organic compounds
(Z)-Ethyl 2-hydroxyimino-2-(4-nitrobenzyl)ethanoate
aBioMat-Physics Department, UNESP – Univ Estadual Paulista, 17033-360 Bauru, SP, Brazil, bInstituto de Química e Biotecnologia, Universidade Federal de Alagoas, 57072-970 Maceió, AL, Brazil, cInstituto de Química, Universidade Estadual de Campinas, CP 6154, 13083-970 Campinas, SP, Brazil, dDepartment of Chemistry, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, and eDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: ignez@fc.unesp.br
The title molecule, C11H10N2O6, has a Z conformation about the C=N bond of the oxime unit. There are significant twists from planarity throughout the molecule, the most significant being between the hydroxyimino and ester groups which are effectively orthogonal with an N—C—C—Ocarbonyl torsion angle of 91.4 (2)°. The crystal packing features oxime–benzoyl O—H⋯O contacts that lead to chains along [010] and C—H⋯O interactions also occur.
Related literature
For background to the synthesis of chiral hydroxyaminoacids and hydroxyaminoalcohols, see: Corrêa & Moran (1999); Kreutz et al. (1997, 2000). For related structures, see: Ramos Silva et al. (2004); Forsyth et al. (2006). For the synthesis, see: Adkins & Reeve (1938).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: COLLECT (Nonius, 1999); cell SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: WinGX (Farrugia, 1999), PARST (Nardelli, 1995) and publCIF (Westrip, 2009).
Supporting information
10.1107/S1600536809052386/hg2614sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809052386/hg2614Isup2.hkl
The title compound, (I), was prepared following a modified literature method (Adkins and Reeve, 1938). A solution of sodium nitrite (5 mmol) and water (2 ml) was added drop-wise to a solution of ethyl 3-oxo-3-(4-nitrophenyl)propanoate (2 mmol) in glacial acetic acid (3 ml) at 273 K. The resulting solution was stirred for 1 h at 273 K. The temperature was then raised to 303 K and the reaction left for a further hour. The reaction mixture was quenched with water (2.5 ml) and treated with ether (4 x 5 ml). The organic layer was dried with Mg(SO4) and the solvent evaporated to afford a mixture of Z:E (40:60) isomers in 87% yield that were separated by dissolving in ethyl acetate and precipitating with hexane.
The O– and C-bound H atoms were geometrically placed (O–H = 0.82 Å and C–H = 0.9–0.97 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O and methyl-C).
Disorder was modelled for the ethyl group with two positions resolved for each of the C10 and C11 atoms. Fractional
(anisotropic) showed that the site occupancy factors were equal within experimental error and thus these were fixed at 0.5 in the final cycles of refinement.Data collection: COLLECT (Nonius, 1999); cell
SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: WinGX (Farrugia, 1999), PARST (Nardelli, 1995) and publCIF (Westrip, 2009).C11H10N2O6 | F(000) = 1104 |
Mr = 266.21 | Dx = 1.463 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 4194 reflections |
a = 23.2347 (7) Å | θ = 27.5–1.0° |
b = 12.0698 (6) Å | µ = 0.12 mm−1 |
c = 8.9698 (4) Å | T = 290 K |
β = 106.100 (2)° | Irregular, colourless |
V = 2416.82 (18) Å3 | 0.18 × 0.15 × 0.12 mm |
Z = 8 |
Nonius KappaCCD diffractometer | 2004 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.033 |
Graphite monochromator | θmax = 27.5°, θmin = 1.9° |
CCD rotation images, thick slices scans | h = −30→28 |
8147 measured reflections | k = −15→14 |
2752 independent reflections | l = −8→11 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.048 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.128 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0493P)2 + 1.3639P] where P = (Fo2 + 2Fc2)/3 |
2752 reflections | (Δ/σ)max < 0.001 |
189 parameters | Δρmax = 0.20 e Å−3 |
0 restraints | Δρmin = −0.19 e Å−3 |
C11H10N2O6 | V = 2416.82 (18) Å3 |
Mr = 266.21 | Z = 8 |
Monoclinic, C2/c | Mo Kα radiation |
a = 23.2347 (7) Å | µ = 0.12 mm−1 |
b = 12.0698 (6) Å | T = 290 K |
c = 8.9698 (4) Å | 0.18 × 0.15 × 0.12 mm |
β = 106.100 (2)° |
Nonius KappaCCD diffractometer | 2004 reflections with I > 2σ(I) |
8147 measured reflections | Rint = 0.033 |
2752 independent reflections |
R[F2 > 2σ(F2)] = 0.048 | 0 restraints |
wR(F2) = 0.128 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.20 e Å−3 |
2752 reflections | Δρmin = −0.19 e Å−3 |
189 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
O1 | 0.50114 (9) | 0.16899 (16) | 1.0271 (2) | 0.1080 (7) | |
O2 | 0.47793 (8) | 0.32527 (15) | 0.9163 (2) | 0.0950 (6) | |
O3 | 0.29936 (6) | −0.09600 (9) | 0.44259 (15) | 0.0585 (4) | |
O4 | 0.21512 (6) | 0.18581 (10) | 0.13275 (15) | 0.0581 (4) | |
H4O | 0.2168 | 0.2525 | 0.1169 | 0.087* | |
O5 | 0.21223 (6) | −0.07843 (11) | 0.10633 (16) | 0.0652 (4) | |
O6 | 0.15870 (6) | −0.01284 (12) | 0.25941 (16) | 0.0662 (4) | |
N1 | 0.47188 (8) | 0.22595 (16) | 0.9220 (2) | 0.0685 (5) | |
N2 | 0.26049 (6) | 0.15679 (11) | 0.26243 (16) | 0.0477 (3) | |
C1 | 0.42724 (8) | 0.17138 (15) | 0.7937 (2) | 0.0517 (4) | |
C2 | 0.42939 (8) | 0.05779 (16) | 0.7813 (2) | 0.0586 (5) | |
H2 | 0.4580 | 0.0165 | 0.8527 | 0.070* | |
C3 | 0.38815 (8) | 0.00701 (15) | 0.6605 (2) | 0.0539 (4) | |
H3 | 0.3893 | −0.0695 | 0.6489 | 0.065* | |
C4 | 0.34459 (7) | 0.06915 (13) | 0.55497 (18) | 0.0426 (4) | |
C5 | 0.34325 (8) | 0.18320 (13) | 0.5725 (2) | 0.0489 (4) | |
H5 | 0.3140 | 0.2249 | 0.5036 | 0.059* | |
C6 | 0.38527 (8) | 0.23516 (15) | 0.6919 (2) | 0.0537 (4) | |
H6 | 0.3851 | 0.3118 | 0.7030 | 0.064* | |
C7 | 0.30018 (7) | 0.00492 (13) | 0.43324 (19) | 0.0434 (4) | |
C8 | 0.25518 (7) | 0.05606 (13) | 0.29990 (18) | 0.0423 (4) | |
C9 | 0.20639 (7) | −0.02027 (13) | 0.2087 (2) | 0.0460 (4) | |
C10 | 0.1039 (4) | −0.0815 (6) | 0.1899 (9) | 0.066 (2) | 0.50 |
H10A | 0.0680 | −0.0394 | 0.1868 | 0.079* | 0.50 |
H10B | 0.1026 | −0.1031 | 0.0849 | 0.079* | 0.50 |
C11 | 0.1074 (2) | −0.1772 (4) | 0.2855 (6) | 0.0772 (13) | 0.50 |
H11A | 0.0750 | −0.2264 | 0.2390 | 0.116* | 0.50 |
H11B | 0.1048 | −0.1552 | 0.3863 | 0.116* | 0.50 |
H11C | 0.1448 | −0.2143 | 0.2954 | 0.116* | 0.50 |
C10A | 0.1143 (2) | −0.0975 (4) | 0.1926 (6) | 0.093 (5) | 0.50 |
H10C | 0.1335 | −0.1679 | 0.1858 | 0.112* | 0.50 |
H10D | 0.0907 | −0.0761 | 0.0895 | 0.112* | 0.50 |
C11A | 0.0755 (3) | −0.1055 (8) | 0.3013 (8) | 0.127 (3) | 0.50 |
H11D | 0.0423 | −0.1540 | 0.2578 | 0.190* | 0.50 |
H11E | 0.0607 | −0.0333 | 0.3162 | 0.190* | 0.50 |
H11F | 0.0986 | −0.1344 | 0.3993 | 0.190* | 0.50 |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.1132 (14) | 0.0968 (14) | 0.0788 (11) | 0.0063 (10) | −0.0320 (10) | −0.0089 (10) |
O2 | 0.1013 (13) | 0.0768 (12) | 0.0881 (12) | −0.0268 (9) | −0.0050 (9) | −0.0171 (9) |
O3 | 0.0739 (8) | 0.0300 (6) | 0.0639 (8) | −0.0020 (5) | 0.0064 (6) | 0.0004 (5) |
O4 | 0.0661 (8) | 0.0380 (6) | 0.0606 (8) | 0.0033 (6) | 0.0019 (6) | 0.0087 (6) |
O5 | 0.0750 (9) | 0.0528 (8) | 0.0690 (9) | −0.0128 (6) | 0.0219 (7) | −0.0214 (7) |
O6 | 0.0567 (8) | 0.0706 (9) | 0.0725 (9) | −0.0230 (6) | 0.0200 (7) | −0.0229 (7) |
N1 | 0.0640 (10) | 0.0740 (12) | 0.0597 (10) | −0.0055 (9) | 0.0045 (8) | −0.0137 (9) |
N2 | 0.0525 (8) | 0.0343 (7) | 0.0530 (8) | −0.0005 (6) | 0.0090 (6) | 0.0020 (6) |
C1 | 0.0474 (9) | 0.0570 (11) | 0.0489 (9) | −0.0046 (8) | 0.0102 (7) | −0.0072 (8) |
C2 | 0.0537 (10) | 0.0581 (11) | 0.0564 (11) | 0.0083 (8) | 0.0026 (8) | 0.0019 (9) |
C3 | 0.0572 (10) | 0.0403 (9) | 0.0599 (11) | 0.0054 (8) | 0.0090 (8) | 0.0003 (8) |
C4 | 0.0437 (8) | 0.0358 (8) | 0.0483 (9) | −0.0003 (6) | 0.0127 (7) | −0.0003 (6) |
C5 | 0.0513 (9) | 0.0356 (8) | 0.0553 (10) | 0.0010 (7) | 0.0071 (7) | −0.0010 (7) |
C6 | 0.0604 (10) | 0.0399 (9) | 0.0581 (10) | −0.0047 (8) | 0.0120 (8) | −0.0070 (8) |
C7 | 0.0482 (9) | 0.0328 (8) | 0.0496 (9) | −0.0010 (7) | 0.0144 (7) | −0.0007 (6) |
C8 | 0.0463 (8) | 0.0328 (8) | 0.0474 (9) | −0.0017 (6) | 0.0126 (7) | −0.0028 (6) |
C9 | 0.0515 (9) | 0.0344 (8) | 0.0492 (9) | −0.0023 (7) | 0.0089 (7) | 0.0022 (7) |
C10 | 0.043 (2) | 0.057 (3) | 0.087 (5) | −0.016 (2) | 0.001 (3) | −0.004 (3) |
C11 | 0.068 (3) | 0.074 (3) | 0.081 (3) | −0.027 (2) | 0.005 (2) | 0.007 (3) |
C10A | 0.061 (5) | 0.139 (10) | 0.085 (6) | −0.044 (5) | 0.031 (4) | −0.056 (6) |
C11A | 0.105 (5) | 0.187 (8) | 0.105 (4) | −0.088 (5) | 0.057 (4) | −0.057 (5) |
O1—N1 | 1.212 (2) | C4—C7 | 1.494 (2) |
O2—N1 | 1.210 (2) | C5—C6 | 1.384 (2) |
O3—C7 | 1.2215 (19) | C5—H5 | 0.9300 |
O4—N2 | 1.3809 (18) | C6—H6 | 0.9300 |
O4—H4O | 0.8200 | C7—C8 | 1.487 (2) |
O5—C9 | 1.193 (2) | C8—C9 | 1.513 (2) |
O6—C9 | 1.312 (2) | C10—C11 | 1.427 (10) |
O6—C10A | 1.458 (5) | C10—H10A | 0.9700 |
O6—C10 | 1.502 (6) | C10—H10B | 0.9700 |
N1—C1 | 1.474 (2) | C11—H11A | 0.9600 |
N2—C8 | 1.276 (2) | C11—H11B | 0.9600 |
C1—C6 | 1.372 (3) | C11—H11C | 0.9600 |
C1—C2 | 1.378 (3) | C10A—C11A | 1.503 (8) |
C2—C3 | 1.376 (3) | C10A—H10C | 0.9700 |
C2—H2 | 0.9300 | C10A—H10D | 0.9700 |
C3—C4 | 1.397 (2) | C11A—H11D | 0.9600 |
C3—H3 | 0.9300 | C11A—H11E | 0.9600 |
C4—C5 | 1.387 (2) | C11A—H11F | 0.9600 |
N2—O4—H4O | 109.5 | N2—C8—C9 | 123.39 (14) |
C9—O6—C10A | 112.3 (3) | C7—C8—C9 | 115.87 (13) |
C9—O6—C10 | 121.3 (4) | O5—C9—O6 | 126.44 (16) |
O2—N1—O1 | 123.25 (18) | O5—C9—C8 | 123.10 (16) |
O2—N1—C1 | 118.35 (18) | O6—C9—C8 | 110.45 (14) |
O1—N1—C1 | 118.39 (19) | C11—C10—O6 | 107.2 (6) |
C8—N2—O4 | 110.88 (13) | C11—C10—H10A | 110.3 |
C6—C1—C2 | 122.63 (16) | O6—C10—H10A | 110.3 |
C6—C1—N1 | 119.02 (17) | C11—C10—H10B | 110.3 |
C2—C1—N1 | 118.35 (17) | O6—C10—H10B | 110.3 |
C3—C2—C1 | 118.33 (17) | H10A—C10—H10B | 108.5 |
C3—C2—H2 | 120.8 | C10—C11—H11A | 109.5 |
C1—C2—H2 | 120.8 | C10—C11—H11B | 109.5 |
C2—C3—C4 | 120.66 (17) | H11A—C11—H11B | 109.5 |
C2—C3—H3 | 119.7 | C10—C11—H11C | 109.5 |
C4—C3—H3 | 119.7 | H11A—C11—H11C | 109.5 |
C5—C4—C3 | 119.42 (16) | H11B—C11—H11C | 109.5 |
C5—C4—C7 | 124.40 (15) | O6—C10A—C11A | 105.2 (4) |
C3—C4—C7 | 116.12 (15) | O6—C10A—H10C | 110.7 |
C6—C5—C4 | 120.29 (16) | C11A—C10A—H10C | 110.7 |
C6—C5—H5 | 119.9 | O6—C10A—H10D | 110.7 |
C4—C5—H5 | 119.9 | C11A—C10A—H10D | 110.7 |
C1—C6—C5 | 118.66 (16) | H10C—C10A—H10D | 108.8 |
C1—C6—H6 | 120.7 | C10A—C11A—H11D | 109.5 |
C5—C6—H6 | 120.7 | C10A—C11A—H11E | 109.5 |
O3—C7—C8 | 116.64 (14) | H11D—C11A—H11E | 109.5 |
O3—C7—C4 | 119.20 (15) | C10A—C11A—H11F | 109.5 |
C8—C7—C4 | 124.15 (14) | H11D—C11A—H11F | 109.5 |
N2—C8—C7 | 120.63 (14) | H11E—C11A—H11F | 109.5 |
O2—N1—C1—C6 | −14.5 (3) | O4—N2—C8—C7 | 177.96 (13) |
O1—N1—C1—C6 | 166.2 (2) | O4—N2—C8—C9 | 1.9 (2) |
O2—N1—C1—C2 | 165.6 (2) | O3—C7—C8—N2 | −165.30 (16) |
O1—N1—C1—C2 | −13.7 (3) | C4—C7—C8—N2 | 15.8 (2) |
C6—C1—C2—C3 | 0.9 (3) | O3—C7—C8—C9 | 11.0 (2) |
N1—C1—C2—C3 | −179.25 (16) | C4—C7—C8—C9 | −167.90 (14) |
C1—C2—C3—C4 | −1.1 (3) | C10A—O6—C9—O5 | 8.9 (3) |
C2—C3—C4—C5 | 0.2 (3) | C10—O6—C9—O5 | 0.4 (4) |
C2—C3—C4—C7 | −176.95 (16) | C10A—O6—C9—C8 | −170.7 (2) |
C3—C4—C5—C6 | 1.0 (3) | C10—O6—C9—C8 | −179.1 (3) |
C7—C4—C5—C6 | 177.94 (15) | N2—C8—C9—O5 | 91.4 (2) |
C2—C1—C6—C5 | 0.3 (3) | C7—C8—C9—O5 | −84.8 (2) |
N1—C1—C6—C5 | −179.55 (16) | N2—C8—C9—O6 | −89.0 (2) |
C4—C5—C6—C1 | −1.3 (3) | C7—C8—C9—O6 | 94.77 (17) |
C5—C4—C7—O3 | −168.26 (17) | C9—O6—C10—C11 | 96.0 (7) |
C3—C4—C7—O3 | 8.8 (2) | C10A—O6—C10—C11 | 53.9 (18) |
C5—C4—C7—C8 | 10.7 (2) | C9—O6—C10A—C11A | 159.5 (4) |
C3—C4—C7—C8 | −172.33 (15) | C10—O6—C10A—C11A | −59 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H4o···O3i | 0.82 | 1.91 | 2.7165 (16) | 166 |
C5—H5···O5i | 0.93 | 2.58 | 3.371 (2) | 144 |
C2—H2···O1ii | 0.93 | 2.55 | 3.393 (3) | 151 |
C11—H11a···O1iii | 0.96 | 2.52 | 3.426 (5) | 158 |
Symmetry codes: (i) −x+1/2, y+1/2, −z+1/2; (ii) −x+1, −y, −z+2; (iii) x−1/2, y−1/2, z−1. |
Experimental details
Crystal data | |
Chemical formula | C11H10N2O6 |
Mr | 266.21 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 290 |
a, b, c (Å) | 23.2347 (7), 12.0698 (6), 8.9698 (4) |
β (°) | 106.100 (2) |
V (Å3) | 2416.82 (18) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.12 |
Crystal size (mm) | 0.18 × 0.15 × 0.12 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8147, 2752, 2004 |
Rint | 0.033 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.048, 0.128, 1.05 |
No. of reflections | 2752 |
No. of parameters | 189 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.20, −0.19 |
Computer programs: COLLECT (Nonius, 1999), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), WinGX (Farrugia, 1999), PARST (Nardelli, 1995) and publCIF (Westrip, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H4o···O3i | 0.82 | 1.91 | 2.7165 (16) | 166 |
C5—H5···O5i | 0.93 | 2.58 | 3.371 (2) | 144 |
C2—H2···O1ii | 0.93 | 2.55 | 3.393 (3) | 151 |
C11—H11a···O1iii | 0.96 | 2.52 | 3.426 (5) | 158 |
Symmetry codes: (i) −x+1/2, y+1/2, −z+1/2; (ii) −x+1, −y, −z+2; (iii) x−1/2, y−1/2, z−1. |
Acknowledgements
We thank FAPESP, CNPq and CAPES for financial support. Publication costs were met by FAPESP (Proc. 2008/02531–5).
References
Adkins, H. & Reeve, E. W. (1938). J. Am. Chem. Soc. 60, 1328–1331. CrossRef CAS Google Scholar
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Corrêa, I. R. & Moran, P. J. S. (1999). Tetrahedron, 55, 14221–14232. Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Forsyth, C. M., Langford, S. J. & Lee, K. A. (2006). Acta Cryst. E62, o5654–o5655. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kreutz, O. C., Moran, P. J. S. & Rodrigues, J. A. R. (1997). Tetrahedron Asymmetry, 8, 2649–2653. CrossRef CAS Web of Science Google Scholar
Kreutz, O. C., Segura, R. C. M., Rodrigues, J. A. R. & Moran, P. J. S. (2000). Tetrahedron Asymmetry, 11, 2107–2115. Web of Science CrossRef CAS Google Scholar
Nardelli, M. (1995). J. Appl. Cryst. 28, 659. CrossRef IUCr Journals Google Scholar
Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Ramos Silva, M., Matos Beja, A., Paixão, J. A., Lopes, S. H., Cabral, A. M. T. D. P. V., d'A. Rocha Gonsalves, A. M. & Sobral, A. J. F. N. (2004). Z. Kristallogr. New Cryst. Struct. 219, 145–146. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2009). publCIF. In preparation. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title compound (I) was prepared as an intermediary during the synthesis of chiral hydroxyaminoacids and hydroxyaminoalcohols, as α-ketomethoxyimino compounds are reduced by sodium borohydride (Corrêa & Moran, 1999) and enantioselectively bio-reduced by whole cells of yeast (Kreutz et al., 1997; Kreutz et al., 2000).
The structure of (I) is non-planar as seen by the values of the C3–C4–C7–O3 and C4–C7–C8–N2 torsion angles within the central moiety of 8.8 (2) and 15.8 (2) °, respectively. The peripheral residues are twisted with respect to the inner atoms. Thus, the nitro ring is twisted out of the plane of the benzene ring to which it is connected: the C2–C1–N1–O1 torsion angle is -13.7 (3) °. Even more dramatic is the twist about the C8—C9 bond with the C7–C8–C9–O6 torsion angle being 94.77 (17)°, indicating the terminal ester group is orthogonal to the hydroxyimino residue. With respect to the C8═N2 bond, the conformation is Z. There are two other structures in the literature containing the basic C(═O)C(═NOH)C(═O)OC framework. In benzyl 2-(hydroxyimino)acetoacetate a Z conformation is found for the oxime group (Forsyth et al., 2006) whereas in each of the two independent molecules comprising the asymmetric unit in ethyl 2-(hydroxyimino)-3-oxo-3-phenylpropionate, an E conformation is found (Ramos Silva et al., 2004).
The crystal packing of (I) is dominated by O—H···O hydrogen bonding involving the oxime-O4—H and benzoyl-O3 atoms which leads to the formation of supramolecular chains along [0 1 0] with a flat topology, Fig. 2 and Table 1. The presence of C–H···O contacts provide stability to the chain. These C5–H···O5 contacts close 13-membered {···OC3O···HC4NOH} synthons, Fig. 3 and Table 1. The chains are linked into 2-D arrays in the [3 0 1] plane by further C–H···O contacts involving the nitro groups and centrosymmetric 10-membered {···ONC2H}2 synthons, Fig. 3 and Table 1. The resultant layer is essentially flat with the ethoxy groups lying above and below the layer. The methyl-H atoms of one of the disordered ethoxy groups form C–H···O contacts with the nitro-O1 atoms providing stability to the stacked layers, Fig. 4 and Table 1.