organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(6-Benzoyl-2-oxo-1,3-benzo­thia­zol-3-yl)acetic acid

aDepartment of Science Education, Faculty of Education, Kastamonu University, 37200 Kastamonu, Turkey, bDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, cDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey, and dDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey
*Correspondence e-mail: aaydin@kastamonu.edu.tr

(Received 7 December 2009; accepted 10 December 2009; online 16 December 2009)

In the title compound, C16H11NO4S, the nine-membered fused ring is nearly planar, with maximum deviations from the mean plane of −0.022 (1) Å for the N atom and 0.011 (1) Å for the S atom, and makes a dihedral angle of 53.56 (7)° with the phenyl ring. The crystal structure is stabilized by O—H⋯O and C—H⋯O hydrogen-bonding inter­actions.

Related literature

For the pharmacological effects of 2-benzoxazolinone/benzothia­zolinone derivatives, see: Ünlü et al. (2003[Ünlü, S., Önkol, T., Dündar, Y., Ökçelik, B., Küpeli, E., Yeşilada, E., Noyanalpan, N. & Şahin, M. F. (2003). Arch. Pharm. Pharm. Med. Chem. 336, 353-361.]); Petrov et al. (1994[Petrov, O. I., Antonova, A. Ts., Kalcheva, V. B. & Veleva, Ch. G. (1994). Dokl. Bulg. Akad. Nauk, 47, 31-34.]). For the quantum-chemical calculations, see: Pople & Beveridge (1970[Pople, J. A. & Beveridge, D. L. (1970). In Approximate Molecular Orbital Theory. New York: McGraw-Hill.]).

[Scheme 1]

Experimental

Crystal data
  • C16H11NO4S

  • Mr = 313.33

  • Orthorhombic, P b c a

  • a = 11.4248 (3) Å

  • b = 8.9155 (2) Å

  • c = 27.6280 (8) Å

  • V = 2814.13 (13) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 296 K

  • 0.59 × 0.38 × 0.17 mm

Data collection
  • Stoe IPDS 2 diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.868, Tmax = 0.959

  • 31503 measured reflections

  • 3006 independent reflections

  • 2363 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.084

  • S = 1.04

  • 3006 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4A⋯O1i 0.82 1.86 2.6315 (18) 157
C9—H9⋯O2ii 0.93 2.43 3.1233 (19) 131
C15—H15B⋯O3iii 0.97 2.54 3.416 (2) 150
Symmetry codes: (i) x-1, y, z; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

2-Benzoxazolinone / benzothiazolinone derivatives exhibit a variety of pharmacological effects, including anlgesic and anti-inflammatory activity (Ünlü et al., 2003). It was studied analgesic and anti-inflammatory activity of the title compound which was synthesized by (Petrov et al., 1994) previously. Based on this study, the title compound, (I), showed close anlgesic activity that of aspirin at 100 mg/kg dose, but in terms of anti-inflammatory activity, inactive (Ünlü et al., 2003). In this study, the structure of the title compound (I) has been determined by single-crystal X-ray diffraction.

In (I) (Fig. 1), the nine-membered ring S1/N1/C8–C14 is nearly planar with maximum deviations of -0.022 (1) Å for N1 and 0.011 (1) Å for S1 from the mean plane. The dihedral angle between the nine-membered ring and the phenyl ring C1–C6 is 53.56 (7)° [the calculated value is 74.47°, using the CNDO (Pople et al., 1970) aproximation]. The N1—C15—C16—O3 and N1—C15—C16—O4 torsion angles related with the carboxyl group are 0.7 (3) and -177.21 (15)° [the calculated values are 114.5° and -65.95°].

In the crystal structure of (I), there exist intermolecular O—H···O and C—H···O hydrogen bonding interactions (Table 1, Fig. 2).

The quantum-chemical calculation of (I) was carried out by using the CNDO aproximation. The HOMO and LUMO energy levels of (I) are -10.4385 and 2.0553 eV, respectively. Its calculated molecule dipole moment is 8.206 Debye (1 D = 3.33564 × 10 -30 C.m.). Due to the intermolecular interactions in the crystal structure of (I), the spatial configurations obtained by the theoretical CNDO and experimental X-rays for (I) are almost different (see Figs. 1 & 3). But the geometric parameters in (I) are almost comparable within the experimental error interval in the results of both methods.

Related literature top

For the pharmacological effects of 2-benzoxazolinone/benzothiazolinone derivatives, see: Ünlü et al. (2003); Petrov et al. (1994). For the quantum-chemical calculations, see: Pople & Beveridge (1970).

Experimental top

Methyl (6-benzoyl-2-oxo-1,3-benzothiazol-3-yl)acetate (2 mmol) and sodium hydroxide (2 mmol) in 30 ml e thanol/water (25:5) was refluxed for 4 h. After cooling to room temperature, the mixture was acidified with 1 N HCl (30 ml) to give a solid precipitate.The product was collected by suction filtration, washed with water, dried, and crystallized from ethanol/water to yield % 73 [m.p.: 524 K].

Refinement top

H atoms were placed geometrically, with O—H = 0.82 Å, C—H = 0.93–0.97 Å, and treated using a riding model, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. An ORTEP view of the title molecule with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.
[Figure 2] Fig. 2. The packing and hydrogen bonding of the title compound viewed down b axis.Hydrogen atoms not involved in hydrogen bonding have been omitted for clarity.
[Figure 3] Fig. 3. The spatial view of the title molecule (I), calculated by the CNDO aproximation.
2-(6-Benzoyl-2-oxo-1,3-benzothiazol-3-yl)acetic acid top
Crystal data top
C16H11NO4SF(000) = 1296
Mr = 313.33Dx = 1.479 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 31743 reflections
a = 11.4248 (3) Åθ = 1.5–27.3°
b = 8.9155 (2) ŵ = 0.25 mm1
c = 27.6280 (8) ÅT = 296 K
V = 2814.13 (13) Å3Prismatic stick, colourless
Z = 80.59 × 0.38 × 0.17 mm
Data collection top
Stoe IPDS 2
diffractometer
3006 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus2363 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.034
Detector resolution: 6.67 pixels mm-1θmax = 26.8°, θmin = 1.5°
ω scansh = 1414
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 1111
Tmin = 0.868, Tmax = 0.959l = 3434
31503 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0454P)2 + 0.2486P]
where P = (Fo2 + 2Fc2)/3
3006 reflections(Δ/σ)max = 0.001
199 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C16H11NO4SV = 2814.13 (13) Å3
Mr = 313.33Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 11.4248 (3) ŵ = 0.25 mm1
b = 8.9155 (2) ÅT = 296 K
c = 27.6280 (8) Å0.59 × 0.38 × 0.17 mm
Data collection top
Stoe IPDS 2
diffractometer
3006 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
2363 reflections with I > 2σ(I)
Tmin = 0.868, Tmax = 0.959Rint = 0.034
31503 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.084H-atom parameters constrained
S = 1.04Δρmax = 0.23 e Å3
3006 reflectionsΔρmin = 0.22 e Å3
199 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.57030 (3)0.23072 (5)0.52487 (1)0.0462 (1)
O10.92276 (8)0.45469 (15)0.63203 (5)0.0573 (4)
O20.35095 (10)0.25597 (15)0.49337 (5)0.0616 (4)
O30.22769 (11)0.33284 (18)0.61382 (5)0.0748 (5)
O40.11738 (11)0.5146 (2)0.58490 (7)0.1006 (7)
N10.41141 (9)0.41838 (15)0.55272 (5)0.0415 (4)
C10.85487 (12)0.61124 (17)0.69378 (6)0.0431 (5)
C20.78137 (14)0.6046 (2)0.73373 (6)0.0551 (6)
C30.80669 (18)0.6877 (3)0.77475 (7)0.0681 (7)
C40.90272 (18)0.7800 (3)0.77570 (8)0.0700 (8)
C50.97516 (18)0.7884 (2)0.73637 (8)0.0683 (7)
C60.95280 (14)0.7034 (2)0.69545 (7)0.0536 (6)
C70.83707 (12)0.51557 (17)0.65028 (6)0.0413 (5)
C80.71999 (11)0.49170 (17)0.62847 (5)0.0377 (4)
C90.71055 (11)0.38169 (17)0.59286 (5)0.0381 (4)
C100.60499 (11)0.36100 (17)0.56983 (5)0.0369 (4)
C110.50840 (11)0.45213 (17)0.58098 (5)0.0368 (4)
C120.51704 (12)0.56159 (18)0.61601 (6)0.0439 (5)
C130.62268 (12)0.58068 (18)0.63966 (6)0.0421 (5)
C140.42573 (13)0.30165 (19)0.52075 (6)0.0450 (5)
C150.30209 (11)0.5004 (2)0.55357 (6)0.0467 (5)
C160.21427 (12)0.4378 (2)0.58824 (6)0.0474 (5)
H20.715000.544200.732900.0660*
H30.758400.680900.801800.0820*
H40.918600.836900.803100.0840*
H4A0.068900.480700.603900.1510*
H51.039900.851600.737100.0820*
H61.003300.708100.669100.0640*
H90.774900.322900.584800.0460*
H120.453000.621500.623600.0530*
H130.629200.654000.663500.0500*
H15A0.268600.499900.521300.0560*
H15B0.318000.603900.562200.0560*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0364 (2)0.0550 (2)0.0471 (2)0.0031 (2)0.0034 (2)0.0099 (2)
O10.0299 (5)0.0725 (8)0.0696 (8)0.0023 (5)0.0037 (5)0.0135 (7)
O20.0450 (6)0.0859 (9)0.0539 (7)0.0120 (6)0.0099 (5)0.0088 (7)
O30.0626 (8)0.0835 (10)0.0784 (9)0.0153 (7)0.0236 (7)0.0317 (8)
O40.0414 (7)0.1141 (13)0.1464 (15)0.0268 (8)0.0339 (8)0.0644 (12)
N10.0271 (5)0.0520 (8)0.0453 (7)0.0015 (5)0.0000 (5)0.0024 (6)
C10.0366 (7)0.0452 (9)0.0474 (8)0.0017 (6)0.0073 (6)0.0022 (7)
C20.0472 (9)0.0682 (12)0.0500 (10)0.0000 (8)0.0019 (7)0.0012 (9)
C30.0670 (11)0.0905 (15)0.0468 (10)0.0117 (11)0.0050 (8)0.0069 (10)
C40.0698 (12)0.0787 (15)0.0614 (12)0.0119 (10)0.0237 (10)0.0187 (11)
C50.0575 (10)0.0647 (13)0.0827 (15)0.0073 (9)0.0250 (10)0.0094 (11)
C60.0413 (8)0.0592 (10)0.0604 (11)0.0045 (7)0.0089 (7)0.0012 (9)
C70.0323 (7)0.0457 (9)0.0460 (8)0.0017 (6)0.0014 (6)0.0029 (7)
C80.0308 (6)0.0420 (8)0.0402 (8)0.0007 (6)0.0016 (5)0.0008 (7)
C90.0294 (6)0.0442 (8)0.0408 (8)0.0031 (6)0.0041 (5)0.0007 (7)
C100.0307 (6)0.0420 (8)0.0379 (7)0.0018 (5)0.0048 (5)0.0011 (6)
C110.0269 (6)0.0431 (8)0.0405 (8)0.0010 (5)0.0019 (5)0.0046 (7)
C120.0313 (7)0.0473 (9)0.0532 (9)0.0070 (6)0.0031 (6)0.0044 (8)
C130.0365 (7)0.0422 (8)0.0476 (9)0.0014 (6)0.0014 (6)0.0064 (7)
C140.0359 (7)0.0580 (10)0.0410 (8)0.0095 (7)0.0021 (6)0.0037 (7)
C150.0290 (6)0.0546 (9)0.0564 (9)0.0015 (6)0.0007 (6)0.0095 (8)
C160.0340 (7)0.0529 (10)0.0552 (10)0.0027 (6)0.0037 (6)0.0047 (8)
Geometric parameters (Å, º) top
S1—C101.7462 (15)C8—C131.400 (2)
S1—C141.7723 (16)C8—C91.393 (2)
O1—C71.2277 (18)C9—C101.3760 (18)
O2—C141.212 (2)C10—C111.4046 (19)
O3—C161.183 (2)C11—C121.378 (2)
O4—C161.305 (2)C12—C131.383 (2)
O4—H4A0.8200C15—C161.495 (2)
N1—C141.375 (2)C2—H20.9300
N1—C151.4475 (18)C3—H30.9300
N1—C111.3885 (18)C4—H40.9300
C1—C61.389 (2)C5—H50.9300
C1—C71.488 (2)C6—H60.9300
C1—C21.388 (2)C9—H90.9300
C2—C31.385 (3)C12—H120.9300
C3—C41.372 (3)C13—H130.9300
C4—C51.368 (3)C15—H15A0.9700
C5—C61.385 (3)C15—H15B0.9700
C7—C81.4824 (19)
S1···N12.5858 (13)C15···O3viii3.416 (2)
S1···O2i3.2479 (12)C15···O2viii3.319 (2)
S1···C15ii3.5452 (17)C1···H132.7400
S1···O4iii3.3258 (17)C2···H132.6400
S1···H15Bii3.1000C4···H2xii2.9600
O1···O4iv2.6315 (18)C7···H4Aiv2.9600
O1···C13v3.381 (2)C8···H22.9200
O2···S1vi3.2479 (12)C12···H15B2.7400
O2···C15iii3.319 (2)C13···H9xii2.8900
O2···C9vi3.1233 (19)C13···H22.8000
O3···N12.7994 (18)C15···H122.8100
O3···C15iii3.416 (2)C16···H15Biii3.0800
O3···C3vii3.363 (3)H2···C82.9200
O4···C14viii3.152 (2)H2···C132.8000
O4···S1viii3.3258 (17)H2···H132.3700
O4···O1ix2.6315 (18)H2···C4v2.9600
O1···H92.4400H3···O3xi2.7000
O1···H13v2.8800H4···O1xiii2.7600
O1···H62.6500H4···O3xi2.8400
O1···H4Aiv1.8600H4A···O1ix1.8600
O1···H4x2.7600H4A···C7ix2.9600
O2···H15Aiii2.7700H6···O12.6500
O2···H15A2.4900H9···O12.4400
O2···H9vi2.4300H9···O2i2.4300
O3···H4vii2.8400H9···C13v2.8900
O3···H15Biii2.5400H12···C152.8100
O3···H12iii2.8100H12···H15B2.3000
O3···H3vii2.7000H12···O3viii2.8100
N1···S12.5858 (13)H13···C12.7400
N1···O32.7994 (18)H13···C22.6400
C2···C133.176 (2)H13···H22.3700
C3···O3xi3.363 (3)H13···O1xii2.8800
C9···C13v3.536 (2)H15A···O22.4900
C9···O2i3.1233 (19)H15A···O2viii2.7700
C13···C23.176 (2)H15B···C122.7400
C13···O1xii3.381 (2)H15B···H122.3000
C13···C9xii3.536 (2)H15B···S1ii3.1000
C14···O4iii3.152 (2)H15B···O3viii2.5400
C15···S1ii3.5452 (17)H15B···C16viii3.0800
C10—S1—C1491.14 (7)S1—C14—N1109.86 (11)
C16—O4—H4A110.00O2—C14—N1124.87 (14)
C11—N1—C14115.49 (12)S1—C14—O2125.26 (13)
C11—N1—C15124.75 (13)N1—C15—C16113.63 (14)
C14—N1—C15119.71 (12)O3—C16—C15126.24 (14)
C2—C1—C7122.36 (13)O4—C16—C15109.15 (15)
C6—C1—C7118.43 (14)O3—C16—O4124.57 (16)
C2—C1—C6119.09 (16)C1—C2—H2120.00
C1—C2—C3120.11 (16)C3—C2—H2120.00
C2—C3—C4120.25 (18)C2—C3—H3120.00
C3—C4—C5120.1 (2)C4—C3—H3120.00
C4—C5—C6120.46 (19)C3—C4—H4120.00
C1—C6—C5119.97 (17)C5—C4—H4120.00
O1—C7—C8119.28 (14)C4—C5—H5120.00
C1—C7—C8122.28 (12)C6—C5—H5120.00
O1—C7—C1118.44 (13)C1—C6—H6120.00
C7—C8—C9117.25 (12)C5—C6—H6120.00
C9—C8—C13119.55 (12)C8—C9—H9120.00
C7—C8—C13123.05 (13)C10—C9—H9120.00
C8—C9—C10119.26 (13)C11—C12—H12121.00
S1—C10—C11111.25 (10)C13—C12—H12121.00
C9—C10—C11120.64 (13)C8—C13—H13119.00
S1—C10—C9128.10 (11)C12—C13—H13119.00
N1—C11—C10112.23 (13)N1—C15—H15A109.00
N1—C11—C12127.27 (13)N1—C15—H15B109.00
C10—C11—C12120.49 (12)C16—C15—H15A109.00
C11—C12—C13118.78 (13)C16—C15—H15B109.00
C8—C13—C12121.25 (15)H15A—C15—H15B108.00
C14—S1—C10—C9178.35 (15)C2—C3—C4—C51.1 (4)
C14—S1—C10—C110.72 (12)C3—C4—C5—C60.4 (3)
C10—S1—C14—N10.32 (12)C4—C5—C6—C11.4 (3)
C10—S1—C14—O2179.26 (16)O1—C7—C8—C13165.40 (15)
C11—N1—C15—C1692.11 (18)C1—C7—C8—C9169.92 (14)
C15—N1—C14—O22.9 (2)C1—C7—C8—C1314.6 (2)
C11—N1—C14—S11.33 (17)O1—C7—C8—C910.1 (2)
C15—N1—C11—C123.7 (2)C9—C8—C13—C120.0 (2)
C14—N1—C11—C12179.09 (15)C7—C8—C13—C12175.37 (15)
C11—N1—C14—O2179.73 (16)C7—C8—C9—C10176.64 (13)
C14—N1—C11—C101.91 (19)C13—C8—C9—C101.0 (2)
C14—N1—C15—C1690.74 (18)C8—C9—C10—C111.8 (2)
C15—N1—C14—S1176.08 (11)C8—C9—C10—S1179.27 (11)
C15—N1—C11—C10175.35 (14)S1—C10—C11—C12179.35 (12)
C7—C1—C6—C5176.84 (16)C9—C10—C11—N1177.56 (13)
C2—C1—C7—C843.9 (2)S1—C10—C11—N11.58 (16)
C2—C1—C6—C50.8 (2)C9—C10—C11—C121.5 (2)
C6—C1—C7—C8140.18 (16)C10—C11—C12—C130.5 (2)
C6—C1—C7—O139.8 (2)N1—C11—C12—C13178.44 (15)
C7—C1—C2—C3175.14 (17)C11—C12—C13—C80.3 (2)
C2—C1—C7—O1136.10 (17)N1—C15—C16—O30.7 (3)
C6—C1—C2—C30.8 (3)N1—C15—C16—O4177.21 (15)
C1—C2—C3—C41.7 (3)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1, y+1, z+1; (iii) x+1/2, y1/2, z; (iv) x+1, y, z; (v) x+3/2, y1/2, z; (vi) x1/2, y+1/2, z+1; (vii) x+1, y1/2, z+3/2; (viii) x+1/2, y+1/2, z; (ix) x1, y, z; (x) x+2, y1/2, z+3/2; (xi) x+1, y+1/2, z+3/2; (xii) x+3/2, y+1/2, z; (xiii) x+2, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O1ix0.821.862.6315 (18)157
C9—H9···O2i0.932.433.1233 (19)131
C15—H15B···O3viii0.972.543.416 (2)150
Symmetry codes: (i) x+1/2, y+1/2, z+1; (viii) x+1/2, y+1/2, z; (ix) x1, y, z.

Experimental details

Crystal data
Chemical formulaC16H11NO4S
Mr313.33
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)11.4248 (3), 8.9155 (2), 27.6280 (8)
V3)2814.13 (13)
Z8
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.59 × 0.38 × 0.17
Data collection
DiffractometerStoe IPDS 2
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.868, 0.959
No. of measured, independent and
observed [I > 2σ(I)] reflections
31503, 3006, 2363
Rint0.034
(sin θ/λ)max1)0.634
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.084, 1.04
No. of reflections3006
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.22

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O1i0.821.862.6315 (18)157
C9—H9···O2ii0.932.433.1233 (19)131
C15—H15B···O3iii0.972.543.416 (2)150
Symmetry codes: (i) x1, y, z; (ii) x+1/2, y+1/2, z+1; (iii) x+1/2, y+1/2, z.
 

Footnotes

Additional corresponding author, e-mail: akkurt@erciyes.edu.tr.

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationPetrov, O. I., Antonova, A. Ts., Kalcheva, V. B. & Veleva, Ch. G. (1994). Dokl. Bulg. Akad. Nauk, 47, 31–34.  CAS Google Scholar
First citationPople, J. A. & Beveridge, D. L. (1970). In Approximate Molecular Orbital Theory. New York: McGraw–Hill.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationÜnlü, S., Önkol, T., Dündar, Y., Ökçelik, B., Küpeli, E., Yeşilada, E., Noyanalpan, N. & Şahin, M. F. (2003). Arch. Pharm. Pharm. Med. Chem. 336, 353–361.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds