organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(4-Bromo­phen­yl)-2-(2-thien­yl)acetamide

aFioCruz – Fundação Oswaldo Cruz, Instituto de Tecnologia em Farmacos–FarManguinhos, Rua Sizenando Nabuco, 100, Manguinhos, 21041-250 Rio de Janeiro, RJ, Brazil, bCentro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Av. Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil, cCHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland, and dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 8 December 2009; accepted 11 December 2009; online 16 December 2009)

The thienyl ring in the title compound, C12H10BrNOS, is disordered over two diagonally opposite positions, the major component having a site-occupancy factor of 0.660 (5). The mol­ecule is twisted as evidenced by the dihedral angles of 70.0 (4) and 70.5 (6)° formed between the benzene ring and the two orientations of the disordered thio­phene ring. Linear supra­molecular chains along the a axis are found in the crystal structure through the agency of N—H⋯O hydrogen bonding.

Related literature

For background to the various applications of 2-substituted thio­phenes, see: Campaigne (1984[Campaigne, E. (1984). In: Comprehensive Heterocyclic Chemistry, Vol. 4, edited by A. R. Katritzky & Rees, C. W. pp. 863-934. Oxford: Pergamon.]); Kleemann et al. (2006[Kleemann, A., Engel, J. B., Kutscher, B. & Reichert, D. (2006). In Pharmaceutical Substances. New York, Stuttgart: Georg Thieme Verlag.]). For recent biological studies on 2-substituted thio­phenes, see: Lourenço et al. (2007[Lourenço, M. C. S., Vicente, F. R., Henriques, M., das, G. M. de O., Candéa, A. L. P., Gonçalves, R. S. B., Nogueira, T. C. M., Ferreira, M. de L. & de Souza, M. V. N. (2007). Bioorg. Med. Chem. Lett. 17, 6895-6898.]). For the structure of the N-(2,6-dimethyl­phen­yl) derivative, see: Ferreira et al. (2009[Ferreira de Lima, M., de Souza, M. V. N., Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2009). Acta Cryst. E65, o3203.]).

[Scheme 1]

Experimental

Crystal data
  • C12H10BrNOS

  • Mr = 296.18

  • Triclinic, [P \overline 1]

  • a = 4.7517 (2) Å

  • b = 10.7283 (3) Å

  • c = 11.7964 (3) Å

  • α = 76.419 (2)°

  • β = 88.437 (2)°

  • γ = 84.479 (2)°

  • V = 581.82 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.69 mm−1

  • T = 120 K

  • 0.09 × 0.06 × 0.02 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.845, Tmax = 1.000

  • 9757 measured reflections

  • 2045 independent reflections

  • 1847 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.115

  • S = 0.98

  • 2045 reflections

  • 161 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1n⋯O1i 0.88 (2) 2.00 (2) 2.848 (3) 162 (3)
Symmetry code: (i) x+1, y, z.

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

The various uses, for example, as dyestuffs, flavour agents, drugs, and inhibitors, have been well documented for 2-substituted thiophenes related to the title compound (Campaigne, 1984). Thiophenes are present in many natural and synthetic products that have a wide range of pharmacological activities (Kleemann et al., 2006). The in vitro antimycobacterial activities of a series of N-(aryl)-2-thiophen-2-ylacetamide derivatives were recently investigated and encouraging activities were detected for some of these (Lourenço et al., 2007). The search for new drugs having antibacterial activity against Mycobacterium tuberculosis is a vital task due to the increase of multi-drug resistant tuberculosis (MDR-TB) and AIDS cases worldwide, and the increasing resistance to the currently used main line drugs such as isoniazid and rifampin (http://www.who.int/tdr/diseases/tb/default.htm). Recently, we reported the structure of N-(2,6-dimethylphenyl)-2-(thiophen-2-yl)acetamide (Ferreira et al., 2009) and as a continuation of these studies, the title thiophene derivative, (I), is described.

The molecular structure of (I), Fig. 1, is twisted as seen in the values of the C6–N1–C7–C8 and S1–C1–C5–C6 torsion angles of 35.0 (5) and 88.4 (4) °, respectively; the S1'–C1–C5–C6 torsion angle for the minor component of the disordered thiophene ring is -89.9 (5) °. The dihedral angle formed between the thiophene and benzene rings is 70.0 (4) °; the equivalent angle involving the minor component of the thiophene ring is 70.5 (6) °. The anti-conformation of the amide group allows for the formation of linear supramolecular chains along the a axis via N–H···O hydrogen bonding, Fig. 2 and Table 1.

Related literature top

For background to the various applications of 2-substituted thiophenes, see: Campaigne (1984); Kleemann et al. (2006). For recent biological studies on 2-substituted thiophenes, see: Lourenço et al. (2007). For the structure of the N-(2,6-dimethylphenyl) derivative, see: Ferreira et al. (2009).

Experimental top

A solution of 4-bromoaniline (2 mmol) and 2-thienylacetyl chloride (2 mmol) in tetrahydrofuran (20 ml) was stirred for 2 h at room temperature, water (30 ml) added and the mixture was extracted with ethyl acetate (2 x 20 ml). The combined organic layers were washed with saturated aqueous NaHCO3 and brine, dried over MgSO4, filtered, and rotary evaporated to give the crude product, (yield 96%), which was recrystallized from EtOH; m.pt.: 411–412 K. CG/MS: m/z [M]+.: 297. 1H NMR [500.00 MHz, DMSO-d6] δ: 10.30 (1H, s, NH), 7.6 (d, 2H, J = 9.0 Hz), 7.48 (d, 2H, J = 9.0 Hz), 7.38, (dd, 1H, J = 4.5 and 2.0 Hz), 6.98–6.96 (m, 2H), 3.87 (s, 2H, CH2CO) p.p.m.. 13C NMR (125.0 MHz, DMSO-d6) δ: 168.1, 138.3, 136.8, 131.5, 126.6, 126.3, 125.0, 121.3, 114.8, 37.4 p.p.m.. IR (KBr, cm-1) ν: 1660 (CO).

Refinement top

The C-bound H atoms were geometrically placed (C–H = 0.95–0.99 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The N–H atom was located in a difference map and refined with the distance restraint N–H = 0.88±0.01 and with Uiso(H) = 1.2Ueq(N). The thienyl ring was disordered with two diagonally opposed positions resolved for the S1 and C4 atoms (the anisotropic displacement parameters for the two components of the C4 atom were constrained to be equal). The major component had a site occupancy factor = 0.660 (5).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure (I) showing atom-labelling scheme and displacement ellipsoids at the 50% probability level. Only the major component of the disordered thienyl ring is shown for reasons of clarity.
[Figure 2] Fig. 2. Supramolecular chain in (I) aligned along the a axis and mediated by N–H···O hydrogen bonds (blue dashed lines). Colour code: Br, olive; S, yellow; O, red; N, blue; C, grey; and H, green.
N-(4-Bromophenyl)-2-(2-thienyl)acetamide top
Crystal data top
C12H10BrNOSZ = 2
Mr = 296.18F(000) = 296
Triclinic, P1Dx = 1.691 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.7517 (2) ÅCell parameters from 2592 reflections
b = 10.7283 (3) Åθ = 2.9–27.5°
c = 11.7964 (3) ŵ = 3.69 mm1
α = 76.419 (2)°T = 120 K
β = 88.437 (2)°Block, pale-brown
γ = 84.479 (2)°0.09 × 0.06 × 0.02 mm
V = 581.82 (3) Å3
Data collection top
Enraf–Nonius KappaCCD area-detector
diffractometer
2045 independent reflections
Radiation source: Enraf Nonius FR591 rotating anode1847 reflections with I > 2σ(I)
10 cm confocal mirrors monochromatorRint = 0.042
Detector resolution: 9.091 pixels mm-1θmax = 25.0°, θmin = 2.9°
ϕ and ω scansh = 55
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1212
Tmin = 0.845, Tmax = 1.000l = 1414
9757 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 0.98 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
2045 reflections(Δ/σ)max = 0.001
161 parametersΔρmax = 0.40 e Å3
1 restraintΔρmin = 0.29 e Å3
Crystal data top
C12H10BrNOSγ = 84.479 (2)°
Mr = 296.18V = 581.82 (3) Å3
Triclinic, P1Z = 2
a = 4.7517 (2) ÅMo Kα radiation
b = 10.7283 (3) ŵ = 3.69 mm1
c = 11.7964 (3) ÅT = 120 K
α = 76.419 (2)°0.09 × 0.06 × 0.02 mm
β = 88.437 (2)°
Data collection top
Enraf–Nonius KappaCCD area-detector
diffractometer
2045 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1847 reflections with I > 2σ(I)
Tmin = 0.845, Tmax = 1.000Rint = 0.042
9757 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0311 restraint
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 0.98Δρmax = 0.40 e Å3
2045 reflectionsΔρmin = 0.29 e Å3
161 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br0.27885 (7)0.23040 (3)0.97460 (3)0.03386 (19)
O10.0821 (5)0.2338 (2)0.4702 (2)0.0338 (6)
N10.5204 (5)0.1924 (3)0.5506 (2)0.0237 (6)
H1N0.696 (3)0.211 (3)0.540 (3)0.028*
S10.0537 (8)0.5801 (3)0.3373 (3)0.0278 (6)0.660 (5)
C10.2232 (6)0.4487 (3)0.3020 (3)0.0249 (7)0.660 (5)
C20.1461 (8)0.6162 (4)0.2202 (3)0.0361 (8)0.660 (5)
H20.28060.68940.20400.043*0.660 (5)
C30.1056 (7)0.5346 (4)0.1488 (3)0.0318 (8)0.660 (5)
H30.20060.54200.07740.038*0.660 (5)
C40.108 (4)0.4342 (19)0.2003 (15)0.035 (4)0.660 (5)
H40.16440.36330.16680.042*0.660 (5)
S1'0.1360 (17)0.4123 (9)0.1850 (6)0.0245 (14)0.340 (5)
C1'0.2232 (6)0.4487 (3)0.3020 (3)0.0249 (7)0.340 (5)
C2'0.1461 (8)0.6162 (4)0.2202 (3)0.0361 (8)0.340 (5)
H2'0.27720.69040.21080.043*0.340 (5)
C3'0.1056 (7)0.5346 (4)0.1488 (3)0.0318 (8)0.340 (5)
H3'0.21340.54740.07970.038*0.340 (5)
C4'0.072 (7)0.561 (3)0.323 (3)0.035 (4)0.340 (5)
H4'0.09770.59800.38790.042*0.340 (5)
C50.4454 (7)0.3645 (4)0.3784 (3)0.0351 (8)
H5A0.54850.41830.41760.042*
H5B0.58280.32560.32900.042*
C60.3296 (6)0.2578 (3)0.4702 (3)0.0251 (7)
C70.4675 (6)0.0909 (3)0.6462 (3)0.0227 (7)
C80.2767 (7)0.0013 (3)0.6398 (3)0.0251 (7)
H80.18060.00710.56890.030*
C90.2278 (7)0.0953 (3)0.7360 (3)0.0266 (7)
H90.09950.15660.73150.032*
C100.3667 (7)0.1026 (3)0.8397 (3)0.0252 (7)
C110.5612 (7)0.0172 (3)0.8476 (3)0.0279 (7)
H110.66070.02540.91810.033*
C120.6090 (7)0.0808 (3)0.7505 (3)0.0255 (7)
H120.73890.14140.75530.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br0.0441 (3)0.0281 (3)0.0269 (3)0.00963 (17)0.00026 (16)0.00104 (16)
O10.0170 (11)0.0346 (14)0.0425 (15)0.0075 (10)0.0019 (10)0.0076 (11)
N10.0165 (12)0.0273 (15)0.0256 (13)0.0067 (11)0.0018 (11)0.0008 (11)
S10.0324 (10)0.0221 (11)0.0298 (12)0.0051 (8)0.0006 (8)0.0068 (9)
C10.0191 (15)0.0207 (17)0.0320 (18)0.0039 (12)0.0043 (13)0.0002 (13)
C20.0328 (18)0.0267 (19)0.042 (2)0.0012 (15)0.0071 (15)0.0040 (15)
C30.0289 (17)0.039 (2)0.0236 (17)0.0084 (15)0.0003 (13)0.0034 (15)
C40.037 (5)0.038 (7)0.036 (6)0.007 (4)0.015 (3)0.022 (4)
S1'0.027 (2)0.029 (3)0.019 (2)0.0057 (17)0.0037 (17)0.007 (2)
C1'0.0191 (15)0.0207 (17)0.0320 (18)0.0039 (12)0.0043 (13)0.0002 (13)
C2'0.0328 (18)0.0267 (19)0.042 (2)0.0012 (15)0.0071 (15)0.0040 (15)
C3'0.0289 (17)0.039 (2)0.0236 (17)0.0084 (15)0.0003 (13)0.0034 (15)
C4'0.037 (5)0.038 (7)0.036 (6)0.007 (4)0.015 (3)0.022 (4)
C50.0228 (16)0.034 (2)0.041 (2)0.0067 (14)0.0030 (14)0.0078 (16)
C60.0191 (15)0.0229 (18)0.0329 (19)0.0039 (13)0.0040 (13)0.0053 (15)
C70.0141 (13)0.0267 (17)0.0264 (16)0.0020 (12)0.0051 (12)0.0050 (13)
C80.0278 (16)0.0224 (17)0.0257 (16)0.0059 (13)0.0032 (13)0.0048 (13)
C90.0254 (16)0.0235 (17)0.0317 (17)0.0058 (13)0.0017 (13)0.0070 (14)
C100.0265 (16)0.0225 (17)0.0245 (16)0.0022 (13)0.0025 (13)0.0017 (13)
C110.0263 (16)0.0309 (19)0.0274 (17)0.0025 (14)0.0008 (13)0.0086 (14)
C120.0185 (14)0.0278 (18)0.0318 (17)0.0061 (12)0.0001 (12)0.0087 (14)
Geometric parameters (Å, º) top
Br—C101.907 (3)C2'—C3'1.348 (5)
O1—C61.228 (4)C2'—C4'1.59 (3)
N1—C61.352 (4)C2'—H2'0.9500
N1—C71.407 (4)C3'—H3'0.9500
N1—H1N0.875 (10)C4'—H4'0.9500
S1—C21.647 (5)C5—C61.514 (5)
S1—C11.687 (4)C5—H5A0.9900
C1—C41.381 (17)C5—H5B0.9900
C1—C51.493 (5)C7—C121.396 (4)
C2—C31.348 (5)C7—C81.399 (4)
C2—H20.9500C8—C91.377 (5)
C3—C41.439 (19)C8—H80.9500
C3—H30.9500C9—C101.388 (5)
C4—H40.9500C9—H90.9500
S1'—C1'1.594 (8)C10—C111.382 (5)
S1'—C3'1.641 (9)C11—C121.391 (5)
C1'—C4'1.42 (3)C11—H110.9500
C1'—C51.493 (5)C12—H120.9500
C6—N1—C7126.1 (3)C1—C5—C6113.6 (3)
C6—N1—H1n117 (2)C1'—C5—H5A108.8
C7—N1—H1n117 (2)C1—C5—H5A108.8
C2—S1—C193.6 (2)C6—C5—H5A108.8
C4—C1—C5129.6 (8)C1'—C5—H5B108.8
C4—C1—S1108.3 (8)C1—C5—H5B108.8
C5—C1—S1122.0 (3)C6—C5—H5B108.8
C3—C2—S1115.4 (3)H5A—C5—H5B107.7
C3—C2—H2122.3O1—C6—N1123.6 (3)
S1—C2—H2122.3O1—C6—C5122.0 (3)
C2—C3—C4107.7 (7)N1—C6—C5114.5 (3)
C2—C3—H3126.2C12—C7—C8119.5 (3)
C4—C3—H3126.2C12—C7—N1118.5 (3)
C1—C4—C3114.9 (11)C8—C7—N1122.1 (3)
C1—C4—H4122.6C9—C8—C7120.1 (3)
C3—C4—H4122.6C9—C8—H8119.9
C1'—S1'—C3'94.5 (5)C7—C8—H8119.9
C4'—C1'—C5126.1 (14)C10—C9—C8119.7 (3)
C4'—C1'—S1'114.4 (14)C10—C9—H9120.2
C5—C1'—S1'119.4 (4)C8—C9—H9120.2
C3'—C2'—C4'105.2 (11)C11—C10—C9121.3 (3)
C3'—C2'—H2'127.4C11—C10—Br119.6 (2)
C4'—C2'—H2'127.4C9—C10—Br119.1 (2)
C2'—C3'—S1'117.9 (4)C10—C11—C12118.9 (3)
C2'—C3'—H3'121.1C10—C11—H11120.5
S1'—C3'—H3'121.1C12—C11—H11120.5
C1'—C4'—C2'108.0 (19)C7—C12—C11120.4 (3)
C1'—C4'—H4'126.0C7—C12—H12119.8
C2'—C4'—H4'126.0C11—C12—H12119.8
C1'—C5—C6113.6 (3)
C2—S1—C1—C42.5 (10)C7—N1—C6—O11.5 (5)
C2—S1—C1—C5179.0 (3)C7—N1—C6—C5178.7 (3)
C1—S1—C2—C30.8 (4)C1'—C5—C6—O19.4 (5)
S1—C2—C3—C41.0 (9)C1—C5—C6—O19.4 (5)
C5—C1—C4—C3179.8 (7)C1'—C5—C6—N1170.8 (3)
S1—C1—C4—C33.6 (17)C1—C5—C6—N1170.8 (3)
C2—C3—C4—C13.0 (16)C6—N1—C7—C12144.4 (3)
C3'—S1'—C1'—C4'0.6 (19)C6—N1—C7—C835.0 (5)
C3'—S1'—C1'—C5178.7 (3)C12—C7—C8—C90.5 (5)
C4'—C2'—C3'—S1'0.1 (13)N1—C7—C8—C9178.9 (3)
C1'—S1'—C3'—C2'0.3 (6)C7—C8—C9—C100.6 (5)
C5—C1'—C4'—C2'178.6 (8)C8—C9—C10—C112.2 (5)
S1'—C1'—C4'—C2'1 (3)C8—C9—C10—Br176.1 (2)
C3'—C2'—C4'—C1'0 (2)C9—C10—C11—C122.6 (5)
C4'—C1'—C5—C689.3 (18)Br—C10—C11—C12175.7 (2)
S1'—C1'—C5—C689.9 (5)C8—C7—C12—C110.0 (5)
C4—C1—C5—C687.3 (12)N1—C7—C12—C11179.4 (3)
S1—C1—C5—C688.4 (4)C10—C11—C12—C71.5 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1n···O1i0.88 (2)2.00 (2)2.848 (3)162 (3)
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC12H10BrNOS
Mr296.18
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)4.7517 (2), 10.7283 (3), 11.7964 (3)
α, β, γ (°)76.419 (2), 88.437 (2), 84.479 (2)
V3)581.82 (3)
Z2
Radiation typeMo Kα
µ (mm1)3.69
Crystal size (mm)0.09 × 0.06 × 0.02
Data collection
DiffractometerEnraf–Nonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.845, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
9757, 2045, 1847
Rint0.042
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.115, 0.98
No. of reflections2045
No. of parameters161
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.40, 0.29

Computer programs: , DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1n···O1i0.875 (17)2.00 (2)2.848 (3)162 (3)
Symmetry code: (i) x+1, y, z.
 

Footnotes

Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.

Acknowledgements

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES (Brazil).

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCampaigne, E. (1984). In: Comprehensive Heterocyclic Chemistry, Vol. 4, edited by A. R. Katritzky & Rees, C. W. pp. 863–934. Oxford: Pergamon.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFerreira de Lima, M., de Souza, M. V. N., Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2009). Acta Cryst. E65, o3203.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationKleemann, A., Engel, J. B., Kutscher, B. & Reichert, D. (2006). In Pharmaceutical Substances. New York, Stuttgart: Georg Thieme Verlag.  Google Scholar
First citationLourenço, M. C. S., Vicente, F. R., Henriques, M., das, G. M. de O., Candéa, A. L. P., Gonçalves, R. S. B., Nogueira, T. C. M., Ferreira, M. de L. & de Souza, M. V. N. (2007). Bioorg. Med. Chem. Lett. 17, 6895–6898.  PubMed Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds