organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-Ethyl 2-hy­droxy­imino-2-(4-nitro­benz­yl)ethanoate

aBioMat-Physics Department, UNESP – Univ Estadual Paulista, 17033-360 Bauru, SP, Brazil, bInstituto de Química e Biotecnologia, Universidade Federal de Alagoas, 57072-970 Maceió, AL, Brazil, cInstituto de Química, Universidade Estadual de Campinas, CP 6154, 13083-970 Campinas, SP, Brazil, dDepartment of Chemistry, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, and eDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: ignez@fc.unesp.br

(Received 29 November 2009; accepted 5 December 2009; online 16 December 2009)

The title mol­ecule, C11H10N2O6, has a Z conformation about the C=N bond of the oxime unit. There are significant twists from planarity throughout the mol­ecule, the most significant being between the hydroxy­imino and ester groups which are effectively orthogonal with an N—C—C—Ocarbon­yl torsion angle of 91.4 (2)°. The crystal packing features oxime–benzoyl O—H⋯O contacts that lead to chains along [010] and C—H⋯O interactions also occur.

Related literature

For background to the synthesis of chiral hydroxy­amino­acids and hydroxy­amino­alcohols, see: Corrêa & Moran (1999[Corrêa, I. R. & Moran, P. J. S. (1999). Tetrahedron, 55, 14221-14232.]); Kreutz et al. (1997[Kreutz, O. C., Moran, P. J. S. & Rodrigues, J. A. R. (1997). Tetrahedron Asymmetry, 8, 2649-2653.], 2000[Kreutz, O. C., Segura, R. C. M., Rodrigues, J. A. R. & Moran, P. J. S. (2000). Tetrahedron Asymmetry, 11, 2107-2115.]). For related structures, see: Ramos Silva et al. (2004[Ramos Silva, M., Matos Beja, A., Paixão, J. A., Lopes, S. H., Cabral, A. M. T. D. P. V., d'A. Rocha Gonsalves, A. M. & Sobral, A. J. F. N. (2004). Z. Kristallogr. New Cryst. Struct. 219, 145-146.]); Forsyth et al. (2006[Forsyth, C. M., Langford, S. J. & Lee, K. A. (2006). Acta Cryst. E62, o5654-o5655.]). For the synthesis, see: Adkins & Reeve (1938[Adkins, H. & Reeve, E. W. (1938). J. Am. Chem. Soc. 60, 1328-1331.]).

[Scheme 1]

Experimental

Crystal data
  • C11H10N2O6

  • Mr = 266.21

  • Monoclinic, C 2/c

  • a = 23.2347 (7) Å

  • b = 12.0698 (6) Å

  • c = 8.9698 (4) Å

  • β = 106.100 (2)°

  • V = 2416.82 (18) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 290 K

  • 0.18 × 0.15 × 0.12 mm

Data collection
  • Nonius KappaCCD diffractometer

  • 8147 measured reflections

  • 2752 independent reflections

  • 2004 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.128

  • S = 1.05

  • 2752 reflections

  • 189 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4o⋯O3i 0.82 1.91 2.7165 (16) 166
C5—H5⋯O5i 0.93 2.58 3.371 (2) 144
C2—H2⋯O1ii 0.93 2.55 3.393 (3) 151
C11—H11a⋯O1iii 0.96 2.52 3.426 (5) 158
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y, -z+2; (iii) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z-1].

Data collection: COLLECT (Nonius, 1999[Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]), PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

The title compound (I) was prepared as an intermediary during the synthesis of chiral hydroxyaminoacids and hydroxyaminoalcohols, as α-ketomethoxyimino compounds are reduced by sodium borohydride (Corrêa & Moran, 1999) and enantioselectively bio-reduced by whole cells of yeast (Kreutz et al., 1997; Kreutz et al., 2000).

The structure of (I) is non-planar as seen by the values of the C3–C4–C7–O3 and C4–C7–C8–N2 torsion angles within the central moiety of 8.8 (2) and 15.8 (2) °, respectively. The peripheral residues are twisted with respect to the inner atoms. Thus, the nitro ring is twisted out of the plane of the benzene ring to which it is connected: the C2–C1–N1–O1 torsion angle is -13.7 (3) °. Even more dramatic is the twist about the C8—C9 bond with the C7–C8–C9–O6 torsion angle being 94.77 (17)°, indicating the terminal ester group is orthogonal to the hydroxyimino residue. With respect to the C8N2 bond, the conformation is Z. There are two other structures in the literature containing the basic C(O)C(NOH)C(O)OC framework. In benzyl 2-(hydroxyimino)acetoacetate a Z conformation is found for the oxime group (Forsyth et al., 2006) whereas in each of the two independent molecules comprising the asymmetric unit in ethyl 2-(hydroxyimino)-3-oxo-3-phenylpropionate, an E conformation is found (Ramos Silva et al., 2004).

The crystal packing of (I) is dominated by O—H···O hydrogen bonding involving the oxime-O4—H and benzoyl-O3 atoms which leads to the formation of supramolecular chains along [0 1 0] with a flat topology, Fig. 2 and Table 1. The presence of C–H···O contacts provide stability to the chain. These C5–H···O5 contacts close 13-membered {···OC3O···HC4NOH} synthons, Fig. 3 and Table 1. The chains are linked into 2-D arrays in the [3 0 1] plane by further C–H···O contacts involving the nitro groups and centrosymmetric 10-membered {···ONC2H}2 synthons, Fig. 3 and Table 1. The resultant layer is essentially flat with the ethoxy groups lying above and below the layer. The methyl-H atoms of one of the disordered ethoxy groups form C–H···O contacts with the nitro-O1 atoms providing stability to the stacked layers, Fig. 4 and Table 1.

Related literature top

For background to the synthesis of chiral hydroxyaminoacids and hydroxyaminoalcohols, see: Corrêa & Moran (1999); Kreutz et al. (1997, 2000). For related structures, see: Ramos Silva et al. (2004); Forsyth et al. (2006). For the synthesis, see: Adkins & Reeve (1938).

Experimental top

The title compound, (I), was prepared following a modified literature method (Adkins and Reeve, 1938). A solution of sodium nitrite (5 mmol) and water (2 ml) was added drop-wise to a solution of ethyl 3-oxo-3-(4-nitrophenyl)propanoate (2 mmol) in glacial acetic acid (3 ml) at 273 K. The resulting solution was stirred for 1 h at 273 K. The temperature was then raised to 303 K and the reaction left for a further hour. The reaction mixture was quenched with water (2.5 ml) and treated with ether (4 x 5 ml). The organic layer was dried with Mg(SO4) and the solvent evaporated to afford a mixture of Z:E (40:60) isomers in 87% yield that were separated by dissolving in ethyl acetate and precipitating with hexane.

Refinement top

The O– and C-bound H atoms were geometrically placed (O–H = 0.82 Å and C–H = 0.9–0.97 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O and methyl-C).

Disorder was modelled for the ethyl group with two positions resolved for each of the C10 and C11 atoms. Fractional refinement (anisotropic) showed that the site occupancy factors were equal within experimental error and thus these were fixed at 0.5 in the final cycles of refinement.

Computing details top

Data collection: COLLECT (Nonius, 1999); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: WinGX (Farrugia, 1999), PARST (Nardelli, 1995) and publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing atom labelling scheme and displacement ellipsoids at the 50% probability level (arbitrary spheres for the H atoms). Only one component of the disordered ethyl group is shown for reasons of clarity.
[Figure 2] Fig. 2. Supramolecular chain aligned along [0 1 0] in (I) mediated by oxime-OH···O-benzoyl hydrogen bonding (orange dashed lines). Colour code: O, red; N, blue; C, grey; and H, green.
[Figure 3] Fig. 3. 2-D array in (I) whereby the chains shown in Fig. 2 are reinforced by and are connected by C–H···O contacts (blue dashed lines). Colour code as for Fig. 2.
[Figure 4] Fig. 4. A view of the crystal packing in (I) showing the stacking of layers. Colour code as for Fig. 2.
(Z)-Ethyl 2-hydroxyimino-2-(4-nitrobenzyl)ethanoate top
Crystal data top
C11H10N2O6F(000) = 1104
Mr = 266.21Dx = 1.463 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4194 reflections
a = 23.2347 (7) Åθ = 27.5–1.0°
b = 12.0698 (6) ŵ = 0.12 mm1
c = 8.9698 (4) ÅT = 290 K
β = 106.100 (2)°Irregular, colourless
V = 2416.82 (18) Å30.18 × 0.15 × 0.12 mm
Z = 8
Data collection top
Nonius KappaCCD
diffractometer
2004 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.033
Graphite monochromatorθmax = 27.5°, θmin = 1.9°
CCD rotation images, thick slices scansh = 3028
8147 measured reflectionsk = 1514
2752 independent reflectionsl = 811
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0493P)2 + 1.3639P]
where P = (Fo2 + 2Fc2)/3
2752 reflections(Δ/σ)max < 0.001
189 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C11H10N2O6V = 2416.82 (18) Å3
Mr = 266.21Z = 8
Monoclinic, C2/cMo Kα radiation
a = 23.2347 (7) ŵ = 0.12 mm1
b = 12.0698 (6) ÅT = 290 K
c = 8.9698 (4) Å0.18 × 0.15 × 0.12 mm
β = 106.100 (2)°
Data collection top
Nonius KappaCCD
diffractometer
2004 reflections with I > 2σ(I)
8147 measured reflectionsRint = 0.033
2752 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 1.05Δρmax = 0.20 e Å3
2752 reflectionsΔρmin = 0.19 e Å3
189 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.50114 (9)0.16899 (16)1.0271 (2)0.1080 (7)
O20.47793 (8)0.32527 (15)0.9163 (2)0.0950 (6)
O30.29936 (6)0.09600 (9)0.44259 (15)0.0585 (4)
O40.21512 (6)0.18581 (10)0.13275 (15)0.0581 (4)
H4O0.21680.25250.11690.087*
O50.21223 (6)0.07843 (11)0.10633 (16)0.0652 (4)
O60.15870 (6)0.01284 (12)0.25941 (16)0.0662 (4)
N10.47188 (8)0.22595 (16)0.9220 (2)0.0685 (5)
N20.26049 (6)0.15679 (11)0.26243 (16)0.0477 (3)
C10.42724 (8)0.17138 (15)0.7937 (2)0.0517 (4)
C20.42939 (8)0.05779 (16)0.7813 (2)0.0586 (5)
H20.45800.01650.85270.070*
C30.38815 (8)0.00701 (15)0.6605 (2)0.0539 (4)
H30.38930.06950.64890.065*
C40.34459 (7)0.06915 (13)0.55497 (18)0.0426 (4)
C50.34325 (8)0.18320 (13)0.5725 (2)0.0489 (4)
H50.31400.22490.50360.059*
C60.38527 (8)0.23516 (15)0.6919 (2)0.0537 (4)
H60.38510.31180.70300.064*
C70.30018 (7)0.00492 (13)0.43324 (19)0.0434 (4)
C80.25518 (7)0.05606 (13)0.29990 (18)0.0423 (4)
C90.20639 (7)0.02027 (13)0.2087 (2)0.0460 (4)
C100.1039 (4)0.0815 (6)0.1899 (9)0.066 (2)0.50
H10A0.06800.03940.18680.079*0.50
H10B0.10260.10310.08490.079*0.50
C110.1074 (2)0.1772 (4)0.2855 (6)0.0772 (13)0.50
H11A0.07500.22640.23900.116*0.50
H11B0.10480.15520.38630.116*0.50
H11C0.14480.21430.29540.116*0.50
C10A0.1143 (2)0.0975 (4)0.1926 (6)0.093 (5)0.50
H10C0.13350.16790.18580.112*0.50
H10D0.09070.07610.08950.112*0.50
C11A0.0755 (3)0.1055 (8)0.3013 (8)0.127 (3)0.50
H11D0.04230.15400.25780.190*0.50
H11E0.06070.03330.31620.190*0.50
H11F0.09860.13440.39930.190*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.1132 (14)0.0968 (14)0.0788 (11)0.0063 (10)0.0320 (10)0.0089 (10)
O20.1013 (13)0.0768 (12)0.0881 (12)0.0268 (9)0.0050 (9)0.0171 (9)
O30.0739 (8)0.0300 (6)0.0639 (8)0.0020 (5)0.0064 (6)0.0004 (5)
O40.0661 (8)0.0380 (6)0.0606 (8)0.0033 (6)0.0019 (6)0.0087 (6)
O50.0750 (9)0.0528 (8)0.0690 (9)0.0128 (6)0.0219 (7)0.0214 (7)
O60.0567 (8)0.0706 (9)0.0725 (9)0.0230 (6)0.0200 (7)0.0229 (7)
N10.0640 (10)0.0740 (12)0.0597 (10)0.0055 (9)0.0045 (8)0.0137 (9)
N20.0525 (8)0.0343 (7)0.0530 (8)0.0005 (6)0.0090 (6)0.0020 (6)
C10.0474 (9)0.0570 (11)0.0489 (9)0.0046 (8)0.0102 (7)0.0072 (8)
C20.0537 (10)0.0581 (11)0.0564 (11)0.0083 (8)0.0026 (8)0.0019 (9)
C30.0572 (10)0.0403 (9)0.0599 (11)0.0054 (8)0.0090 (8)0.0003 (8)
C40.0437 (8)0.0358 (8)0.0483 (9)0.0003 (6)0.0127 (7)0.0003 (6)
C50.0513 (9)0.0356 (8)0.0553 (10)0.0010 (7)0.0071 (7)0.0010 (7)
C60.0604 (10)0.0399 (9)0.0581 (10)0.0047 (8)0.0120 (8)0.0070 (8)
C70.0482 (9)0.0328 (8)0.0496 (9)0.0010 (7)0.0144 (7)0.0007 (6)
C80.0463 (8)0.0328 (8)0.0474 (9)0.0017 (6)0.0126 (7)0.0028 (6)
C90.0515 (9)0.0344 (8)0.0492 (9)0.0023 (7)0.0089 (7)0.0022 (7)
C100.043 (2)0.057 (3)0.087 (5)0.016 (2)0.001 (3)0.004 (3)
C110.068 (3)0.074 (3)0.081 (3)0.027 (2)0.005 (2)0.007 (3)
C10A0.061 (5)0.139 (10)0.085 (6)0.044 (5)0.031 (4)0.056 (6)
C11A0.105 (5)0.187 (8)0.105 (4)0.088 (5)0.057 (4)0.057 (5)
Geometric parameters (Å, º) top
O1—N11.212 (2)C4—C71.494 (2)
O2—N11.210 (2)C5—C61.384 (2)
O3—C71.2215 (19)C5—H50.9300
O4—N21.3809 (18)C6—H60.9300
O4—H4O0.8200C7—C81.487 (2)
O5—C91.193 (2)C8—C91.513 (2)
O6—C91.312 (2)C10—C111.427 (10)
O6—C10A1.458 (5)C10—H10A0.9700
O6—C101.502 (6)C10—H10B0.9700
N1—C11.474 (2)C11—H11A0.9600
N2—C81.276 (2)C11—H11B0.9600
C1—C61.372 (3)C11—H11C0.9600
C1—C21.378 (3)C10A—C11A1.503 (8)
C2—C31.376 (3)C10A—H10C0.9700
C2—H20.9300C10A—H10D0.9700
C3—C41.397 (2)C11A—H11D0.9600
C3—H30.9300C11A—H11E0.9600
C4—C51.387 (2)C11A—H11F0.9600
N2—O4—H4O109.5N2—C8—C9123.39 (14)
C9—O6—C10A112.3 (3)C7—C8—C9115.87 (13)
C9—O6—C10121.3 (4)O5—C9—O6126.44 (16)
O2—N1—O1123.25 (18)O5—C9—C8123.10 (16)
O2—N1—C1118.35 (18)O6—C9—C8110.45 (14)
O1—N1—C1118.39 (19)C11—C10—O6107.2 (6)
C8—N2—O4110.88 (13)C11—C10—H10A110.3
C6—C1—C2122.63 (16)O6—C10—H10A110.3
C6—C1—N1119.02 (17)C11—C10—H10B110.3
C2—C1—N1118.35 (17)O6—C10—H10B110.3
C3—C2—C1118.33 (17)H10A—C10—H10B108.5
C3—C2—H2120.8C10—C11—H11A109.5
C1—C2—H2120.8C10—C11—H11B109.5
C2—C3—C4120.66 (17)H11A—C11—H11B109.5
C2—C3—H3119.7C10—C11—H11C109.5
C4—C3—H3119.7H11A—C11—H11C109.5
C5—C4—C3119.42 (16)H11B—C11—H11C109.5
C5—C4—C7124.40 (15)O6—C10A—C11A105.2 (4)
C3—C4—C7116.12 (15)O6—C10A—H10C110.7
C6—C5—C4120.29 (16)C11A—C10A—H10C110.7
C6—C5—H5119.9O6—C10A—H10D110.7
C4—C5—H5119.9C11A—C10A—H10D110.7
C1—C6—C5118.66 (16)H10C—C10A—H10D108.8
C1—C6—H6120.7C10A—C11A—H11D109.5
C5—C6—H6120.7C10A—C11A—H11E109.5
O3—C7—C8116.64 (14)H11D—C11A—H11E109.5
O3—C7—C4119.20 (15)C10A—C11A—H11F109.5
C8—C7—C4124.15 (14)H11D—C11A—H11F109.5
N2—C8—C7120.63 (14)H11E—C11A—H11F109.5
O2—N1—C1—C614.5 (3)O4—N2—C8—C7177.96 (13)
O1—N1—C1—C6166.2 (2)O4—N2—C8—C91.9 (2)
O2—N1—C1—C2165.6 (2)O3—C7—C8—N2165.30 (16)
O1—N1—C1—C213.7 (3)C4—C7—C8—N215.8 (2)
C6—C1—C2—C30.9 (3)O3—C7—C8—C911.0 (2)
N1—C1—C2—C3179.25 (16)C4—C7—C8—C9167.90 (14)
C1—C2—C3—C41.1 (3)C10A—O6—C9—O58.9 (3)
C2—C3—C4—C50.2 (3)C10—O6—C9—O50.4 (4)
C2—C3—C4—C7176.95 (16)C10A—O6—C9—C8170.7 (2)
C3—C4—C5—C61.0 (3)C10—O6—C9—C8179.1 (3)
C7—C4—C5—C6177.94 (15)N2—C8—C9—O591.4 (2)
C2—C1—C6—C50.3 (3)C7—C8—C9—O584.8 (2)
N1—C1—C6—C5179.55 (16)N2—C8—C9—O689.0 (2)
C4—C5—C6—C11.3 (3)C7—C8—C9—O694.77 (17)
C5—C4—C7—O3168.26 (17)C9—O6—C10—C1196.0 (7)
C3—C4—C7—O38.8 (2)C10A—O6—C10—C1153.9 (18)
C5—C4—C7—C810.7 (2)C9—O6—C10A—C11A159.5 (4)
C3—C4—C7—C8172.33 (15)C10—O6—C10A—C11A59 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4o···O3i0.821.912.7165 (16)166
C5—H5···O5i0.932.583.371 (2)144
C2—H2···O1ii0.932.553.393 (3)151
C11—H11a···O1iii0.962.523.426 (5)158
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y, z+2; (iii) x1/2, y1/2, z1.

Experimental details

Crystal data
Chemical formulaC11H10N2O6
Mr266.21
Crystal system, space groupMonoclinic, C2/c
Temperature (K)290
a, b, c (Å)23.2347 (7), 12.0698 (6), 8.9698 (4)
β (°) 106.100 (2)
V3)2416.82 (18)
Z8
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.18 × 0.15 × 0.12
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8147, 2752, 2004
Rint0.033
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.128, 1.05
No. of reflections2752
No. of parameters189
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.19

Computer programs: COLLECT (Nonius, 1999), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), WinGX (Farrugia, 1999), PARST (Nardelli, 1995) and publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4o···O3i0.821.912.7165 (16)166
C5—H5···O5i0.932.583.371 (2)144
C2—H2···O1ii0.932.553.393 (3)151
C11—H11a···O1iii0.962.523.426 (5)158
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y, z+2; (iii) x1/2, y1/2, z1.
 

Acknowledgements

We thank FAPESP, CNPq and CAPES for financial support. Publication costs were met by FAPESP (Proc. 2008/02531–5).

References

First citationAdkins, H. & Reeve, E. W. (1938). J. Am. Chem. Soc. 60, 1328–1331.  CrossRef CAS Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCorrêa, I. R. & Moran, P. J. S. (1999). Tetrahedron, 55, 14221–14232.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationForsyth, C. M., Langford, S. J. & Lee, K. A. (2006). Acta Cryst. E62, o5654–o5655.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKreutz, O. C., Moran, P. J. S. & Rodrigues, J. A. R. (1997). Tetrahedron Asymmetry, 8, 2649–2653.  CrossRef CAS Web of Science Google Scholar
First citationKreutz, O. C., Segura, R. C. M., Rodrigues, J. A. R. & Moran, P. J. S. (2000). Tetrahedron Asymmetry, 11, 2107–2115.  Web of Science CrossRef CAS Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationNonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRamos Silva, M., Matos Beja, A., Paixão, J. A., Lopes, S. H., Cabral, A. M. T. D. P. V., d'A. Rocha Gonsalves, A. M. & Sobral, A. J. F. N. (2004). Z. Kristallogr. New Cryst. Struct. 219, 145–146.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds