organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 1| January 2010| Pages o191-o192

(E)-1-(4-Nitro­phen­yl)-2-(4-{[(E)-2-(4-nitro­phen­yl)hydrazinyl­­idene]meth­yl}benzyl­­idene)hydrazine dihydrate

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, bCentro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Av. Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil, and cCHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 14 December 2009; accepted 15 December 2009; online 19 December 2009)

The 30 non-H atoms in title dihydrazine compound, C20H16N6O4·2H2O, are close to coplanar, the r.m.s. deviation for these atoms being 0.096 Å. The conformation about each of the C=N bonds is E, and the mol­ecule has non-crystallographic 2/m symmetry. The presence of O—H⋯O and N—H⋯O hydrogen bonding leads to a three-dimensional network in the crystal structure. A highly disordered solvent mol­ecule is present within a mol­ecular cavity defined by the organic and water mol­ecules. Its contribution to the electron density was removed from the observed data in the final cycles of refinement and the formula, molecular weight and density are given without taking into account the contribution of the solvent molecule.

Related literature

For background to the structural chemistry of hydrazones, see: Baddeley et al. (2009[Baddeley, T. C., França, L. de S., Howie, R. A., de Lima, G. M., Skakle, J. M. S., de Souza, J. D., Wardell, J. L. & Wardell, S. M. S. V. (2009). Z. Kristallogr. 224, 213-224.]); Ferguson et al. (2005[Ferguson, G., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005). Acta Cryst. C61, o613-o616.]); Glidewell et al. (2006[Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2006). Acta Cryst. B62, 666-675.]); Low et al. (2006[Low, J. N., Wardell, J. L. & Glidewell, C. (2006). Acta Cryst. E62, o1816-o1818.]); Wardell et al. (2005[Wardell, J. L., Skakle, J. M. S., Low, J. N. & Glidewell, C. (2005). Acta Cryst. C61, o10-o14.], 2006[Wardell, J. L., Low, J. N. & Glidewell, C. (2006). Acta Cryst. E62, o2204-o2206.]). For the synthesis, see: Bengelsdorf (1958[Bengelsdorf, I. S. (1958). J. Am. Chem. Soc. 23, 243-246.]).

[Scheme 1]

Experimental

Crystal data
  • C20H16N6O4·2H2O

  • Mr = 440.42

  • Triclinic, [P \overline 1]

  • a = 7.7549 (4) Å

  • b = 9.3245 (7) Å

  • c = 15.3374 (11) Å

  • α = 100.749 (3)°

  • β = 90.533 (4)°

  • γ = 103.131 (5)°

  • V = 1059.56 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 120 K

  • 0.38 × 0.22 × 0.07 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.770, Tmax = 1.000

  • 16566 measured reflections

  • 3688 independent reflections

  • 2638 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.177

  • S = 1.09

  • 3688 reflections

  • 301 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1w⋯O4i 0.83 (2) 2.32 (2) 3.084 (2) 153 (2)
O1W—H2w⋯O2wii 0.83 (2) 2.01 (2) 2.808 (3) 163 (3)
N5—H5n⋯O1w 0.88 2.17 3.021 (3) 163
O2W—H3w⋯O1wiii 0.84 (3) 1.98 (3) 2.800 (3) 165 (3)
O2W—H4w⋯O1iv 0.84 (2) 2.28 (2) 3.061 (3) 156 (3)
O2W—H4w⋯O2iv 0.84 (2) 2.45 (2) 3.204 (3) 150 (3)
N2—H2n⋯O2wv 0.88 2.09 2.959 (3) 172
C7—H7⋯O2vi 0.95 2.48 3.374 (3) 157
C14—H14⋯O3i 0.95 2.45 3.338 (3) 156
Symmetry codes: (i) x-1, y-1, z; (ii) -x+1, -y+1, -z+1; (iii) x, y+1, z; (iv) -x, -y, -z+2; (v) -x+1, -y+1, -z+2; (vi) x+1, y+1, z.

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Comment top

In connection with on-going studies into the structural chemistry of hydrazones (Baddeley et al., 2009; Ferguson et al., 2005; Glidewell et al., 2006; Low et al., 2006; Wardell et al., 2005; Wardell et al., 2006), we now report the structure of the title compound, (I).

The molecule in (I) is essentially planar with the r.m.s. of the 30 non-hydrogen atoms being 0.096 Å. The maximum deviations from the least-squares plane are 0.243 (2) Å for atom O3 and -0.140 (3) Å for atom C13; the former deviation arises as the N6-nitro group is slightly twisted out of the plane of the benzene ring to which it is attached: the C17–C18–N6–O3 torsion angle is 7.1 (3)°. The conformation about each of the C7 N3 [1.288 (3) Å] and C14N4 [1.280 (3) Å] bonds is E. Overall, to a first approximation, the molecule has non-crystallographic 2/m symmetry.

The water molecules are involved in a number of hydrogen bonding interactions and stabilize a double layer arrangement. As illustrated in Fig. 2, molecules are arranged into a layer being connected by O–H···O and N–H···O hydrogen bonds as well as C–H···O contacts, Table 1. Each of the hydrazine-H atoms forms a donor interaction to a water molecule. The O1w water molecule forms a donor hydrogen bond with a O2w water molecule in the plane, Fig. 2, as well as with a nitro-O4 atom. The O2w water molecule accepts a hydrogen bond from the O1w atom as described above, and forms two donor interactions with the nitro-O1 and O2 atoms via a bifurcated H4w atom. Each of the nitro O1 and O2 atoms forms a C–H···O contact. The aforementioned interactions stabilize a 2-D array. Each of the O1w (acceptor) and O2w (donor) molecules forms one further hydrogen bond to a water molecule of a centrosymmetrically related layer to form a double layer as well as eight-membered {···O—H}4 synthons. Further stability to the double layers is afforded by weak π···π interactions [ring centroid(C16–C6)···ring centroid(C15—C20)i = 3.6716 (16) Å with a dihedral angle between planes = 2.31 (12) ° for symmetry operation i: 1 - x, -y, 2 - z]. Layers stack in the crystal structure as illustrated in Fig. 3. As noted in the Experimental, ill-defined solvent, most probably methanol, was present in the crystal structure. These are located in the vicinity of the voids within the double layer.

Related literature top

For background to the structural chemistry of hydrazones, see: Baddeley et al. (2009); Ferguson et al. (2005); Glidewell et al. (2006); Low et al. (2006); Wardell et al. (2005, 2006). For the synthesis, see: Bengelsdorf (1958).

Experimental top

Solutions of 4-nitrophenylhydrazine (0.306 g, 2 mmol) in MeOH (25 ml) and 1,4-benzenedicarboxaldehyde (0.134 g, 1 mmol) in MeOH (15 ml) were mixed, and refluxed for 30 min. The reaction mixture was rotary evaporated and the residue was chromatographed on alumina using hexane/ethyl acetate [4:1] as eluent. The collected fraction of 1,4-bis-2-(4-nitrophenyl)hydrazone 1,4-benzenedicarboxaldehyde was recrystallized from MeOH, m.pt. 566–568 K. lit value 567–568 K (Bengelsdorf, 1958). IR (KBr, cm-1): ν 3261, 1608, 1587, 1556, 1498, 1469, 1321, 1309, 1293, 1271, 1173, 1105, 1086, 998, 929, 839, 750, 694, 585, 530, 489, 435.

Refinement top

The N– and C-bound H atoms were geometrically placed (N–H = 0.88 Å and C–H = 0.95 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The O–H atoms were located in a difference map and refined with the distance restraint O–H = 0.84±0.01 and with Uiso(H) = 1.5Ueq(N). Unresolved disordered solvent was evident in the final cycles of the refinement. This was modelled with the SQUEEZE option in PLATON (Spek, 2009); the solvent cavity had volume 76 Å3. In the final cycles of refinement, this contribution to the electron density was removed from the observed data. The density, the F(000) value, the molecular weight, and the formula are given without taking into account the contribution of the solvent molecule.

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of the supramolecular 2-D array in (I) mediated by O–H···O and N–H···O hydrogen bonding shown as orange and blue dashed lines, respectively. Additional C–H···O contacts are shown as green dashed lines, Colour code: O, red; N, blue; C, grey; and H, green.
[Figure 3] Fig. 3. A view of the stacking of layers (illustrated in Fig. 2) in (I) with the O–H···O hydrogen bonding connecting the layers shown as orange dashed lines. Colour code: O, red; N, blue; C, grey; and H, green.
(E)-1-(4-Nitrophenyl)-2-(4-{[(E)-2-(4- nitrophenyl)hydrazinylidene]methyl}benzylidene)hydrazine dihydrate top
Crystal data top
C20H16N6O4·2H2OZ = 2
Mr = 440.42F(000) = 460
Triclinic, P1Dx = 1.380 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.7549 (4) ÅCell parameters from 4364 reflections
b = 9.3245 (7) Åθ = 2.9–27.5°
c = 15.3374 (11) ŵ = 0.11 mm1
α = 100.749 (3)°T = 120 K
β = 90.533 (4)°Block, dark-red
γ = 103.131 (5)°0.38 × 0.22 × 0.07 mm
V = 1059.56 (12) Å3
Data collection top
Nonius KappaCCD area-detector
diffractometer
3688 independent reflections
Radiation source: Enraf–Nonius FR591 rotating anode2638 reflections with I > 2σ(I)
10 cm confocal mirrors monochromatorRint = 0.039
Detector resolution: 9.091 pixels mm-1θmax = 25.0°, θmin = 3.0°
ϕ and ω scansh = 98
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
k = 1111
Tmin = 0.770, Tmax = 1.000l = 1818
16566 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.177H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0852P)2 + 0.5693P]
where P = (Fo2 + 2Fc2)/3
3688 reflections(Δ/σ)max < 0.001
301 parametersΔρmax = 0.45 e Å3
6 restraintsΔρmin = 0.30 e Å3
Crystal data top
C20H16N6O4·2H2Oγ = 103.131 (5)°
Mr = 440.42V = 1059.56 (12) Å3
Triclinic, P1Z = 2
a = 7.7549 (4) ÅMo Kα radiation
b = 9.3245 (7) ŵ = 0.11 mm1
c = 15.3374 (11) ÅT = 120 K
α = 100.749 (3)°0.38 × 0.22 × 0.07 mm
β = 90.533 (4)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
3688 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
2638 reflections with I > 2σ(I)
Tmin = 0.770, Tmax = 1.000Rint = 0.039
16566 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0606 restraints
wR(F2) = 0.177H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.45 e Å3
3688 reflectionsΔρmin = 0.30 e Å3
301 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2175 (2)0.6067 (2)1.41897 (13)0.0387 (5)
O20.3174 (3)0.6708 (2)1.28198 (14)0.0421 (5)
O31.1204 (2)0.9370 (2)0.69699 (13)0.0388 (5)
O40.9881 (2)0.8999 (2)0.56744 (12)0.0340 (5)
N10.2205 (3)0.5823 (2)1.34244 (16)0.0314 (5)
N20.2344 (3)0.0749 (2)1.26201 (14)0.0285 (5)
H2N0.31120.01491.30300.034*
N30.2300 (3)0.0459 (2)1.17772 (14)0.0279 (5)
N40.5188 (3)0.3449 (2)0.80714 (13)0.0268 (5)
N50.5234 (3)0.3707 (2)0.72248 (13)0.0272 (5)
H5N0.45080.30890.68030.033*
N61.0012 (3)0.8658 (2)0.64104 (14)0.0281 (5)
C10.1068 (3)0.4476 (3)1.32299 (17)0.0264 (6)
C20.0140 (3)0.3527 (3)1.38838 (18)0.0298 (6)
H20.01900.37401.44640.036*
C30.1262 (3)0.2277 (3)1.36776 (17)0.0275 (6)
H30.20840.16181.41190.033*
C40.1193 (3)0.1974 (3)1.28162 (16)0.0250 (6)
C50.0061 (3)0.2935 (3)1.21764 (18)0.0312 (6)
H50.01410.27211.15970.037*
C60.1168 (4)0.4174 (3)1.23830 (19)0.0330 (6)
H60.20050.48291.19460.040*
C70.3492 (3)0.0666 (3)1.16298 (17)0.0285 (6)
H70.43290.12301.20940.034*
C80.3571 (3)0.1086 (3)1.07560 (17)0.0270 (6)
C90.4848 (4)0.2336 (3)1.06298 (18)0.0371 (7)
H90.56280.29131.11140.044*
C100.4993 (4)0.2748 (3)0.98095 (18)0.0365 (7)
H100.58570.36170.97400.044*
C110.3902 (3)0.1917 (3)0.90894 (17)0.0267 (6)
C120.2590 (4)0.0692 (3)0.92239 (19)0.0399 (7)
H120.17920.01290.87430.048*
C130.2436 (4)0.0288 (3)1.00415 (19)0.0400 (7)
H130.15350.05541.01170.048*
C140.4076 (3)0.2275 (3)0.82018 (17)0.0274 (6)
H140.33560.16280.77160.033*
C150.6399 (3)0.4935 (3)0.70347 (16)0.0246 (6)
C160.7616 (3)0.5904 (3)0.76914 (16)0.0259 (6)
H160.76250.57210.82800.031*
C170.8788 (3)0.7112 (3)0.74798 (17)0.0267 (6)
H170.96260.77570.79200.032*
C180.8752 (3)0.7394 (3)0.66236 (17)0.0251 (6)
C190.7543 (3)0.6461 (3)0.59689 (17)0.0275 (6)
H190.75150.66700.53870.033*
C200.6385 (3)0.5231 (3)0.61741 (17)0.0274 (6)
H200.55690.45770.57270.033*
O1W0.3412 (2)0.1327 (2)0.56735 (12)0.0346 (5)
H1W0.2326 (16)0.095 (3)0.565 (2)0.052*
H2W0.386 (4)0.141 (4)0.5191 (12)0.052*
O2W0.4975 (2)0.9015 (2)0.59601 (13)0.0349 (5)
H3W0.434 (3)0.961 (3)0.590 (2)0.052*
H4W0.429 (3)0.826 (2)0.609 (2)0.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0431 (11)0.0390 (12)0.0363 (12)0.0049 (9)0.0133 (9)0.0185 (9)
O20.0404 (11)0.0315 (11)0.0495 (13)0.0048 (9)0.0040 (10)0.0116 (10)
O30.0373 (11)0.0373 (11)0.0372 (12)0.0057 (9)0.0012 (9)0.0132 (9)
O40.0418 (11)0.0321 (11)0.0311 (11)0.0050 (8)0.0072 (8)0.0175 (8)
N10.0298 (12)0.0267 (12)0.0424 (15)0.0093 (10)0.0104 (10)0.0146 (11)
N20.0320 (12)0.0277 (12)0.0272 (12)0.0028 (9)0.0048 (9)0.0136 (9)
N30.0344 (12)0.0279 (12)0.0247 (12)0.0085 (10)0.0076 (9)0.0115 (9)
N40.0301 (12)0.0279 (12)0.0259 (12)0.0073 (9)0.0064 (9)0.0129 (9)
N50.0301 (12)0.0277 (12)0.0227 (12)0.0000 (9)0.0038 (9)0.0106 (9)
N60.0319 (12)0.0258 (12)0.0296 (13)0.0075 (10)0.0078 (10)0.0115 (10)
C10.0244 (13)0.0230 (13)0.0345 (15)0.0062 (11)0.0077 (11)0.0110 (11)
C20.0325 (14)0.0327 (15)0.0309 (15)0.0132 (12)0.0116 (11)0.0155 (12)
C30.0282 (14)0.0284 (14)0.0279 (14)0.0059 (11)0.0065 (11)0.0108 (11)
C40.0262 (13)0.0246 (13)0.0278 (14)0.0089 (10)0.0078 (10)0.0095 (11)
C50.0352 (15)0.0308 (15)0.0302 (15)0.0045 (12)0.0016 (12)0.0161 (12)
C60.0336 (15)0.0291 (15)0.0368 (16)0.0054 (12)0.0007 (12)0.0102 (12)
C70.0289 (14)0.0270 (14)0.0300 (15)0.0029 (11)0.0040 (11)0.0111 (11)
C80.0278 (14)0.0264 (14)0.0296 (14)0.0070 (11)0.0068 (11)0.0115 (11)
C90.0369 (15)0.0376 (16)0.0303 (16)0.0083 (12)0.0002 (12)0.0116 (12)
C100.0377 (16)0.0336 (15)0.0336 (16)0.0077 (12)0.0036 (12)0.0146 (13)
C110.0275 (13)0.0264 (14)0.0299 (15)0.0074 (11)0.0068 (11)0.0132 (11)
C120.0414 (16)0.0389 (17)0.0334 (16)0.0101 (13)0.0032 (12)0.0157 (13)
C130.0405 (16)0.0368 (16)0.0383 (17)0.0111 (13)0.0025 (13)0.0206 (13)
C140.0300 (14)0.0240 (14)0.0284 (14)0.0030 (11)0.0031 (11)0.0095 (11)
C150.0257 (13)0.0219 (13)0.0287 (14)0.0074 (10)0.0074 (10)0.0088 (11)
C160.0298 (14)0.0286 (14)0.0220 (13)0.0084 (11)0.0061 (10)0.0097 (11)
C170.0283 (14)0.0256 (14)0.0264 (14)0.0049 (11)0.0033 (10)0.0073 (11)
C180.0248 (13)0.0227 (13)0.0312 (15)0.0066 (10)0.0080 (11)0.0121 (11)
C190.0327 (14)0.0280 (14)0.0259 (14)0.0085 (11)0.0073 (11)0.0131 (11)
C200.0295 (14)0.0263 (14)0.0264 (14)0.0035 (11)0.0028 (11)0.0090 (11)
O1W0.0327 (11)0.0375 (11)0.0319 (11)0.0007 (9)0.0043 (8)0.0118 (9)
O2W0.0358 (11)0.0304 (11)0.0409 (12)0.0022 (8)0.0049 (9)0.0192 (9)
Geometric parameters (Å, º) top
O1—N11.238 (3)C8—C131.382 (4)
O2—N11.235 (3)C8—C91.393 (4)
O3—N61.235 (3)C9—C101.381 (4)
O4—N61.237 (3)C9—H90.9500
N1—C11.444 (3)C10—C111.379 (4)
N2—C41.364 (3)C10—H100.9500
N2—N31.371 (3)C11—C121.395 (4)
N2—H2N0.8796C11—C141.461 (3)
N3—C71.288 (3)C12—C131.374 (4)
N4—C141.280 (3)C12—H120.9500
N4—N51.364 (3)C13—H130.9500
N5—C151.368 (3)C14—H140.9500
N5—H5N0.8799C15—C201.398 (3)
N6—C181.442 (3)C15—C161.406 (4)
C1—C61.384 (4)C16—C171.370 (3)
C1—C21.393 (4)C16—H160.9500
C2—C31.377 (3)C17—C181.388 (3)
C2—H20.9500C17—H170.9500
C3—C41.405 (3)C18—C191.389 (4)
C3—H30.9500C19—C201.376 (3)
C4—C51.404 (4)C19—H190.9500
C5—C61.365 (4)C20—H200.9500
C5—H50.9500O1W—H1W0.833 (10)
C6—H60.9500O1W—H2W0.831 (10)
C7—C81.463 (3)O2W—H3W0.839 (10)
C7—H70.9500O2W—H4W0.836 (10)
O2—N1—O1121.7 (2)C10—C9—C8120.9 (3)
O2—N1—C1119.1 (2)C10—C9—H9119.6
O1—N1—C1119.3 (2)C8—C9—H9119.6
C4—N2—N3119.5 (2)C9—C10—C11120.9 (2)
C4—N2—H2N120.4C9—C10—H10119.5
N3—N2—H2N120.1C11—C10—H10119.5
C7—N3—N2115.9 (2)C10—C11—C12118.1 (2)
C14—N4—N5116.7 (2)C10—C11—C14122.4 (2)
N4—N5—C15119.9 (2)C12—C11—C14119.5 (2)
N4—N5—H5N119.9C13—C12—C11121.0 (3)
C15—N5—H5N120.2C13—C12—H12119.5
O3—N6—O4121.8 (2)C11—C12—H12119.5
O3—N6—C18118.8 (2)C12—C13—C8121.0 (2)
O4—N6—C18119.5 (2)C12—C13—H13119.5
C6—C1—C2121.1 (2)C8—C13—H13119.5
C6—C1—N1119.0 (2)N4—C14—C11120.8 (2)
C2—C1—N1119.9 (2)N4—C14—H14119.6
C3—C2—C1119.2 (2)C11—C14—H14119.6
C3—C2—H2120.4N5—C15—C20119.6 (2)
C1—C2—H2120.4N5—C15—C16121.0 (2)
C2—C3—C4120.2 (2)C20—C15—C16119.4 (2)
C2—C3—H3119.9C17—C16—C15119.8 (2)
C4—C3—H3119.9C17—C16—H16120.1
N2—C4—C3119.3 (2)C15—C16—H16120.1
N2—C4—C5121.4 (2)C16—C17—C18120.1 (2)
C3—C4—C5119.3 (2)C16—C17—H17120.0
C6—C5—C4120.3 (2)C18—C17—H17120.0
C6—C5—H5119.9C17—C18—C19120.9 (2)
C4—C5—H5119.9C17—C18—N6119.3 (2)
C5—C6—C1119.9 (3)C19—C18—N6119.8 (2)
C5—C6—H6120.0C20—C19—C18119.2 (2)
C1—C6—H6120.0C20—C19—H19120.4
N3—C7—C8120.8 (2)C18—C19—H19120.4
N3—C7—H7119.6C19—C20—C15120.6 (2)
C8—C7—H7119.6C19—C20—H20119.7
C13—C8—C9118.1 (2)C15—C20—H20119.7
C13—C8—C7122.8 (2)H1W—O1W—H2W117 (3)
C9—C8—C7119.1 (2)H3W—O2W—H4W106 (3)
C4—N2—N3—C7176.2 (2)C9—C10—C11—C14176.8 (2)
C14—N4—N5—C15179.5 (2)C10—C11—C12—C132.6 (4)
O2—N1—C1—C63.6 (3)C14—C11—C12—C13177.3 (3)
O1—N1—C1—C6177.0 (2)C11—C12—C13—C80.3 (5)
O2—N1—C1—C2174.6 (2)C9—C8—C13—C121.6 (4)
O1—N1—C1—C24.8 (3)C7—C8—C13—C12177.9 (3)
C6—C1—C2—C30.6 (4)N5—N4—C14—C11178.8 (2)
N1—C1—C2—C3177.6 (2)C10—C11—C14—N44.7 (4)
C1—C2—C3—C40.5 (4)C12—C11—C14—N4175.3 (2)
N3—N2—C4—C3179.1 (2)N4—N5—C15—C20177.1 (2)
N3—N2—C4—C51.1 (3)N4—N5—C15—C163.0 (3)
C2—C3—C4—N2178.5 (2)N5—C15—C16—C17178.9 (2)
C2—C3—C4—C51.7 (4)C20—C15—C16—C170.9 (4)
N2—C4—C5—C6178.3 (2)C15—C16—C17—C181.2 (4)
C3—C4—C5—C61.9 (4)C16—C17—C18—C190.3 (4)
C4—C5—C6—C10.8 (4)C16—C17—C18—N6179.1 (2)
C2—C1—C6—C50.5 (4)O3—N6—C18—C177.1 (3)
N1—C1—C6—C5177.7 (2)O4—N6—C18—C17173.2 (2)
N2—N3—C7—C8179.8 (2)O3—N6—C18—C19171.7 (2)
N3—C7—C8—C132.3 (4)O4—N6—C18—C197.9 (3)
N3—C7—C8—C9178.2 (2)C17—C18—C19—C200.9 (4)
C13—C8—C9—C101.1 (4)N6—C18—C19—C20177.9 (2)
C7—C8—C9—C10178.4 (2)C18—C19—C20—C151.2 (4)
C8—C9—C10—C111.3 (4)N5—C15—C20—C19179.9 (2)
C9—C10—C11—C123.1 (4)C16—C15—C20—C190.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1w···O4i0.83 (2)2.32 (2)3.084 (2)153 (2)
O1W—H2w···O2wii0.83 (2)2.01 (2)2.808 (3)163 (3)
N5—H5n···O1w0.882.173.021 (3)163
O2W—H3w···O1wiii0.84 (3)1.98 (3)2.800 (3)165 (3)
O2W—H4w···O1iv0.84 (2)2.28 (2)3.061 (3)156 (3)
O2W—H4w···O2iv0.84 (2)2.45 (2)3.204 (3)150 (3)
N2—H2n···O2wv0.882.092.959 (3)172
C7—H7···O2vi0.952.483.374 (3)157
C14—H14···O3i0.952.453.338 (3)156
Symmetry codes: (i) x1, y1, z; (ii) x+1, y+1, z+1; (iii) x, y+1, z; (iv) x, y, z+2; (v) x+1, y+1, z+2; (vi) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC20H16N6O4·2H2O
Mr440.42
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)7.7549 (4), 9.3245 (7), 15.3374 (11)
α, β, γ (°)100.749 (3), 90.533 (4), 103.131 (5)
V3)1059.56 (12)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.38 × 0.22 × 0.07
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.770, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
16566, 3688, 2638
Rint0.039
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.177, 1.09
No. of reflections3688
No. of parameters301
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.45, 0.30

Computer programs: , DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1w···O4i0.833 (17)2.32 (2)3.084 (2)153 (2)
O1W—H2w···O2wii0.83 (2)2.01 (2)2.808 (3)163 (3)
N5—H5n···O1w0.882.173.021 (3)163
O2W—H3w···O1wiii0.84 (3)1.98 (3)2.800 (3)165 (3)
O2W—H4w···O1iv0.84 (2)2.28 (2)3.061 (3)156 (3)
O2W—H4w···O2iv0.84 (2)2.45 (2)3.204 (3)150 (3)
N2—H2n···O2wv0.882.092.959 (3)172
C7—H7···O2vi0.952.483.374 (3)157
C14—H14···O3i0.952.453.338 (3)156
Symmetry codes: (i) x1, y1, z; (ii) x+1, y+1, z+1; (iii) x, y+1, z; (iv) x, y, z+2; (v) x+1, y+1, z+2; (vi) x+1, y+1, z.
 

Footnotes

Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.

Acknowledgements

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES (Brazil).

References

First citationBaddeley, T. C., França, L. de S., Howie, R. A., de Lima, G. M., Skakle, J. M. S., de Souza, J. D., Wardell, J. L. & Wardell, S. M. S. V. (2009). Z. Kristallogr. 224, 213–224.  Web of Science CSD CrossRef CAS Google Scholar
First citationBengelsdorf, I. S. (1958). J. Am. Chem. Soc. 23, 243–246.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFerguson, G., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005). Acta Cryst. C61, o613–o616.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGlidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2006). Acta Cryst. B62, 666–675.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationLow, J. N., Wardell, J. L. & Glidewell, C. (2006). Acta Cryst. E62, o1816–o1818.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWardell, J. L., Low, J. N. & Glidewell, C. (2006). Acta Cryst. E62, o2204–o2206.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWardell, J. L., Skakle, J. M. S., Low, J. N. & Glidewell, C. (2005). Acta Cryst. C61, o10–o14.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 1| January 2010| Pages o191-o192
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds