organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6,6′-Dimeth­­oxy-2,2′-[pyridine-2,3-diylbis(nitrilo­methyl­­idyne)]diphenol

aCollege of Materials Science and Engineering, Shandong University of Technology, Zibo 255049, People's Republic of China
*Correspondence e-mail: bingxueer79@163.com

(Received 19 November 2009; accepted 22 November 2009; online 9 December 2009)

In the title compound, C21H19N3O4, two intramolecular N—H⋯O hydrogen bonds generate two six-membered rings. The dihedral angles between the central heterocyclic ring and the two pendant rings are 61.5 (2) and 63.5 (1)°.

Related literature

For related crystal structures, see: Cimerman et al. (1992[Cimerman, Z., Galesic, N. & Bosner, B. (1992). J. Mol. Struct. 274, 131-144.]); Bi et al. (2007[Bi, W.-Y., Lü, X.-Q., Cai, W.-L., Song, J.-R. & Ng, S. W. (2007). Acta Cryst. E63, o1615-o1616.]).

[Scheme 1]

Experimental

Crystal data
  • C21H19N3O4

  • Mr = 377.39

  • Monoclinic, P 21 /c

  • a = 6.7006 (9) Å

  • b = 16.699 (2) Å

  • c = 17.490 (2) Å

  • β = 98.772 (2)°

  • V = 1934.2 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.25 × 0.21 × 0.19 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008a[Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.]) Tmin = 0.978, Tmax = 0.983

  • 9149 measured reflections

  • 3293 independent reflections

  • 1929 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.184

  • S = 1.04

  • 3293 reflections

  • 257 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.96 2.683 (3) 146
O3—H3⋯N2 0.82 1.85 2.568 (3) 146

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Transition metal complexes with salen-type Schiff-bases as ligands, which has been known as one of the oldest ligands in coordination chemistry, have been intensely studied. Here, we report a new Schiff-base ligand based on 2,3-diaminopyridine and 2-hydroxy-3-methoxybenzaldehyde.

The geometry and labeling scheme for the crystal structure of the title compound are depicted in Figure 1. As can be seen from Figure 1, the title compound affords the potentially tetradentate ligand contributed from the O2N2 donor unit. The imide bond lengths are 1.267 (4)Å for N1—C12 and 1.288 (4)Å for N2—C20, respectively, which are basically consistent with the corresponding distances found in other diaminopyridine-based Schiff base ligand (Cimerman, et al., 1992; Bi et al., 2007). There exists relative strong intramolecular O-H···N hydrogen bonding in this compound with the N···O distance 2.683 (3)Å and the bond angle 145.8 ° for O1—N1 and 2.568 (3))Å , 146.1° for O3—N2, respectively; and is similar to its analogues above mentioned.

Related literature top

For related crystal structures, see: Cimerman et al. (1992); Bi et al. (2007).

Experimental top

The title Schiff base ligand was synthesized by condensation 2,3-diaminopyridine and 2-hydroxy-3-methoxybenzaldehyde with the ratio 1:2 in ethanol. Single crystals suitable for X-ray diffraction were obtained after the solvent was partially evaporated.

Refinement top

All the H atoms were placed using the HFIX commands in SHELXL-97, with C—H distances of 0.93, 0.96 Å and O—H 0.82 Å, and were allowed for as riding atoms with Uiso(H) = 1.5Ueq(C), Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.2Ueq(O), respectively.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b); molecular graphics: SHELXTL (Sheldrick, 2008b); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
6,6'-Dimethoxy-2,2'-[pyridine-2,3-diylbis(nitrilomethylidyne)]diphenol top
Crystal data top
C21H19N3O4F(000) = 792
Mr = 377.39Dx = 1.296 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1473 reflections
a = 6.7006 (9) Åθ = 2.4–22.1°
b = 16.699 (2) ŵ = 0.09 mm1
c = 17.490 (2) ÅT = 293 K
β = 98.772 (2)°Needle, yellow
V = 1934.2 (5) Å30.25 × 0.21 × 0.19 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3293 independent reflections
Radiation source: fine-focus sealed tube1929 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ϕ and ω scansθmax = 24.9°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
h = 77
Tmin = 0.978, Tmax = 0.983k = 1619
9149 measured reflectionsl = 1820
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.184H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0889P)2 + 0.4093P]
where P = (Fo2 + 2Fc2)/3
3293 reflections(Δ/σ)max = 0.001
257 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
C21H19N3O4V = 1934.2 (5) Å3
Mr = 377.39Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.7006 (9) ŵ = 0.09 mm1
b = 16.699 (2) ÅT = 293 K
c = 17.490 (2) Å0.25 × 0.21 × 0.19 mm
β = 98.772 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3293 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
1929 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.983Rint = 0.039
9149 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.184H-atom parameters constrained
S = 1.04Δρmax = 0.40 e Å3
3293 reflectionsΔρmin = 0.44 e Å3
257 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0595 (3)0.84140 (12)0.30034 (13)0.0651 (6)
H10.01640.80970.32970.098*
O20.1593 (4)0.95259 (14)0.20681 (15)0.0796 (8)
O30.2804 (3)0.84262 (13)0.49519 (12)0.0597 (6)
H30.17570.81640.48880.090*
O40.6184 (3)0.91857 (13)0.53308 (12)0.0627 (6)
N10.1950 (4)0.78816 (15)0.39342 (14)0.0500 (6)
N20.0306 (4)0.73504 (13)0.52610 (15)0.0521 (6)
N30.4678 (4)0.69480 (18)0.41075 (18)0.0764 (9)
C10.2765 (5)0.72718 (19)0.4364 (2)0.0616 (9)
C20.1580 (5)0.69766 (19)0.5039 (2)0.0609 (9)
C30.2348 (6)0.63538 (19)0.5445 (2)0.0692 (10)
H3A0.15860.61510.58920.083*
C40.4230 (5)0.6040 (2)0.5184 (2)0.0695 (10)
H40.47250.56260.54570.083*
C50.5373 (6)0.6328 (2)0.4533 (2)0.0688 (10)
H50.66410.61080.43690.083*
C60.2355 (4)0.91289 (17)0.32671 (16)0.0498 (7)
C70.0614 (4)0.90562 (17)0.29041 (16)0.0484 (7)
C80.0096 (5)0.96657 (19)0.24156 (17)0.0546 (8)
C90.1249 (6)1.0343 (2)0.2327 (2)0.0692 (10)
H90.09091.07540.20120.083*
C100.2936 (6)1.0428 (2)0.2704 (2)0.0818 (11)
H100.36871.08990.26440.098*
C110.3493 (5)0.9826 (2)0.3159 (2)0.0739 (10)
H110.46360.98850.33970.089*
C120.3019 (5)0.84972 (19)0.37466 (16)0.0521 (8)
H120.42590.85480.39190.062*
C130.2168 (7)1.0121 (3)0.1557 (3)0.1097 (16)
H13A0.11661.01510.11030.165*
H13B0.34470.99800.14110.165*
H13C0.22791.06310.18130.165*
C140.3338 (5)0.76176 (16)0.61150 (16)0.0486 (7)
C150.3942 (4)0.82084 (16)0.56241 (16)0.0449 (7)
C160.5794 (4)0.86010 (17)0.58366 (16)0.0473 (7)
C170.7038 (5)0.8378 (2)0.65066 (18)0.0590 (8)
H170.82860.86260.66390.071*
C180.6446 (5)0.7784 (2)0.69882 (19)0.0663 (9)
H180.72960.76420.74390.080*
C190.4630 (6)0.74141 (19)0.68010 (19)0.0642 (9)
H190.42370.70240.71270.077*
C200.1429 (5)0.72198 (18)0.59146 (19)0.0562 (8)
H200.09970.68620.62630.067*
C210.8030 (5)0.9613 (2)0.5508 (2)0.0764 (10)
H21A0.81040.98550.60100.115*
H21B0.80901.00220.51270.115*
H21C0.91420.92510.55080.115*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0634 (14)0.0594 (14)0.0767 (16)0.0037 (11)0.0238 (12)0.0013 (11)
O20.0888 (18)0.0737 (16)0.0857 (17)0.0129 (13)0.0431 (15)0.0000 (13)
O30.0569 (14)0.0611 (14)0.0566 (13)0.0124 (10)0.0058 (11)0.0136 (10)
O40.0603 (14)0.0705 (14)0.0561 (13)0.0203 (11)0.0054 (10)0.0077 (11)
N10.0526 (15)0.0518 (15)0.0452 (14)0.0090 (12)0.0067 (12)0.0050 (12)
N20.0538 (16)0.0436 (13)0.0595 (17)0.0028 (11)0.0103 (13)0.0042 (12)
N30.077 (2)0.075 (2)0.079 (2)0.0199 (16)0.0192 (17)0.0153 (16)
C10.064 (2)0.059 (2)0.065 (2)0.0197 (17)0.0220 (18)0.0158 (17)
C20.065 (2)0.0572 (19)0.065 (2)0.0172 (17)0.0225 (18)0.0119 (17)
C30.079 (2)0.0536 (19)0.078 (2)0.0128 (17)0.0222 (19)0.0057 (17)
C40.073 (2)0.064 (2)0.075 (3)0.0230 (19)0.024 (2)0.0108 (19)
C50.071 (2)0.066 (2)0.073 (2)0.0255 (18)0.021 (2)0.0150 (19)
C60.0500 (18)0.0562 (18)0.0426 (16)0.0026 (14)0.0048 (13)0.0032 (14)
C70.0541 (18)0.0462 (17)0.0439 (17)0.0047 (14)0.0048 (14)0.0100 (14)
C80.0592 (19)0.0589 (19)0.0462 (18)0.0128 (16)0.0097 (15)0.0099 (15)
C90.089 (3)0.060 (2)0.056 (2)0.0070 (19)0.0038 (19)0.0060 (16)
C100.086 (3)0.070 (2)0.090 (3)0.019 (2)0.016 (2)0.015 (2)
C110.070 (2)0.074 (2)0.081 (3)0.0126 (19)0.0208 (19)0.005 (2)
C120.0511 (18)0.064 (2)0.0417 (17)0.0053 (16)0.0087 (14)0.0109 (15)
C130.138 (4)0.103 (3)0.104 (3)0.029 (3)0.070 (3)0.011 (3)
C140.0553 (19)0.0439 (16)0.0463 (18)0.0002 (14)0.0066 (14)0.0010 (14)
C150.0475 (17)0.0463 (16)0.0398 (16)0.0043 (13)0.0035 (13)0.0029 (13)
C160.0494 (18)0.0504 (17)0.0429 (17)0.0016 (14)0.0092 (14)0.0024 (14)
C170.0512 (19)0.070 (2)0.054 (2)0.0026 (16)0.0015 (15)0.0093 (16)
C180.073 (2)0.072 (2)0.0492 (19)0.0068 (19)0.0065 (17)0.0083 (17)
C190.084 (3)0.0557 (19)0.051 (2)0.0035 (18)0.0050 (18)0.0115 (16)
C200.071 (2)0.0481 (17)0.052 (2)0.0018 (15)0.0177 (17)0.0073 (15)
C210.061 (2)0.080 (2)0.087 (3)0.0251 (19)0.0094 (19)0.002 (2)
Geometric parameters (Å, º) top
O1—C71.340 (3)C8—C91.366 (5)
O1—H10.8200C9—C101.400 (5)
O2—C81.383 (4)C9—H90.9300
O2—C131.428 (4)C10—C111.369 (5)
O3—C151.350 (3)C10—H100.9300
O3—H30.8200C11—H110.9300
O4—C161.369 (3)C12—H120.9300
O4—C211.421 (4)C13—H13A0.9600
N1—C121.267 (4)C13—H13B0.9600
N1—C11.423 (4)C13—H13C0.9600
N2—C201.288 (4)C14—C151.407 (4)
N2—C21.410 (4)C14—C191.410 (4)
N3—C51.397 (4)C14—C201.436 (4)
N3—C11.400 (4)C15—C161.402 (4)
C1—C21.408 (5)C16—C171.382 (4)
C2—C31.401 (4)C17—C181.397 (4)
C3—C41.377 (5)C17—H170.9300
C3—H3A0.9300C18—C191.360 (5)
C4—C51.359 (5)C18—H180.9300
C4—H40.9300C19—H190.9300
C5—H50.9300C20—H200.9300
C6—C111.389 (4)C21—H21A0.9600
C6—C71.416 (4)C21—H21B0.9600
C6—C121.459 (4)C21—H21C0.9600
C7—C81.406 (4)
C7—O1—H1109.5C10—C11—H11120.0
C8—O2—C13118.3 (3)C6—C11—H11120.0
C15—O3—H3109.5N1—C12—C6121.7 (3)
C16—O4—C21117.5 (2)N1—C12—H12119.1
C12—N1—C1118.0 (3)C6—C12—H12119.1
C20—N2—C2123.2 (3)O2—C13—H13A109.5
C5—N3—C1118.6 (3)O2—C13—H13B109.5
N3—C1—C2120.3 (3)H13A—C13—H13B109.5
N3—C1—N1120.9 (3)O2—C13—H13C109.5
C2—C1—N1118.7 (3)H13A—C13—H13C109.5
C3—C2—C1118.8 (3)H13B—C13—H13C109.5
C3—C2—N2124.9 (3)C15—C14—C19119.5 (3)
C1—C2—N2116.3 (3)C15—C14—C20120.3 (3)
C4—C3—C2120.2 (4)C19—C14—C20120.3 (3)
C4—C3—H3A119.9O3—C15—C16117.7 (2)
C2—C3—H3A119.9O3—C15—C14122.9 (3)
C5—C4—C3120.9 (3)C16—C15—C14119.4 (3)
C5—C4—H4119.5O4—C16—C17126.2 (3)
C3—C4—H4119.5O4—C16—C15114.2 (2)
C4—C5—N3121.1 (3)C17—C16—C15119.6 (3)
C4—C5—H5119.4C16—C17—C18120.8 (3)
N3—C5—H5119.4C16—C17—H17119.6
C11—C6—C7118.9 (3)C18—C17—H17119.6
C11—C6—C12118.4 (3)C19—C18—C17120.3 (3)
C7—C6—C12122.7 (3)C19—C18—H18119.9
O1—C7—C8117.2 (3)C17—C18—H18119.9
O1—C7—C6122.3 (3)C18—C19—C14120.4 (3)
C8—C7—C6120.5 (3)C18—C19—H19119.8
C9—C8—O2125.2 (3)C14—C19—H19119.8
C9—C8—C7118.7 (3)N2—C20—C14121.1 (3)
O2—C8—C7116.1 (3)N2—C20—H20119.5
C8—C9—C10120.9 (3)C14—C20—H20119.5
C8—C9—H9119.5O4—C21—H21A109.5
C10—C9—H9119.5O4—C21—H21B109.5
C11—C10—C9120.7 (3)H21A—C21—H21B109.5
C11—C10—H10119.6O4—C21—H21C109.5
C9—C10—H10119.6H21A—C21—H21C109.5
C10—C11—C6120.1 (3)H21B—C21—H21C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.962.683 (3)146
O3—H3···N20.821.852.568 (3)146

Experimental details

Crystal data
Chemical formulaC21H19N3O4
Mr377.39
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)6.7006 (9), 16.699 (2), 17.490 (2)
β (°) 98.772 (2)
V3)1934.2 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.25 × 0.21 × 0.19
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008a)
Tmin, Tmax0.978, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
9149, 3293, 1929
Rint0.039
(sin θ/λ)max1)0.591
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.184, 1.04
No. of reflections3293
No. of parameters257
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.44

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008b), SHELXL97 (Sheldrick, 2008b), SHELXTL (Sheldrick, 2008b).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.962.683 (3)145.8
O3—H3···N20.821.852.568 (3)146.1
 

References

First citationBi, W.-Y., Lü, X.-Q., Cai, W.-L., Song, J.-R. & Ng, S. W. (2007). Acta Cryst. E63, o1615–o1616.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCimerman, Z., Galesic, N. & Bosner, B. (1992). J. Mol. Struct. 274, 131–144.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008b). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds