organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2′-[Octane-1,8-diyldi­oxy­bis­(nitrilo­methyl­­idyne)]diphenol

aZhaosheng Office of Gansu Province, Lanzhou 730030, People's Republic of China, and bSchool of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China
*Correspondence e-mail: xuli@mail.lzjtu.cn

(Received 17 December 2009; accepted 19 December 2009; online 24 December 2009)

The complete mol­ecule of the title compound, C22H28N2O4, is generated by a crystallographic inversion centre at the mid-point of the central C—C bond. The two benzene rings are parallel to each other with a perpendicular inter­planar spacing of 1.488 (2) Å. Intra­molecular O—H⋯N hydrogen bonds generate two six-membered rings with S(6) motifs. In the crystal, weak inter­molecular C—H⋯O hydrogen bonds link neighbouring mol­ecules into an infinite three-dimensional network, which is further stabilized by weak C—H⋯π inter­actions.

Related literature

For background to oxime-based salen-type tetra­dentate ligands, see: Dong et al. (2007[Dong, W.-K., Duan, J.-G. & Liu, G.-L. (2007). Transition Met. Chem. 32, 702-705.], 2008[Dong, W.-K. & Duan, J.-G. (2008). J. Coord. Chem. 61, 781-788.]); Dong, He et al. (2009[Dong, W.-K., He, X.-N., Yan, H.-B., Lv, Z.-W., Chen, X., Zhao, C.-Y. & Tang, X.-L. (2009). Polyhedron, 28, 1419-1428.]); Kanderal et al. (2005[Kanderal, O. M., Kozlowski, H., Dobosz, A., Swiatek-Kozlowska, J., Meyer, F. & Fritsky, I. O. (2005). Dalton Trans. pp. 1428-1437.]); Fritsky et al. (2006[Fritsky, I. O., Kozlowski, H., Kanderal, O. M., Haukka, M., Swiatek- Kozlowska, J., Gumienna-Kontecka, E. & Meyer, F. (2006). Chem. Commun. pp. 4125-4127.]). For the synthesis, see: Dong, Zhao et al. (2009[Dong, W.-K., Zhao, C.-Y., Sun, Y.-X., Tang, X.-L. & He, X.-N. (2009). Inorg. Chem. Commun. 12, 234-236.]).

[Scheme 1]

Experimental

Crystal data
  • C22H28N2O4

  • Mr = 384.46

  • Monoclinic, P 21 /n

  • a = 10.5003 (12) Å

  • b = 5.3607 (8) Å

  • c = 18.612 (2) Å

  • β = 92.909 (1)°

  • V = 1046.3 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.32 × 0.16 × 0.07 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.974, Tmax = 0.994

  • 5181 measured reflections

  • 1849 independent reflections

  • 1109 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.110

  • S = 1.02

  • 1849 reflections

  • 127 parameters

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯O1i 0.93 2.63 3.511 (2) 158
O2—H2⋯N1 0.82 1.92 2.634 (3) 145
C9—H9⋯Cg1 0.93 3.13 3.844 (2) 135
Symmetry code: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]. Cg1 is the centroid of the C6–C11 ring.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Much attention has been focused on oxime-based salen-type tetradentate ligands in recent years due to their high stability against imine metathesis reactions (Dong et al., 2007; Dong et al. 2008; Dong, He et al. 2009). Also, the oxime ligands are strong donors and therefore the oxime-containing ligands were found to efficiently stabilize high oxidation states of metal ions like Cu(III) and Ni(III) (Kanderal et al., 2005; Fritsky et al., 2006). Herein, we report synthesis and structure of salen-type bis-oxime ligands, 2,2'-[1,1'-(octane-1,8-diyldioxydinitrilo)dimthylidyne]diphenol.

The centrosymmetric unit of the title compound (Fig. 1) is generated by a crystallographic inversion centre (symmetry code: -x, -y, -z) at the mid-point of the the central C—C bond and there is a crystallographic twofold screw axis (symmetry code: 1/2 - x, 1/2 + y, 1/2 - z). The two benzene rings of the title compound are parallel to each other with a perpendicular interplanar spacing of ca 1.488 (2) Å. In each title compound molecule, there exist two strong intramolecular O—H···N hydrogen bonds which generate two six-membered rings, producing two S(6) ring motifs (Fig. 1).

In the crystal structure, weak intermolecular C—H···O hydrogen bonds link neighbouring molecules into an infinite three-dimensional supramolecular structure (Table 1, Fig. 2) in which they may be effective in the stabilization of the structure. In additon, the crystal structure is further stabilized by C—H···π(Ph) interactions (C···π(centroid)= 3.844 (2) Å) (Fig. 2). With the help of intermolecular C—H···O hydrogen bonds and C—H···π(Ph) interactions, molecules form an infinite zigzag chain supramolecular frame viewed along b axis (Fig. 3).

Related literature top

For background to oxime-based salen-type tetradentate ligands, see: Dong et al. (2007, 2008); Dong, He et al. (2009); Kanderal et al. (2005); Fritsky et al. (2006). For synthesis, see: Dong, Zhao et al. (2009).

Experimental top

2,2'-[1,1'-(Octane-1,8-diyldioxydinitrilo)dimethylidyne]diphenol was synthesized according to our previous work (Dong, Zhao et al., 2009). To an ethanol solution (3 ml) of salicylaldehyde (326.1 mg, 2.67 mmol) was added an ethanol absolute (3 ml) of 1, 8-bis(aminooxy)octane (199.8 mg, 1.23 mmol). The mixture solution was stirred at 328–333 K for 24 h. After reaction solution was cooled to room temperature and Put aside for ten minutes, the white precipitate was formed. Then filtered under reduced pressure and washed successively with ethanol (2 ml) and n-hexane (6 ml), respectively. The product was dried under vacuum and purified with recrystallization from ethanol to yield 191.4 mg of the title compound. Yield, 49.93%. m. p. 348–349 K. Anal. Calcd. for C22H28N2O4: C, 68.73; H, 7.34; N, 7.29. Found: C, 68.65; H, 7.31; N, 7.41.

Colorless needle-like single crystals suitable for X-ray diffraction studies were obtained after one week by slow evaporation from a n-hexane solution of the title compound.

Refinement top

H atoms were placed in calculated positions and non-H atoms were refined anisotropically. The remaining H atoms were treated as riding atoms with distances C—H = 0.97 Å (CH2), 0.93 Å (CH), 0.82 Å (OH), and Uiso(H) = 1.20 Ueq(C), 1.50 Ueq(O).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecule structure of the title compound with the atom numbering scheme [Symmetry codes: -x + 2,-y - 1,-z + 1]. Displacement ellipsoids for non-hydrogen atoms are drawn at the 30% probability level.
[Figure 2] Fig. 2. Part of supramolecular structure of the title compound along the b axis, formed by intra- and inter-molecule hydrogen bonds as well as C—H···π(Ph) interaction (dashed lines). H atoms not involved in hydrogen bonding have been omitted for clarity. Colour code: dark gray: C; red: O; pale blue: N.
[Figure 3] Fig. 3. Part of zigzag supramolecular chains viewed along the b axis. Colour code: dark gray: C; red: O; pale blue: N; white: H.
2,2'-[Octane-1,8-diyldioxybis(nitrilomethylidyne)]diphenol top
Crystal data top
C22H28N2O4F(000) = 412
Mr = 384.46Dx = 1.220 Mg m3
Monoclinic, P21/nMelting point = 348–349 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 10.5003 (12) ÅCell parameters from 1194 reflections
b = 5.3607 (8) Åθ = 3.7–25.1°
c = 18.612 (2) ŵ = 0.08 mm1
β = 92.909 (1)°T = 293 K
V = 1046.3 (2) Å3Needle-like, colorless
Z = 20.32 × 0.16 × 0.07 mm
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
1849 independent reflections
Radiation source: fine-focus sealed tube1109 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
phi and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.974, Tmax = 0.994k = 65
5181 measured reflectionsl = 2220
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0455P)2]
where P = (Fo2 + 2Fc2)/3
1849 reflections(Δ/σ)max < 0.001
127 parametersΔρmax = 0.12 e Å3
0 restraintsΔρmin = 0.13 e Å3
Crystal data top
C22H28N2O4V = 1046.3 (2) Å3
Mr = 384.46Z = 2
Monoclinic, P21/nMo Kα radiation
a = 10.5003 (12) ŵ = 0.08 mm1
b = 5.3607 (8) ÅT = 293 K
c = 18.612 (2) Å0.32 × 0.16 × 0.07 mm
β = 92.909 (1)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
1849 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1109 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 0.994Rint = 0.047
5181 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.02Δρmax = 0.12 e Å3
1849 reflectionsΔρmin = 0.13 e Å3
127 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.62173 (12)0.3737 (3)0.63398 (8)0.0525 (4)
O10.72297 (10)0.2054 (2)0.64425 (6)0.0594 (4)
O20.42211 (13)0.5954 (3)0.57083 (7)0.0901 (5)
H20.48000.49290.57440.135*
C10.73413 (16)0.0613 (4)0.58033 (9)0.0550 (5)
H1A0.74580.17060.53960.066*
H1B0.65730.03590.57060.066*
C20.84680 (16)0.1083 (3)0.59128 (9)0.0531 (5)
H2A0.83190.22200.63050.064*
H2B0.92160.00950.60480.064*
C30.87221 (16)0.2569 (3)0.52490 (9)0.0544 (5)
H3A0.88600.14240.48570.065*
H3B0.79720.35540.51160.065*
C40.98565 (16)0.4291 (3)0.53369 (8)0.0533 (5)
H4A0.97040.54780.57160.064*
H4B1.06000.33150.54880.064*
C50.60867 (15)0.5122 (3)0.68811 (9)0.0500 (5)
H50.66360.49190.72850.060*
C60.51094 (14)0.7007 (3)0.68884 (9)0.0467 (5)
C70.42313 (17)0.7368 (4)0.63135 (10)0.0604 (5)
C80.33222 (18)0.9214 (4)0.63483 (12)0.0762 (6)
H80.27270.94310.59660.091*
C90.32837 (18)1.0723 (4)0.69355 (12)0.0719 (6)
H90.26711.19720.69480.086*
C100.41430 (17)1.0414 (4)0.75083 (11)0.0636 (6)
H100.41161.14380.79110.076*
C110.50416 (16)0.8572 (3)0.74777 (10)0.0561 (5)
H110.56260.83650.78650.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0484 (8)0.0534 (10)0.0557 (10)0.0098 (8)0.0005 (7)0.0013 (8)
O10.0566 (7)0.0647 (9)0.0562 (8)0.0184 (7)0.0025 (6)0.0073 (7)
O20.0960 (10)0.1020 (12)0.0687 (10)0.0358 (10)0.0303 (8)0.0248 (9)
C10.0586 (11)0.0525 (12)0.0542 (12)0.0051 (10)0.0037 (9)0.0047 (9)
C20.0550 (10)0.0472 (11)0.0574 (12)0.0033 (10)0.0049 (8)0.0006 (9)
C30.0582 (11)0.0475 (12)0.0574 (11)0.0047 (10)0.0018 (9)0.0020 (10)
C40.0598 (10)0.0450 (11)0.0549 (11)0.0050 (9)0.0018 (9)0.0017 (9)
C50.0478 (10)0.0566 (12)0.0454 (11)0.0038 (9)0.0012 (8)0.0004 (10)
C60.0447 (10)0.0476 (11)0.0477 (11)0.0005 (9)0.0027 (8)0.0030 (9)
C70.0610 (11)0.0635 (14)0.0560 (12)0.0096 (11)0.0055 (9)0.0046 (11)
C80.0681 (13)0.0830 (17)0.0756 (15)0.0231 (13)0.0155 (11)0.0012 (13)
C90.0627 (12)0.0621 (14)0.0912 (17)0.0176 (11)0.0062 (12)0.0015 (13)
C100.0648 (12)0.0577 (14)0.0693 (14)0.0042 (11)0.0129 (10)0.0093 (11)
C110.0538 (10)0.0603 (13)0.0542 (12)0.0001 (10)0.0026 (9)0.0028 (10)
Geometric parameters (Å, º) top
N1—C51.265 (2)C4—H4A0.9700
N1—O11.3997 (16)C4—H4B0.9700
O1—C11.4281 (19)C5—C61.441 (2)
O2—C71.357 (2)C5—H50.9300
O2—H20.8200C6—C111.386 (2)
C1—C21.498 (2)C6—C71.390 (2)
C1—H1A0.9700C7—C81.379 (3)
C1—H1B0.9700C8—C91.362 (3)
C2—C31.505 (2)C8—H80.9300
C2—H2A0.9700C9—C101.371 (2)
C2—H2B0.9700C9—H90.9300
C3—C41.509 (2)C10—C111.369 (2)
C3—H3A0.9700C10—H100.9300
C3—H3B0.9700C11—H110.9300
C4—C4i1.510 (3)
C5—N1—O1112.46 (14)C3—C4—H4B108.7
N1—O1—C1109.18 (12)C4i—C4—H4B108.7
C7—O2—H2109.5H4A—C4—H4B107.6
O1—C1—C2108.22 (14)N1—C5—C6121.70 (15)
O1—C1—H1A110.1N1—C5—H5119.1
C2—C1—H1A110.1C6—C5—H5119.1
O1—C1—H1B110.1C11—C6—C7117.79 (16)
C2—C1—H1B110.1C11—C6—C5119.83 (15)
H1A—C1—H1B108.4C7—C6—C5122.37 (16)
C1—C2—C3112.42 (15)O2—C7—C8117.61 (17)
C1—C2—H2A109.1O2—C7—C6122.55 (17)
C3—C2—H2A109.1C8—C7—C6119.84 (18)
C1—C2—H2B109.1C9—C8—C7120.86 (18)
C3—C2—H2B109.1C9—C8—H8119.6
H2A—C2—H2B107.9C7—C8—H8119.6
C2—C3—C4113.99 (14)C8—C9—C10120.44 (19)
C2—C3—H3A108.8C8—C9—H9119.8
C4—C3—H3A108.8C10—C9—H9119.8
C2—C3—H3B108.8C11—C10—C9118.86 (19)
C4—C3—H3B108.8C11—C10—H10120.6
H3A—C3—H3B107.7C9—C10—H10120.6
C3—C4—C4i114.06 (17)C10—C11—C6122.20 (17)
C3—C4—H4A108.7C10—C11—H11118.9
C4i—C4—H4A108.7C6—C11—H11118.9
C5—N1—O1—C1178.24 (15)C11—C6—C7—C80.9 (3)
N1—O1—C1—C2177.28 (13)C5—C6—C7—C8179.52 (17)
O1—C1—C2—C3176.21 (14)O2—C7—C8—C9179.25 (19)
C1—C2—C3—C4179.63 (15)C6—C7—C8—C91.1 (3)
C2—C3—C4—C4i177.76 (19)C7—C8—C9—C100.8 (3)
O1—N1—C5—C6179.40 (14)C8—C9—C10—C110.3 (3)
N1—C5—C6—C11176.61 (17)C9—C10—C11—C60.2 (3)
N1—C5—C6—C71.9 (3)C7—C6—C11—C100.5 (3)
C11—C6—C7—O2179.42 (17)C5—C6—C11—C10179.12 (16)
C5—C6—C7—O20.8 (3)
Symmetry code: (i) x+2, y1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C6–C11 ring.
D—H···AD—HH···AD···AD—H···A
C11—H11···O1ii0.932.633.511 (2)158
O2—H2···N10.821.922.634 (3)145
C9—H9···Cg10.933.133.844 (2)135
Symmetry code: (ii) x+3/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC22H28N2O4
Mr384.46
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)10.5003 (12), 5.3607 (8), 18.612 (2)
β (°) 92.909 (1)
V3)1046.3 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.32 × 0.16 × 0.07
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.974, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
5181, 1849, 1109
Rint0.047
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.110, 1.02
No. of reflections1849
No. of parameters127
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.12, 0.13

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C6–C11 ring.
D—H···AD—HH···AD···AD—H···A
C11—H11···O1i0.932.633.511 (2)157.8
O2—H2···N10.8201.9202.634 (3)145.02
C9—H9···Cg10.9303.1283.844 (2)135.19
Symmetry code: (i) x+3/2, y+1/2, z+3/2.
 

Acknowledgements

This work was supported by the Foundation of the Education Department of Gansu Province (0904–11) and the `Jing Lan' Talent Engineering Funds of Lanzhou Jiaotong University, which are gratefully acknowledged.

References

First citationDong, W.-K. & Duan, J.-G. (2008). J. Coord. Chem. 61, 781–788.  Web of Science CSD CrossRef CAS Google Scholar
First citationDong, W.-K., Duan, J.-G. & Liu, G.-L. (2007). Transition Met. Chem. 32, 702–705.  Web of Science CSD CrossRef CAS Google Scholar
First citationDong, W.-K., He, X.-N., Yan, H.-B., Lv, Z.-W., Chen, X., Zhao, C.-Y. & Tang, X.-L. (2009). Polyhedron, 28, 1419–1428.  Web of Science CSD CrossRef CAS Google Scholar
First citationDong, W.-K., Zhao, C.-Y., Sun, Y.-X., Tang, X.-L. & He, X.-N. (2009). Inorg. Chem. Commun. 12, 234–236.  Web of Science CSD CrossRef CAS Google Scholar
First citationFritsky, I. O., Kozlowski, H., Kanderal, O. M., Haukka, M., Swiatek- Kozlowska, J., Gumienna-Kontecka, E. & Meyer, F. (2006). Chem. Commun. pp. 4125–4127.  Web of Science CSD CrossRef Google Scholar
First citationKanderal, O. M., Kozlowski, H., Dobosz, A., Swiatek-Kozlowska, J., Meyer, F. & Fritsky, I. O. (2005). Dalton Trans. pp. 1428–1437.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds