S. K. & Hutchings, G. J. (2006a). Angew. Chem. 118, 8064–8105. CrossRef Google Scholar
Hashmi, A. S. K. & Hutchings, G. J. (2006b). Angew. Chem. Int. Ed. 45, 7896–7936. Web of Science CrossRef Google Scholar
Hashmi, A. S. K., Weyrauch, J. P., Rudolph, M. & Kurpejovic, E. (2004a). Angew. Chem. 116, 6707–6709. CrossRef Google Scholar
Hashmi, A. S. K., Weyrauch, J. P., Rudolph, M. & Kurpejovic, E. (2004b). Angew. Chem. Int. Ed. 43, 6545–6547. Web of Science CrossRef CAS Google Scholar
Ito, Y., Sawamura, M. & Hayashi, T. (1986). J. Am. Chem. Soc. 108, 6405–6406. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008a). Acta Cryst. A64, 112–122. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008b). SADABS. University of Göttingen, Germany. Google Scholar
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc. Madison, Wisconsin, USA. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Catalysis of organic reactions by gold complexes has become a very important area of research in the past decade (Hashmi & Hutchings, 2006a, 2006b; Hashmi, 2007). While the field is dominated by gold(I) complexes (Ito et al., 1986), the use of gold(III) pre-catalysts is also of interest (Hashmi et al., 2004a, 2004b). Here we report the structural details of a new representative of the gold(III) pre-catalysts. The main feature of this structure is the ring strain of the two 5-membered metallacycles that were built up by the pincer ligand and the gold center. The theoretical sum of the bond angles in these flat 5-membered metallacycles is 540.0°, as it was observed in both cases. For a hypothetic strain-free (ring-opened) molecule simple geometrical considerations result an angle sum of about 582° (90° at Au1, 120° at N1, C2, C6, and 126° at C11, N12 C21, N22). The required adaption of 42° is achieved by bending the bond angles (mean values over both rings) at Au1 (9.7°), N1 (2.4°), C2/C6 (7.6°), C11/C21 (10.3°), and N12/N22 (12.0°). As expected the bending at the pyridin nitrogen atom N1 is by far least, as the aromatic ring itself is rigid and cannot bend on two sides simultaneously.