organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 1| January 2010| Pages o64-o65

1,12-Bis(2-carb­oxy­phen­yl)-5,8-dioxa-2,11-di­aza­do­decane-2,11-diium dichloride methanol solvate

aDepartment of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249-0698, USA, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: Edward.Tiekink@gmail.com

(Received 1 December 2009; accepted 2 December 2009; online 4 December 2009)

In the title salt hydrate, C22H30N2O62+·2Cl·CH4O, the dication adopts a U-shaped conformation whereby the benzene rings are splayed out from the chain linking them. All components of the asymmetric unit are linked into a cohesive entity by a combination of O—H⋯Cl, N+—H⋯Cl and N+—H⋯O charge-assisted hydrogen-bonding inter­actions. The assemblies thus formed are linked into supra­molecular helical chains along [010] via C—H⋯O contacts. The resulting chains are, in turn, consolidated into the three-dimensional crystal structure by C—H⋯π contacts.

Related literature

For related literature on dinucleating ligands, see: Fenton & Okawa (1997[Fenton, D. E. & Okawa, H. (1997). Chem. Ber. 130, 433-442.]); Uhlenbrock & Krebs (1992[Uhlenbrock, S. & Krebs, B. (1992). Angew. Chem. Int. Ed. Engl. 31, 1647-1648.]); Ghiladi et al. (1997[Ghiladi, M., McKenzie, C. J., Meier, A., Powell, A. K., Ulstrup, J. & Wocadlo, S. (1997). J. Chem. Soc. Dalton Trans. pp. 4011-4018.]); Koga et al. (1998[Koga, T., Furutachi, H., Nakamura, T., Fukita, N., Ohba, M., Takahashi, K. & Okawa, H. (1998). Inorg. Chem. 37, 989-996.]); Kitagawa et al. (2004[Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334-2375.]); Bradshaw et al. (2005[Bradshaw, D., Claridge, J. B., Cussen, E. J., Prior, T. J. & Rosseinsky, M. J. (2005). Acc. Chem. Res. 38, 273-282.]).

[Scheme 1]

Experimental

Crystal data
  • C22H30N2O62+·2Cl·CH4O

  • Mr = 521.42

  • Monoclinic, P 21 /c

  • a = 11.567 (3) Å

  • b = 11.352 (2) Å

  • c = 20.052 (5) Å

  • β = 102.760 (6)°

  • V = 2568.0 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 93 K

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Rigaku AFC12κ/SATURN724 diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.824, Tmax = 1.000

  • 66801 measured reflections

  • 5874 independent reflections

  • 5598 reflections with I > 2σ(I)

  • Rint = 0.050

  • Standard reflections: 0

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.094

  • S = 1.05

  • 5874 reflections

  • 316 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2O⋯Cl1 0.84 2.20 3.0316 (13) 170
O6—H6O⋯Cl2 0.84 2.12 2.9602 (13) 177
O7—H7O⋯Cl1 0.84 2.32 3.1586 (19) 174
N1—H1A⋯O1 0.92 2.05 2.7729 (16) 135
N1—H1A⋯O3 0.92 2.25 2.6809 (16) 108
N1—H1B⋯Cl2 0.92 2.27 3.1110 (13) 151
N2—H2A⋯O4 0.92 2.32 2.7245 (16) 106
N2—H2A⋯O5 0.92 2.04 2.7678 (16) 135
N2—H2B⋯Cl1 0.92 2.25 3.1157 (13) 156
C14—H14B⋯O7i 0.99 2.46 3.273 (2) 139
C8—H8BCgii 0.99 2.88 3.6364 (16) 134
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1. Cg is the centroid of the C16–C21 ring.

Data collection: CrystalClear (Rigaku/MSC 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

Since the concept of dinucleating ligands was developed (e.g. Fenton & Okawa, 1997; Uhlenbrock & Krebs, 1992; Koga et al., 1998), various dinucleating ligands that stabilize dinuclear metal complexes have been reported in the literature (e.g. Ghiladi et al., 1997; Kitagawa et al. 2004). Such ligands have also attracted attention in supramolecular and materials chemistry owing to their variety of structural topologies and potential applications in the rational design of metal-organic frameworks (Bradshaw et al., 2005). Motivated by the above, the title compound, (I), was prepared as part of a on-going study aimed at developing this chemistry.

The crystallographic asymmetric unit of (I) comprises a 1,12-bis(2-carboxyphenyl)-5,8-dioxa-2,11-diazadodecane-2,11-diium dianion, two chloride anions, and a methanol molecule of solvation, Fig. 1. The central atoms, i.e. O3, O4, N1, N2 and C9–C14, define an approximate plane (r.m.s. for the fitted atoms = 0.239 Å), even allowing for the fact that the plane comprises only sp3 atoms. The C8 and C15 atoms lie 0.5197 (17) and 0.3720 (17) Å to either side of this plane, indicating that the benzene rings also lie above and below the central plane. The orientations of the benzene rings are orthogonal to the central plane which forms dihedral angles with the C2–C7 and C16–C21 benzene rings of 89.20 (4) and 86.67 (4) °, respectively. The benzene rings have similar orientations with respect to the central plane and form a dihedral angle of 20.17 (3) ° to each other. Overall, the conformation of the molecule is U-shaped with the benzene rings splayed out to either side as illustrated in Fig. 2.

As indicated in Figs 1 and 2, there are a large number of hydrogen bonding interactions in the structure, and these occur between species comprising the asymmetric unit, Table 1. Each of the carboxylic acid groups as well as the hydroxyl group of the solvent molecule forms a charge-assisted O–H···Cl- hydrogen bond, Fig. 1. The ammonium groups behave similarly to each other in terms of forming hydrogen bonding interactions. The N1—H1a atom forms disparate N+–H···O hydrogen bonds with two carbonyl-O atoms, Fig. 2, and the H1b atom forms a charge-assisted N+–H···Cl- hydrogen bond, Fig. 1. In the case of N1–H1b, the shorter N+–H···O interaction is formed with the carbonyl-O5 atom and the weaker contact is made with the ester-O4 atom, Fig. 2. The hydrogen bonding thus far described provides stability to the asymmetric unit.

The most prominent interactions linking the asymmetric units are of the type C–H···O, Table 1. These involve the solvent methanol molecule which in turn is connected to both the Cl1 anion and the carboxylic acid-O2 atom of a second cation. In this fashion a supramolecular helical chain is formed along [0 1 0], Fig. 3. Fig. 3 clearly illustrates the differences between the chlorides in that the Cl1- anion forms three significant hydrogen bonding contacts and the Cl2- atom only forms two. The supramolecular chains are consolidated into the crystal structure via C–H···π interactions, Fig. 4 and Table 1. These occur between methylene-C8–H8b and the ring centroid, Cg, of the C16–C21 ring so that H8b···Cgi = 2.88 Å, C8···Cgi = 3.6364 (16) Å with an angle of 134 ° subtended at the H8b atom, for symmetry operation i: 1 - x, 1 - y, 1 - z.

Related literature top

For related literature on dinucleating ligands, see: Fenton & Okawa (1997); Uhlenbrock & Krebs (1992); Ghiladi et al. (1997); Koga et al. (1998); Kitagawa et al. (2004); Bradshaw et al. (2005). Cg is the centroid of the C16–C21 ring.

Experimental top

In a 200 ml round bottom flask, 2-carboxybenzaldehyde (4.0424 g, 0.027 mol) was dissolved in methanol (30 ml). While stirring at 308 K, sodium hydroxide (1.0754 g, 0.027 mol) was added. In a separate flask, 2,2'-(ethylenedioxy)bis(ethylamine) (NOON) (1.951 ml, 1.98 g, 0.013 mol) was dissolved in methanol (10 ml). The NOON solution was added drop-wise into the original solution using a pipette. The reaction was left to react for 2.5 h. NaBH4 (2.4296 g, 0.0643 mol) was then added to the flask in small portions. The resultant mixture was heated and stirred for another 2.5 h. It was then cooled in an ice bath and filtered to remove any solid. To the filtrate, concentrated HCl was added drop wise until the pH was about 2–3. A white precipitate was formed and filtered using gravity filtration. The white product was washed with acetone three times to remove any impurity and was dried. 1H NMR (D2O): δ 8.17 (s, 1H, aldamine-H), 7.75 (d, 2H, Ar—H), 7.60 (d, 2H, Ar—H), 7.41 (t, 2H, Ar—H), 7.36 (t, 2H, Ar—H), 3.87 (t, 2H, al-H), 3.75 (s, 2H, al-H), 3.45 (t, 2H, al-H) p.p.m.

Single crystals were obtained by slow evaporation of an acidic (1M HCl) aqueous solution of (I).

Refinement top

The N- and C-bound H atoms were geometrically placed (N—H = 0.92 Å and C—H = 0.95–0.99 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C). The O—H hydrogen atoms were located from a difference map and refined with O—H = 0.84 (1) Å, and with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the asymmetric unit in (I), showing atom-labelling scheme and displacement ellipsoids at the 50% probability level. The O–H···Cl- and N+–H···Cl- interactions are shown as orange and blue dashed lines, respectively.
[Figure 2] Fig. 2. A view of the dication in (I) highlighting the U-shaped geometry and the N+–H···O hydrogen bonds (blue dashed lines). Color code: Cl, cyan; O, red; N, blue; C, grey; and H, green.
[Figure 3] Fig. 3. The supramolecular chains in (I) aligned along [0 1 0]. The O–H···Cl- and N+–H···Cl- hydrogen bonds are shown as orange and blue dashed lines, respectively. The C–H···O contacts are shown as pink dashed lines. Color code: Cl, cyan; O, red; N, blue; C, grey; and H, green.
[Figure 4] Fig. 4. A view in projection down the b axis in (I) highlighting the connections between supramolecular chains along [0 1 0]. The C–H···π interactions are represented by purple dashed lines. Color code: Cl, cyan; O, red; N, blue; C, grey; and H, green.
1,12-Bis(2-carboxyphenyl)-5,8-dioxa-2,11-diazadodecane-2,11-diium dichloride methanol solvate top
Crystal data top
C22H30N2O62+·2Cl·CH4OF(000) = 1104
Mr = 521.42Dx = 1.349 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 10052 reflections
a = 11.567 (3) Åθ = 2.3–27.5°
b = 11.352 (2) ŵ = 0.30 mm1
c = 20.052 (5) ÅT = 93 K
β = 102.760 (6)°Needle, pale-yellow
V = 2568.0 (10) Å30.40 × 0.30 × 0.20 mm
Z = 4
Data collection top
Rigaku AFC12κ/SATURN724
diffractometer
5874 independent reflections
Radiation source: fine-focus sealed tube5598 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
ω scansθmax = 27.6°, θmin = 2.4°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1515
Tmin = 0.824, Tmax = 1.000k = 1414
66801 measured reflectionsl = 2523
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0485P)2 + 1.3403P]
where P = (Fo2 + 2Fc2)/3
5874 reflections(Δ/σ)max = 0.001
316 parametersΔρmax = 0.51 e Å3
3 restraintsΔρmin = 0.34 e Å3
Crystal data top
C22H30N2O62+·2Cl·CH4OV = 2568.0 (10) Å3
Mr = 521.42Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.567 (3) ŵ = 0.30 mm1
b = 11.352 (2) ÅT = 93 K
c = 20.052 (5) Å0.40 × 0.30 × 0.20 mm
β = 102.760 (6)°
Data collection top
Rigaku AFC12κ/SATURN724
diffractometer
5874 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
5598 reflections with I > 2σ(I)
Tmin = 0.824, Tmax = 1.000Rint = 0.050
66801 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0363 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 1.05Δρmax = 0.51 e Å3
5874 reflectionsΔρmin = 0.34 e Å3
316 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.17035 (3)0.90851 (3)0.294477 (16)0.02137 (9)
Cl20.38918 (3)0.44293 (3)0.645104 (15)0.01982 (9)
O10.28564 (9)0.80955 (8)0.46826 (5)0.0219 (2)
O20.31089 (9)0.99194 (8)0.43228 (5)0.0226 (2)
H2O0.27880.96260.39420.034*
O30.06032 (8)0.70435 (9)0.54842 (5)0.0203 (2)
O40.00828 (8)0.63200 (8)0.41190 (5)0.01964 (19)
O50.29306 (9)0.53733 (8)0.47333 (5)0.0206 (2)
O60.37621 (9)0.36208 (8)0.50329 (5)0.0218 (2)
H6O0.37930.38780.54290.033*
O70.03491 (14)1.03638 (17)0.34730 (7)0.0617 (5)
H7O0.016041.00200.33020.093*
N10.29662 (9)0.68943 (9)0.58991 (5)0.0149 (2)
H1A0.25440.70800.54670.018*
H1B0.30510.60880.59190.018*
N20.18404 (9)0.65500 (9)0.35526 (5)0.0161 (2)
H2A0.18710.63870.40060.019*
H2B0.18450.73560.35070.019*
C10.32087 (11)0.91027 (11)0.48045 (6)0.0168 (2)
C20.37852 (11)0.95398 (11)0.55001 (6)0.0160 (2)
C30.39169 (12)1.07574 (11)0.56072 (7)0.0197 (3)
H30.36321.12810.52380.024*
C40.44551 (12)1.12139 (12)0.62416 (7)0.0212 (3)
H40.45381.20410.63060.025*
C50.48703 (11)1.04508 (12)0.67811 (7)0.0188 (3)
H50.52491.07540.72160.023*
C60.47325 (11)0.92430 (11)0.66853 (6)0.0169 (2)
H60.50100.87300.70610.020*
C70.41960 (10)0.87617 (11)0.60510 (6)0.0149 (2)
C80.41731 (10)0.74319 (11)0.59949 (7)0.0161 (2)
H8A0.45190.72010.56040.019*
H8B0.46840.71000.64150.019*
C90.22530 (11)0.72536 (11)0.63977 (6)0.0180 (2)
H9A0.21900.81230.64090.022*
H9B0.26400.69770.68620.022*
C100.10344 (12)0.67130 (12)0.61791 (7)0.0205 (3)
H10A0.10810.58450.62230.025*
H10B0.05040.70140.64660.025*
C110.05474 (11)0.65894 (13)0.52063 (7)0.0223 (3)
H11A0.11270.69330.54480.027*
H11B0.05500.57230.52640.027*
C120.08839 (11)0.68984 (13)0.44601 (7)0.0222 (3)
H12A0.17060.66410.42640.027*
H12B0.08400.77620.44010.027*
C130.03062 (11)0.66044 (12)0.34123 (7)0.0196 (3)
H13A0.03400.74690.33490.023*
H13B0.10720.62640.31700.023*
C140.06982 (11)0.60919 (12)0.31388 (7)0.0191 (3)
H14A0.06840.52220.31670.023*
H14B0.06130.63170.26530.023*
C150.29383 (11)0.60681 (11)0.33720 (7)0.0179 (2)
H15A0.36360.62960.37310.022*
H15B0.30300.64220.29360.022*
C160.29048 (10)0.47434 (11)0.33022 (6)0.0155 (2)
C170.30167 (10)0.39592 (11)0.38574 (6)0.0154 (2)
C180.29275 (11)0.27445 (11)0.37379 (7)0.0175 (2)
H180.29870.22200.41130.021*
C190.27540 (11)0.22952 (11)0.30795 (7)0.0190 (3)
H190.26710.14710.30030.023*
C200.27025 (11)0.30619 (12)0.25346 (7)0.0196 (3)
H200.26290.27610.20850.023*
C210.27589 (11)0.42735 (12)0.26475 (7)0.0185 (3)
H210.26960.47910.22690.022*
C220.32280 (10)0.43990 (11)0.45765 (6)0.0160 (2)
C230.00444 (18)1.02239 (16)0.41719 (9)0.0399 (4)
H23A0.06921.07780.43420.060*
H23B0.03300.94160.42710.060*
H23C0.06101.03780.43980.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.03162 (17)0.01666 (15)0.01446 (16)0.00054 (11)0.00213 (12)0.00079 (11)
Cl20.02616 (16)0.01604 (15)0.01504 (16)0.00147 (11)0.00022 (11)0.00010 (10)
O10.0312 (5)0.0167 (4)0.0155 (5)0.0051 (4)0.0004 (4)0.0002 (3)
O20.0343 (5)0.0167 (4)0.0139 (5)0.0046 (4)0.0007 (4)0.0016 (3)
O30.0168 (4)0.0256 (5)0.0181 (5)0.0050 (4)0.0034 (3)0.0004 (4)
O40.0181 (4)0.0231 (5)0.0173 (5)0.0043 (4)0.0031 (3)0.0009 (4)
O50.0274 (5)0.0173 (4)0.0162 (5)0.0042 (4)0.0025 (4)0.0016 (3)
O60.0302 (5)0.0199 (5)0.0140 (5)0.0071 (4)0.0017 (4)0.0008 (4)
O70.0603 (9)0.0978 (12)0.0255 (7)0.0453 (9)0.0063 (6)0.0057 (7)
N10.0172 (5)0.0135 (5)0.0141 (5)0.0007 (4)0.0032 (4)0.0008 (4)
N20.0188 (5)0.0144 (5)0.0143 (5)0.0003 (4)0.0020 (4)0.0008 (4)
C10.0175 (6)0.0169 (6)0.0158 (6)0.0002 (4)0.0031 (5)0.0012 (5)
C20.0162 (5)0.0164 (6)0.0148 (6)0.0006 (4)0.0024 (4)0.0007 (4)
C30.0234 (6)0.0162 (6)0.0186 (7)0.0003 (5)0.0024 (5)0.0015 (5)
C40.0252 (6)0.0156 (6)0.0227 (7)0.0014 (5)0.0048 (5)0.0034 (5)
C50.0188 (6)0.0210 (6)0.0162 (6)0.0015 (5)0.0030 (5)0.0047 (5)
C60.0152 (5)0.0206 (6)0.0146 (6)0.0010 (4)0.0025 (4)0.0001 (5)
C70.0138 (5)0.0151 (5)0.0161 (6)0.0001 (4)0.0038 (4)0.0009 (4)
C80.0149 (5)0.0144 (5)0.0183 (6)0.0006 (4)0.0026 (4)0.0008 (4)
C90.0208 (6)0.0199 (6)0.0142 (6)0.0021 (5)0.0057 (5)0.0023 (5)
C100.0224 (6)0.0230 (6)0.0169 (7)0.0047 (5)0.0056 (5)0.0007 (5)
C110.0159 (6)0.0287 (7)0.0233 (7)0.0039 (5)0.0066 (5)0.0048 (5)
C120.0155 (6)0.0271 (7)0.0237 (7)0.0014 (5)0.0041 (5)0.0045 (5)
C130.0195 (6)0.0198 (6)0.0173 (7)0.0018 (5)0.0004 (5)0.0009 (5)
C140.0200 (6)0.0203 (6)0.0153 (6)0.0011 (5)0.0002 (5)0.0007 (5)
C150.0190 (6)0.0160 (6)0.0200 (7)0.0010 (4)0.0068 (5)0.0008 (5)
C160.0143 (5)0.0160 (6)0.0170 (6)0.0004 (4)0.0051 (4)0.0004 (4)
C170.0131 (5)0.0165 (6)0.0165 (6)0.0002 (4)0.0032 (4)0.0011 (5)
C180.0160 (5)0.0158 (6)0.0206 (7)0.0005 (4)0.0039 (5)0.0006 (5)
C190.0156 (5)0.0164 (6)0.0245 (7)0.0010 (4)0.0036 (5)0.0040 (5)
C200.0180 (6)0.0236 (6)0.0173 (6)0.0027 (5)0.0042 (5)0.0059 (5)
C210.0188 (6)0.0208 (6)0.0166 (6)0.0017 (5)0.0054 (5)0.0007 (5)
C220.0144 (5)0.0165 (6)0.0169 (6)0.0001 (4)0.0030 (4)0.0001 (4)
C230.0546 (11)0.0366 (9)0.0302 (9)0.0102 (8)0.0130 (8)0.0026 (7)
Geometric parameters (Å, º) top
O1—C11.2203 (16)C8—H8B0.9900
O2—C11.3254 (15)C9—C101.5108 (18)
O2—H2O0.8401C9—H9A0.9900
O3—C111.4212 (16)C9—H9B0.9900
O3—C101.4227 (17)C10—H10A0.9900
O4—C131.4203 (16)C10—H10B0.9900
O4—C121.4275 (16)C11—C121.502 (2)
O5—C221.2200 (16)C11—H11A0.9900
O6—C221.3228 (15)C11—H11B0.9900
O6—H6O0.8402C12—H12A0.9900
O7—C231.384 (2)C12—H12B0.9900
O7—H7O0.8401C13—C141.5068 (18)
N1—C91.4869 (16)C13—H13A0.9900
N1—C81.4965 (15)C13—H13B0.9900
N1—H1A0.9200C14—H14A0.9900
N1—H1B0.9200C14—H14B0.9900
N2—C141.4901 (16)C15—C161.5100 (17)
N2—C151.4987 (16)C15—H15A0.9900
N2—H2A0.9200C15—H15B0.9900
N2—H2B0.9200C16—C211.3924 (18)
C1—C21.4918 (17)C16—C171.4090 (17)
C2—C31.4021 (17)C17—C181.3996 (17)
C2—C71.4122 (17)C17—C221.4941 (18)
C3—C41.3872 (19)C18—C191.3880 (19)
C3—H30.9500C18—H180.9500
C4—C51.3864 (19)C19—C201.3880 (19)
C4—H40.9500C19—H190.9500
C5—C61.3889 (18)C20—C211.3931 (18)
C5—H50.9500C20—H200.9500
C6—C71.3975 (18)C21—H210.9500
C6—H60.9500C23—H23A0.9800
C7—C81.5136 (17)C23—H23B0.9800
C8—H8A0.9900C23—H23C0.9800
C1—O2—H2O109.5O3—C11—H11A110.0
C11—O3—C10112.56 (10)C12—C11—H11A110.0
C13—O4—C12112.29 (10)O3—C11—H11B110.0
C22—O6—H6O109.7C12—C11—H11B110.0
C23—O7—H7O104.8H11A—C11—H11B108.3
C9—N1—C8116.24 (10)O4—C12—C11108.49 (11)
C9—N1—H1A108.2O4—C12—H12A110.0
C8—N1—H1A108.2C11—C12—H12A110.0
C9—N1—H1B108.2O4—C12—H12B110.0
C8—N1—H1B108.2C11—C12—H12B110.0
H1A—N1—H1B107.4H12A—C12—H12B108.4
C14—N2—C15115.62 (10)O4—C13—C14106.89 (10)
C14—N2—H2A108.4O4—C13—H13A110.3
C15—N2—H2A108.4C14—C13—H13A110.3
C14—N2—H2B108.4O4—C13—H13B110.3
C15—N2—H2B108.4C14—C13—H13B110.3
H2A—N2—H2B107.4H13A—C13—H13B108.6
O1—C1—O2122.54 (12)N2—C14—C13108.82 (10)
O1—C1—C2124.02 (11)N2—C14—H14A109.9
O2—C1—C2113.44 (11)C13—C14—H14A109.9
C3—C2—C7119.37 (12)N2—C14—H14B109.9
C3—C2—C1118.83 (11)C13—C14—H14B109.9
C7—C2—C1121.80 (11)H14A—C14—H14B108.3
C4—C3—C2121.36 (12)N2—C15—C16112.35 (10)
C4—C3—H3119.3N2—C15—H15A109.1
C2—C3—H3119.3C16—C15—H15A109.1
C5—C4—C3119.35 (12)N2—C15—H15B109.1
C5—C4—H4120.3C16—C15—H15B109.1
C3—C4—H4120.3H15A—C15—H15B107.9
C4—C5—C6119.97 (12)C21—C16—C17118.28 (11)
C4—C5—H5120.0C21—C16—C15117.67 (11)
C6—C5—H5120.0C17—C16—C15124.05 (11)
C5—C6—C7121.75 (12)C18—C17—C16119.79 (12)
C5—C6—H6119.1C18—C17—C22118.99 (11)
C7—C6—H6119.1C16—C17—C22121.22 (11)
C6—C7—C2118.20 (11)C19—C18—C17120.98 (12)
C6—C7—C8117.04 (11)C19—C18—H18119.5
C2—C7—C8124.64 (11)C17—C18—H18119.5
N1—C8—C7114.63 (10)C20—C19—C18119.37 (12)
N1—C8—H8A108.6C20—C19—H19120.3
C7—C8—H8A108.6C18—C19—H19120.3
N1—C8—H8B108.6C19—C20—C21119.93 (12)
C7—C8—H8B108.6C19—C20—H20120.0
H8A—C8—H8B107.6C21—C20—H20120.0
N1—C9—C10108.30 (10)C16—C21—C20121.54 (12)
N1—C9—H9A110.0C16—C21—H21119.2
C10—C9—H9A110.0C20—C21—H21119.2
N1—C9—H9B110.0O5—C22—O6122.85 (12)
C10—C9—H9B110.0O5—C22—C17123.80 (11)
H9A—C9—H9B108.4O6—C22—C17113.35 (11)
O3—C10—C9106.25 (10)O7—C23—H23A109.5
O3—C10—H10A110.5O7—C23—H23B109.5
C9—C10—H10A110.5H23A—C23—H23B109.5
O3—C10—H10B110.5O7—C23—H23C109.5
C9—C10—H10B110.5H23A—C23—H23C109.5
H10A—C10—H10B108.7H23B—C23—H23C109.5
O3—C11—C12108.67 (11)
O1—C1—C2—C3166.11 (13)O3—C11—C12—O463.74 (14)
O2—C1—C2—C313.74 (17)C12—O4—C13—C14171.72 (10)
O1—C1—C2—C713.7 (2)C15—N2—C14—C13176.57 (10)
O2—C1—C2—C7166.45 (11)O4—C13—C14—N255.46 (13)
C7—C2—C3—C40.7 (2)C14—N2—C15—C1647.35 (15)
C1—C2—C3—C4179.44 (12)N2—C15—C16—C21108.39 (13)
C2—C3—C4—C50.1 (2)N2—C15—C16—C1771.88 (15)
C3—C4—C5—C60.8 (2)C21—C16—C17—C182.78 (17)
C4—C5—C6—C70.94 (19)C15—C16—C17—C18177.49 (11)
C5—C6—C7—C20.25 (18)C21—C16—C17—C22177.33 (11)
C5—C6—C7—C8175.76 (11)C15—C16—C17—C222.41 (18)
C3—C2—C7—C60.58 (18)C16—C17—C18—C191.33 (18)
C1—C2—C7—C6179.61 (11)C22—C17—C18—C19178.77 (11)
C3—C2—C7—C8176.27 (12)C17—C18—C19—C201.87 (18)
C1—C2—C7—C83.93 (19)C18—C19—C20—C213.56 (18)
C9—N1—C8—C751.76 (14)C17—C16—C21—C201.10 (18)
C6—C7—C8—N1111.81 (12)C15—C16—C21—C20179.15 (11)
C2—C7—C8—N172.46 (15)C19—C20—C21—C162.09 (19)
C8—N1—C9—C10174.80 (10)C18—C17—C22—O5154.04 (12)
C11—O3—C10—C9179.84 (10)C16—C17—C22—O525.86 (18)
N1—C9—C10—O353.07 (13)C18—C17—C22—O625.28 (16)
C10—O3—C11—C12175.41 (11)C16—C17—C22—O6154.82 (11)
C13—O4—C12—C11177.50 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···Cl10.842.203.0316 (13)170
O6—H6O···Cl20.842.122.9602 (13)177
O7—H7O···Cl10.842.323.1586 (19)174
N1—H1A···O10.922.052.7729 (16)135
N1—H1A···O30.922.252.6809 (16)108
N1—H1B···Cl20.922.273.1110 (13)151
N2—H2A···O40.922.322.7245 (16)106
N2—H2A···O50.922.042.7678 (16)135
N2—H2B···Cl10.922.253.1157 (13)156
C14—H14B···O7i0.992.463.273 (2)139
C8—H8B···Cgii0.992.883.6364 (16)134
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC22H30N2O62+·2Cl·CH4O
Mr521.42
Crystal system, space groupMonoclinic, P21/c
Temperature (K)93
a, b, c (Å)11.567 (3), 11.352 (2), 20.052 (5)
β (°) 102.760 (6)
V3)2568.0 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerRigaku AFC12κ/SATURN724
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.824, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
66801, 5874, 5598
Rint0.050
(sin θ/λ)max1)0.652
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.094, 1.05
No. of reflections5874
No. of parameters316
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.34

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···Cl10.842.203.0316 (13)170
O6—H6O···Cl20.842.122.9602 (13)177
O7—H7O···Cl10.842.323.1586 (19)174
N1—H1A···O10.922.052.7729 (16)135
N1—H1A···O30.922.252.6809 (16)108
N1—H1B···Cl20.922.273.1110 (13)151
N2—H2A···O40.922.322.7245 (16)106
N2—H2A···O50.922.042.7678 (16)135
N2—H2B···Cl10.922.253.1157 (13)156
C14—H14B···O7i0.992.463.273 (2)139
C8—H8B···Cgii0.992.883.6364 (16)134
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1, y+1, z+1.
 

Footnotes

Additional correspondence author, e-mail: Ghezai.Musie@utsa.edu.

References

First citationBradshaw, D., Claridge, J. B., Cussen, E. J., Prior, T. J. & Rosseinsky, M. J. (2005). Acc. Chem. Res. 38, 273–282.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFenton, D. E. & Okawa, H. (1997). Chem. Ber. 130, 433–442.  CrossRef CAS Web of Science Google Scholar
First citationGhiladi, M., McKenzie, C. J., Meier, A., Powell, A. K., Ulstrup, J. & Wocadlo, S. (1997). J. Chem. Soc. Dalton Trans. pp. 4011–4018.  CSD CrossRef Web of Science Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334–2375.  Web of Science CrossRef CAS Google Scholar
First citationKoga, T., Furutachi, H., Nakamura, T., Fukita, N., Ohba, M., Takahashi, K. & Okawa, H. (1998). Inorg. Chem. 37, 989–996.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUhlenbrock, S. & Krebs, B. (1992). Angew. Chem. Int. Ed. Engl. 31, 1647–1648.  CSD CrossRef Web of Science Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 1| January 2010| Pages o64-o65
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds