organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Methyl-2,6-cis-distyrylpiperidine

aDepartment of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA, and bDepartment of Chemistry, University of Kentucky, Lexington, KY 40536, USA
*Correspondence e-mail: pcrooks@email.uky.edu

(Received 18 November 2009; accepted 19 November 2009; online 9 December 2009)

The complete molecule of the title compound, C22H25N, is generated by crystallographic mirror symmetry, with two C atoms and the N atom lying on the mirror plane. The central ring adopts a chair conformation and the dihedral angle between the aromatic rings is 56.69 (4)°.

Related literature

The title compound is a des-oxygen lobeline derivative (Zheng et al., 2005[Zheng, G., Dwoskin, L. P., Deaciuc, A. G., Norrholm, S. D. & Crooks, P. A. (2005). J. Med. Chem. pp. 5551-5560.]).

[Scheme 1]

Experimental

Crystal data
  • C22H25N

  • Mr = 303.43

  • Orthorhombic, P n m a

  • a = 17.3766 (2) Å

  • b = 18.1774 (6) Å

  • c = 5.5354 (7) Å

  • V = 1748.3 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 173 K

  • 0.40 × 0.25 × 0.20 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: none

  • 12693 measured reflections

  • 2077 independent reflections

  • 1624 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.105

  • S = 1.10

  • 2077 reflections

  • 110 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97 and local procedures.

Supporting information


Comment top

1-Methyl-2,6-cis-distyrylpiperidine, C22H25N, is a des-oxygen lobeline derivative (Zheng et al., 2005). The molecular structure is illustrated in Fig. 1, while selected geometric parameters are given in Table 1. The piperidine ring of the molecule is in the chair conformation and the N-methyl group is bonded equatorially to the piperidine ring. The styryl side chains are attached equatorially to the piperidine ring on atom C2 (and by symmetry, C2A). The molecule is mirror symmetric, with atoms N1, C1 and C4 lying on the mirror plane (Table 1). The double bond and the phenyl ring of the styryl side chain are approximately coplanar, as evidenced by the C5—C6—C7—C8 torsion angle [177.82 (12)°]. Moreover, the double bond is also approximately coplanar with C2—H2, as evidenced by the torsion angle C6—C5—C2—H2 [-4.66 (14)°].

Related literature top

The title compound is a des-oxygen lobeline derivative (Zheng et al., 2005).

Experimental top

The title compound was prepared from (-)-lobeline (Zheng et al., 2005). Crystal suitable for X-ray diffraction studies were obtained by slow evaporation of an hexanes/ethylacetate (10:1) solution at room temperature.

Refinement top

H atoms were found in difference Fourier maps and subsequently placed in idealized positions with constrained distances of 0.98 Å (RCH3), 0.99 Å (R2CH2), 1.00 Å (R3CH), 0.95 Å (R2CH), 0.93 Å (N—H), and with Uiso(H) values set to either 1.2Ueq or 1.5Ueq (RCH3) of the attached atom.

The SU of the torsion angle C6—C5—C2—H2 (-4.66 (14)°) is not directly available from the refinement because H2 is in a calculated position, as determined by a riding model. It was set equal to the SU of torsion angles C6—C5—C2—N1 and C6—C5—C2—C3, both of which were 0.14°. This is valid because the coordinates of H2 are determined geometrically from the coordinates of atoms C2, C5, N1 and C3.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in Siemens SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELX97 (Sheldrick, 2008) and local procedures.

Figures top
[Figure 1] Fig. 1. A view of the molecule with the atom numbering scheme (symmetry code A: x, -y+1/2,z). Displacement ellipsoids are drawn at the 50% probability level.
1-Methyl-2,6-cis-distyrylpiperidine top
Crystal data top
C22H25NF(000) = 656
Mr = 303.43Dx = 1.153 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 12455 reflections
a = 17.3766 (2) Åθ = 1.0–27.5°
b = 18.1774 (6) ŵ = 0.07 mm1
c = 5.5354 (7) ÅT = 173 K
V = 1748.3 (2) Å3Irregular block, colourless
Z = 40.40 × 0.25 × 0.20 mm
Data collection top
Nonius KappaCCD
diffractometer
1624 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.044
Graphite monochromatorθmax = 27.5°, θmin = 2.2°
Detector resolution: 18 pixels mm-1h = 2222
ω scans at fixed χ = 55°k = 2323
12693 measured reflectionsl = 77
2077 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.105 w = 1/[σ2(Fo2) + (0.0317P)2 + 0.526P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
2077 reflectionsΔρmax = 0.19 e Å3
110 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0098 (16)
Crystal data top
C22H25NV = 1748.3 (2) Å3
Mr = 303.43Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 17.3766 (2) ŵ = 0.07 mm1
b = 18.1774 (6) ÅT = 173 K
c = 5.5354 (7) Å0.40 × 0.25 × 0.20 mm
Data collection top
Nonius KappaCCD
diffractometer
1624 reflections with I > 2σ(I)
12693 measured reflectionsRint = 0.044
2077 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.10Δρmax = 0.19 e Å3
2077 reflectionsΔρmin = 0.16 e Å3
110 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.09202 (8)0.25000.1454 (3)0.0293 (4)
C10.14851 (11)0.25000.3409 (4)0.0380 (5)
H1A0.12380.25000.50160.046*
H1B0.18090.29550.32590.046*
C20.04374 (7)0.18311 (6)0.1549 (2)0.0291 (3)
H20.01290.18450.30730.035*
C30.01177 (8)0.18156 (7)0.0582 (2)0.0344 (3)
H3A0.01800.17700.21000.041*
H3B0.04530.13780.04430.041*
C40.06143 (11)0.25000.0703 (4)0.0397 (5)
H4A0.09120.25000.22280.048*
H4B0.09830.25000.06590.048*
C50.09154 (7)0.11450 (7)0.1566 (2)0.0302 (3)
H50.12690.10790.02740.036*
C60.08859 (7)0.06248 (7)0.3230 (2)0.0304 (3)
H60.05470.07090.45470.036*
C70.13201 (7)0.00733 (7)0.3274 (2)0.0280 (3)
C80.12316 (7)0.05457 (7)0.5236 (2)0.0349 (3)
H80.08850.04190.64970.042*
C90.16422 (8)0.11997 (7)0.5374 (3)0.0412 (4)
H90.15740.15170.67200.049*
C100.21478 (8)0.13885 (7)0.3562 (3)0.0411 (4)
H100.24300.18350.36550.049*
C110.22423 (8)0.09261 (7)0.1615 (3)0.0386 (4)
H110.25910.10550.03630.046*
C120.18351 (7)0.02768 (7)0.1467 (2)0.0330 (3)
H120.19070.00360.01110.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0269 (8)0.0241 (8)0.0369 (9)0.0000.0038 (7)0.000
C10.0347 (10)0.0307 (10)0.0486 (12)0.0000.0101 (9)0.000
C20.0291 (6)0.0251 (7)0.0332 (7)0.0001 (5)0.0003 (5)0.0005 (5)
C30.0362 (7)0.0278 (7)0.0391 (8)0.0025 (6)0.0059 (6)0.0027 (6)
C40.0369 (11)0.0326 (10)0.0496 (12)0.0000.0143 (9)0.000
C50.0289 (6)0.0273 (7)0.0345 (7)0.0013 (5)0.0019 (6)0.0016 (6)
C60.0279 (6)0.0297 (7)0.0334 (7)0.0020 (5)0.0010 (5)0.0031 (6)
C70.0254 (6)0.0242 (6)0.0342 (7)0.0038 (5)0.0053 (5)0.0012 (5)
C80.0314 (7)0.0371 (7)0.0361 (8)0.0054 (6)0.0003 (6)0.0011 (6)
C90.0450 (8)0.0315 (7)0.0471 (9)0.0099 (6)0.0089 (7)0.0125 (7)
C100.0385 (8)0.0220 (7)0.0628 (10)0.0007 (6)0.0101 (7)0.0027 (7)
C110.0373 (8)0.0303 (7)0.0482 (9)0.0008 (6)0.0012 (7)0.0079 (7)
C120.0362 (7)0.0281 (7)0.0348 (7)0.0031 (6)0.0005 (6)0.0015 (6)
Geometric parameters (Å, º) top
N1—C11.461 (2)C5—H50.9500
N1—C2i1.4781 (14)C6—C71.4765 (17)
N1—C21.4781 (14)C6—H60.9500
C1—H1A0.9877C7—C121.3922 (17)
C1—H1B1.0042C7—C81.3930 (18)
C2—C51.4984 (16)C8—C91.3885 (19)
C2—C31.5238 (17)C8—H80.9500
C2—H21.0000C9—C101.377 (2)
C3—C41.5155 (16)C9—H90.9500
C3—H3A0.9900C10—C111.3765 (19)
C3—H3B0.9900C10—H100.9500
C4—C3i1.5154 (16)C11—C121.3785 (18)
C4—H4A0.9900C11—H110.9500
C4—H4B0.9900C12—H120.9500
C5—C61.3210 (17)
C1—N1—C2i110.79 (9)C6—C5—C2125.35 (12)
C1—N1—C2110.79 (9)C6—C5—H5117.3
C2i—N1—C2110.68 (13)C2—C5—H5117.3
N1—C1—H1A112.1C5—C6—C7127.36 (12)
N1—C1—H1B108.4C5—C6—H6116.3
H1A—C1—H1B108.5C7—C6—H6116.3
N1—C2—C5111.73 (10)C12—C7—C8117.85 (12)
N1—C2—C3110.30 (11)C12—C7—C6123.03 (11)
C5—C2—C3109.90 (10)C8—C7—C6119.10 (12)
N1—C2—H2108.3C9—C8—C7120.93 (13)
C5—C2—H2108.3C9—C8—H8119.5
C3—C2—H2108.3C7—C8—H8119.5
C4—C3—C2112.31 (11)C10—C9—C8120.09 (13)
C4—C3—H3A109.1C10—C9—H9120.0
C2—C3—H3A109.1C8—C9—H9120.0
C4—C3—H3B109.1C11—C10—C9119.61 (13)
C2—C3—H3B109.1C11—C10—H10120.2
H3A—C3—H3B107.9C9—C10—H10120.2
C3i—C4—C3110.34 (15)C10—C11—C12120.55 (13)
C3i—C4—H4A109.6C10—C11—H11119.7
C3—C4—H4A109.6C12—C11—H11119.7
C3i—C4—H4B109.6C11—C12—C7120.97 (12)
C3—C4—H4B109.6C11—C12—H12119.5
H4A—C4—H4B108.1C7—C12—H12119.5
C1—N1—C2—C554.16 (15)C5—C6—C7—C120.36 (19)
C2i—N1—C2—C5177.47 (8)C5—C6—C7—C8177.82 (12)
C1—N1—C2—C3176.71 (11)C12—C7—C8—C90.28 (18)
C2i—N1—C2—C359.97 (16)C6—C7—C8—C9178.56 (11)
N1—C2—C3—C456.00 (15)C7—C8—C9—C100.3 (2)
C5—C2—C3—C4179.62 (12)C8—C9—C10—C110.1 (2)
C2—C3—C4—C3i51.3 (2)C9—C10—C11—C120.0 (2)
N1—C2—C5—C6123.80 (14)C10—C11—C12—C70.02 (19)
C3—C2—C5—C6113.41 (14)C8—C7—C12—C110.16 (18)
C2—C5—C6—C7177.26 (11)C6—C7—C12—C11178.36 (11)
Symmetry code: (i) x, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC22H25N
Mr303.43
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)173
a, b, c (Å)17.3766 (2), 18.1774 (6), 5.5354 (7)
V3)1748.3 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.40 × 0.25 × 0.20
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
12693, 2077, 1624
Rint0.044
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.105, 1.10
No. of reflections2077
No. of parameters110
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.16

Computer programs: COLLECT (Nonius, 1998), SCALEPACK (Otwinowski & Minor, 1997), DENZO-SMN (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in Siemens SHELXTL (Sheldrick, 2008), SHELX97 (Sheldrick, 2008) and local procedures.

Selected geometric parameters (Å, º) top
N1—C21.4781 (14)C3—C41.5155 (16)
C1—N1—C2110.79 (9)
C2i—N1—C2—C5177.47 (8)C5—C6—C7—C8177.82 (12)
C5—C2—C3—C4179.62 (12)
Symmetry code: (i) x, y+1/2, z.
 

Acknowledgements

This research was supported by National Institute of Health grants DA13519 and DA00399.

References

First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZheng, G., Dwoskin, L. P., Deaciuc, A. G., Norrholm, S. D. & Crooks, P. A. (2005). J. Med. Chem. pp. 5551–5560.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds