metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[di-μ-iodido-dicopper(I)(CuCu)]bis­­(μ-4,4′-di-3-pyridyl-2,2′-disulfanediyldi­pyrimidine)]

aSchool of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China, and School of Material Science and Engineering, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: zhuhaibin@seu.edu.cn

(Received 28 November 2009; accepted 5 December 2009; online 12 December 2009)

The title complex, [Cu2I2(C18H12N6S2)2]n, contains a Cu2I2 core with a Cu—Cu distance of 2.6935 (14) Å. The CuI atom is coordinated by two bridging 4,4′-di-3-pyridyl-2,2′-disulfanediyldipyrimidine ligands and two bridging I atoms, forming a double chain.

Related literature

For coordination polymers with 4,4′-dipyridine­disulfide, see: Horikoshi & Mochida (2006[Horikoshi, R. & Mochida, T. (2006). Coord. Chem. Rev. 250, 2595-2609.]). For coordination polymers with 2,2′-dithio­bis(4-pyridin-4-yl-pyrimidine), see: Zhu et al. (2009[Zhu, H.-B., Wang, H., Kong, F., Gou, S.-H. & Sun, Y.-M. (2009). J. Mol. Struct. 936, 99-103.]). For the structure of free 2,2′-dithio­bis(3-pyridin-4-yl-pyrimidine), see: Ji et al. (2009[Ji, J.-F., Li, L. & Zhu, H.-B. (2009). Acta Cryst. E65, o1253.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2I2(C18H12N6S2)2]

  • Mr = 1133.86

  • Triclinic, [P \overline 1]

  • a = 8.5561 (6) Å

  • b = 10.7702 (8) Å

  • c = 11.9045 (8) Å

  • α = 98.110 (1)°

  • β = 107.193 (1)°

  • γ = 96.449 (1)°

  • V = 1023.66 (13) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 2.80 mm−1

  • T = 298 K

  • 0.19 × 0.15 × 0.12 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.611, Tmax = 0.715

  • 5395 measured reflections

  • 3568 independent reflections

  • 2956 reflections with I > 2σ(I)

  • Rint = 0.097

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.108

  • S = 0.99

  • 3568 reflections

  • 253 parameters

  • H-atom parameters constrained

  • Δρmax = 1.28 e Å−3

  • Δρmin = −1.03 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—I1 2.6550 (7)
Cu1—I1i 2.6579 (8)
Cu1—N1 2.037 (4)
Cu1—N6ii 2.060 (4)
Symmetry codes: (i) -x+1, -y+2, -z; (ii) x, y+1, z-1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, heterocyclic disulfide ligands have received increasing attention because of their conformationally defined dihedral angle (Horikoshi & Mochida, 2006). As continuation of our previous research (Zhu et al., 2009), we report here a copper(I) coordination polymer with a 2,2'-dithiobis(3-pyridin-4-ylpyrimidine) (L) ligand.

The CuI atom in the title complex has a tetrahedral coordination geometry completed by two N atoms from two different L ligands and two bridging I atoms (Fig. 1 and Table 1). The C—S—S—C torsion angle of 81.2 (2)° in L is almost identical with the free molecule (Ji et al., 2009). Alternative linkings of one Cu2I2 core and two bridging L ligands generate a one-dimensional double chain (Fig. 2).

Related literature top

For coordination polymers with 4,4'-dipyridinedisulfide, see: Horikoshi & Mochida (2006). For coordination polymers with 2,2'-dithiobis(4-pyridin-4-yl-pyrimidine), see: Zhu et al. (2009). For the structure of free 2,2'-dithiobis(3-pyridin-4-yl-pyrimidine), see: Ji et al. (2009).

Experimental top

A CH2Cl2 solution (5 ml) of ligand L (0.1 mmol) was slowly added into a CuI (0.1 mmol) solution in acetonitrile (10 ml). The mixture was kept on standing for 3 d to give single crystals suitable for X-ray diffraction analysis.

Refinement top

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). The highest residual electron density was found 0.98 Å from I1 and the deepest hole 0.92 Å from I1.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound with 30% probability displacement ellipsoids. H atoms have been omitted for clarity. [Symmetry codes: (i) -x + 1, -y + 2, -z; (ii) x, y + 1, z - 1.]
[Figure 2] Fig. 2. The one-dimensional double chain viewed along the a axis.
catena-Poly[[di-µ-iodido-dicopper(I)(CuCu)]bis(µ- 4,4'-di-3-pyridyl-2,2'-disulfanediyldipyrimidine)] top
Crystal data top
[Cu2I2(C18H12N6S2)2]Z = 1
Mr = 1133.86F(000) = 552
Triclinic, P1Dx = 1.839 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.5561 (6) ÅCell parameters from 3568 reflections
b = 10.7702 (8) Åθ = 2.3–25.5°
c = 11.9045 (8) ŵ = 2.80 mm1
α = 98.110 (1)°T = 298 K
β = 107.193 (1)°Block, yellow
γ = 96.449 (1)°0.19 × 0.15 × 0.12 mm
V = 1023.66 (13) Å3
Data collection top
Bruker APEXII CCD
diffractometer
3568 independent reflections
Radiation source: fine-focus sealed tube2956 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.097
ϕ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 710
Tmin = 0.611, Tmax = 0.715k = 1212
5395 measured reflectionsl = 1413
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0541P)2]
where P = (Fo2 + 2Fc2)/3
3568 reflections(Δ/σ)max = 0.001
253 parametersΔρmax = 1.28 e Å3
0 restraintsΔρmin = 1.03 e Å3
Crystal data top
[Cu2I2(C18H12N6S2)2]γ = 96.449 (1)°
Mr = 1133.86V = 1023.66 (13) Å3
Triclinic, P1Z = 1
a = 8.5561 (6) ÅMo Kα radiation
b = 10.7702 (8) ŵ = 2.80 mm1
c = 11.9045 (8) ÅT = 298 K
α = 98.110 (1)°0.19 × 0.15 × 0.12 mm
β = 107.193 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
3568 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2956 reflections with I > 2σ(I)
Tmin = 0.611, Tmax = 0.715Rint = 0.097
5395 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 0.99Δρmax = 1.28 e Å3
3568 reflectionsΔρmin = 1.03 e Å3
253 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.31696 (4)0.97725 (3)0.10525 (3)0.04697 (15)
Cu10.38873 (9)0.92391 (6)0.09670 (6)0.0503 (2)
S10.13540 (17)0.55124 (12)0.27577 (10)0.0447 (3)
S20.02067 (16)0.43336 (14)0.35509 (12)0.0498 (3)
N20.2094 (5)0.5182 (3)0.0809 (3)0.0340 (8)
C50.3021 (5)0.5258 (4)0.0900 (4)0.0328 (10)
N30.0948 (5)0.3267 (4)0.1271 (4)0.0426 (10)
N10.3815 (5)0.7322 (4)0.1296 (3)0.0387 (9)
C90.1455 (5)0.4513 (4)0.1466 (4)0.0340 (10)
N50.1235 (5)0.2820 (4)0.4999 (3)0.0381 (9)
C10.3142 (6)0.6574 (4)0.0705 (4)0.0356 (10)
H1A0.27280.69550.01270.043*
C60.2284 (5)0.4523 (4)0.0183 (4)0.0330 (10)
C100.1797 (6)0.3566 (5)0.4357 (4)0.0392 (11)
C30.4346 (6)0.5483 (5)0.2380 (4)0.0436 (11)
H3B0.47720.51300.29630.052*
C130.2302 (6)0.2187 (4)0.5638 (4)0.0381 (10)
C120.3936 (6)0.2331 (5)0.5625 (4)0.0480 (13)
H12A0.47040.18940.60670.058*
C40.3639 (6)0.4719 (5)0.1776 (4)0.0411 (11)
H4A0.35720.38420.19510.049*
N40.3312 (5)0.3777 (4)0.4277 (3)0.0453 (10)
C110.4371 (6)0.3147 (5)0.4933 (5)0.0515 (13)
H11A0.54610.32610.49250.062*
C20.4419 (6)0.6772 (5)0.2117 (4)0.0418 (11)
H2B0.49090.72840.25280.050*
C80.1115 (6)0.2636 (5)0.0281 (5)0.0457 (12)
H8A0.07660.17610.00870.055*
C70.1775 (6)0.3213 (4)0.0466 (4)0.0416 (11)
H7A0.18830.27390.11480.050*
C140.1671 (6)0.1341 (4)0.6336 (4)0.0380 (10)
C150.0011 (6)0.1112 (5)0.6209 (4)0.0475 (12)
H15A0.07610.15000.56910.057*
C160.0545 (7)0.0301 (5)0.6864 (5)0.0532 (14)
H16A0.16630.01410.67960.064*
C180.2701 (7)0.0733 (5)0.7125 (4)0.0456 (12)
H18A0.38270.08800.72170.055*
C170.0554 (7)0.0264 (5)0.7604 (4)0.0503 (13)
H17A0.01610.08250.80230.060*
N60.2191 (5)0.0053 (4)0.7765 (3)0.0442 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0504 (2)0.0489 (2)0.0526 (2)0.00536 (15)0.02987 (17)0.01773 (16)
Cu10.0647 (4)0.0437 (4)0.0576 (4)0.0113 (3)0.0319 (3)0.0285 (3)
S10.0595 (8)0.0464 (7)0.0346 (6)0.0117 (6)0.0179 (6)0.0187 (5)
S20.0478 (7)0.0725 (9)0.0424 (7)0.0181 (7)0.0204 (6)0.0338 (7)
N20.039 (2)0.034 (2)0.0308 (19)0.0039 (16)0.0112 (16)0.0143 (16)
C50.031 (2)0.036 (2)0.031 (2)0.0029 (19)0.0078 (18)0.0140 (19)
N30.045 (2)0.040 (2)0.049 (2)0.0049 (18)0.0167 (19)0.0225 (19)
N10.044 (2)0.038 (2)0.038 (2)0.0031 (17)0.0182 (18)0.0159 (17)
C90.035 (2)0.040 (3)0.028 (2)0.008 (2)0.0081 (19)0.0147 (19)
N50.042 (2)0.046 (2)0.0293 (19)0.0054 (18)0.0114 (17)0.0156 (17)
C10.042 (3)0.035 (2)0.036 (2)0.007 (2)0.018 (2)0.012 (2)
C60.033 (2)0.034 (2)0.033 (2)0.0050 (19)0.0091 (19)0.0131 (19)
C100.044 (3)0.045 (3)0.030 (2)0.004 (2)0.012 (2)0.012 (2)
C30.046 (3)0.053 (3)0.036 (2)0.008 (2)0.018 (2)0.008 (2)
C130.046 (3)0.040 (3)0.029 (2)0.004 (2)0.011 (2)0.012 (2)
C120.041 (3)0.060 (3)0.047 (3)0.012 (2)0.010 (2)0.030 (3)
C40.046 (3)0.039 (3)0.039 (3)0.005 (2)0.015 (2)0.008 (2)
N40.043 (2)0.057 (3)0.039 (2)0.006 (2)0.0127 (18)0.021 (2)
C110.038 (3)0.069 (4)0.051 (3)0.001 (3)0.013 (2)0.027 (3)
C20.046 (3)0.048 (3)0.036 (3)0.000 (2)0.018 (2)0.016 (2)
C80.051 (3)0.034 (3)0.052 (3)0.004 (2)0.015 (2)0.014 (2)
C70.056 (3)0.031 (2)0.039 (3)0.006 (2)0.017 (2)0.010 (2)
C140.046 (3)0.037 (2)0.033 (2)0.005 (2)0.016 (2)0.010 (2)
C150.046 (3)0.059 (3)0.040 (3)0.004 (2)0.014 (2)0.017 (2)
C160.050 (3)0.070 (4)0.045 (3)0.001 (3)0.022 (2)0.018 (3)
C180.049 (3)0.048 (3)0.045 (3)0.004 (2)0.018 (2)0.021 (2)
C170.064 (3)0.048 (3)0.047 (3)0.002 (3)0.029 (3)0.018 (2)
N60.054 (3)0.042 (2)0.041 (2)0.0064 (19)0.0178 (19)0.0175 (18)
Geometric parameters (Å, º) top
Cu1—I12.6550 (7)C3—H3B0.9300
Cu1—I1i2.6579 (8)C13—C121.394 (7)
Cu1—N12.037 (4)C13—C141.477 (6)
Cu1—N6ii2.060 (4)C12—C111.379 (7)
Cu1—Cu1i2.6935 (14)C12—H12A0.9300
S1—C91.779 (5)C4—H4A0.9300
S1—S22.0183 (17)N4—C111.327 (6)
S2—C101.778 (5)C11—H11A0.9300
N2—C91.323 (5)C2—H2B0.9300
N2—C61.352 (6)C8—C71.367 (6)
C5—C11.390 (6)C8—H8A0.9300
C5—C41.389 (6)C7—H7A0.9300
C5—C61.466 (6)C14—C181.379 (7)
N3—C91.329 (6)C14—C151.392 (7)
N3—C81.329 (6)C15—C161.376 (7)
N1—C21.333 (6)C15—H15A0.9300
N1—C11.330 (5)C16—C171.349 (7)
N5—C131.324 (6)C16—H16A0.9300
N5—C101.328 (6)C18—N61.336 (6)
C1—H1A0.9300C18—H18A0.9300
C6—C71.391 (6)C17—N61.344 (7)
C10—N41.325 (6)C17—H17A0.9300
C3—C21.370 (7)N6—Cu1iii2.060 (4)
C3—C41.368 (6)
Cu1—I1—Cu1i60.92 (3)C12—C13—C14123.0 (4)
N1—Cu1—N6ii115.68 (16)C11—C12—C13117.4 (4)
N1—Cu1—I1106.36 (10)C11—C12—H12A121.3
N6ii—Cu1—I1106.25 (12)C13—C12—H12A121.3
N1—Cu1—I1i105.02 (11)C3—C4—C5119.8 (4)
N6ii—Cu1—I1i104.97 (12)C3—C4—H4A120.1
I1—Cu1—I1i119.08 (3)C5—C4—H4A120.1
N1—Cu1—Cu1i122.23 (11)C10—N4—C11113.9 (4)
N6ii—Cu1—Cu1i122.06 (12)N4—C11—C12123.3 (5)
I1—Cu1—Cu1i59.59 (2)N4—C11—H11A118.3
I1i—Cu1—Cu1i59.49 (3)C12—C11—H11A118.3
C9—S1—S2104.18 (16)N1—C2—C3122.6 (4)
C10—S2—S1104.60 (17)N1—C2—H2B118.7
C9—N2—C6116.6 (4)C3—C2—H2B118.7
C1—C5—C4116.6 (4)C7—C8—N3123.1 (4)
C1—C5—C6119.6 (4)C7—C8—H8A118.5
C4—C5—C6123.8 (4)N3—C8—H8A118.5
C9—N3—C8114.2 (4)C8—C7—C6118.6 (4)
C2—N1—C1117.8 (4)C8—C7—H7A120.7
C2—N1—Cu1121.4 (3)C6—C7—H7A120.7
C1—N1—Cu1120.8 (3)C18—C14—C15117.0 (4)
N2—C9—N3128.4 (4)C18—C14—C13122.1 (4)
N2—C9—S1110.9 (3)C15—C14—C13120.8 (4)
N3—C9—S1120.7 (3)C14—C15—C16118.8 (5)
C13—N5—C10116.9 (4)C14—C15—H15A120.6
N1—C1—C5123.9 (4)C16—C15—H15A120.6
N1—C1—H1A118.0C17—C16—C15120.0 (5)
C5—C1—H1A118.0C17—C16—H16A120.0
N2—C6—C7119.1 (4)C15—C16—H16A120.0
N2—C6—C5116.7 (4)N6—C18—C14124.5 (5)
C7—C6—C5124.2 (4)N6—C18—H18A117.8
N4—C10—N5128.4 (4)C14—C18—H18A117.8
N4—C10—S2120.6 (3)C16—C17—N6123.1 (5)
N5—C10—S2111.1 (3)C16—C17—H17A118.5
C2—C3—C4119.3 (4)N6—C17—H17A118.5
C2—C3—H3B120.4C18—N6—C17116.6 (4)
C4—C3—H3B120.4C18—N6—Cu1iii120.4 (4)
N5—C13—C12120.0 (4)C17—N6—Cu1iii122.7 (3)
N5—C13—C14117.0 (4)
Cu1i—I1—Cu1—N1118.18 (12)C10—N5—C13—C120.7 (7)
Cu1i—I1—Cu1—N6ii118.04 (12)C10—N5—C13—C14179.0 (4)
Cu1i—I1—Cu1—I1i0.0N5—C13—C12—C110.1 (7)
C9—S1—S2—C1081.1 (2)C14—C13—C12—C11179.7 (4)
N6ii—Cu1—N1—C275.1 (4)C2—C3—C4—C50.6 (7)
I1—Cu1—N1—C2167.2 (3)C1—C5—C4—C31.1 (6)
I1i—Cu1—N1—C240.1 (4)C6—C5—C4—C3178.3 (4)
Cu1i—Cu1—N1—C2103.2 (3)N5—C10—N4—C110.0 (8)
N6ii—Cu1—N1—C1104.0 (4)S2—C10—N4—C11179.6 (4)
I1—Cu1—N1—C113.7 (4)C10—N4—C11—C120.8 (8)
I1i—Cu1—N1—C1140.8 (3)C13—C12—C11—N40.9 (8)
Cu1i—Cu1—N1—C177.7 (4)C1—N1—C2—C31.0 (7)
C6—N2—C9—N31.0 (7)Cu1—N1—C2—C3178.1 (4)
C6—N2—C9—S1178.0 (3)C4—C3—C2—N10.5 (7)
C8—N3—C9—N20.2 (7)C9—N3—C8—C71.0 (7)
C8—N3—C9—S1179.1 (3)N3—C8—C7—C60.6 (8)
S2—S1—C9—N2176.0 (3)N2—C6—C7—C80.7 (7)
S2—S1—C9—N34.8 (4)C5—C6—C7—C8179.6 (4)
C2—N1—C1—C50.5 (7)N5—C13—C14—C18173.4 (4)
Cu1—N1—C1—C5178.7 (3)C12—C13—C14—C186.9 (7)
C4—C5—C1—N10.5 (7)N5—C13—C14—C157.5 (7)
C6—C5—C1—N1178.9 (4)C12—C13—C14—C15172.2 (5)
C9—N2—C6—C71.4 (6)C18—C14—C15—C160.2 (7)
C9—N2—C6—C5178.8 (4)C13—C14—C15—C16178.9 (4)
C1—C5—C6—N214.3 (6)C14—C15—C16—C170.6 (8)
C4—C5—C6—N2165.0 (4)C15—C14—C18—N60.0 (7)
C1—C5—C6—C7165.5 (4)C13—C14—C18—N6179.1 (4)
C4—C5—C6—C715.2 (7)C15—C16—C17—N61.6 (8)
C13—N5—C10—N40.8 (7)C14—C18—N6—C170.9 (7)
C13—N5—C10—S2179.6 (3)C14—C18—N6—Cu1iii174.0 (4)
S1—S2—C10—N44.1 (4)C16—C17—N6—C181.7 (8)
S1—S2—C10—N5175.5 (3)C16—C17—N6—Cu1iii173.0 (4)
Symmetry codes: (i) x+1, y+2, z; (ii) x, y+1, z1; (iii) x, y1, z+1.

Experimental details

Crystal data
Chemical formula[Cu2I2(C18H12N6S2)2]
Mr1133.86
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.5561 (6), 10.7702 (8), 11.9045 (8)
α, β, γ (°)98.110 (1), 107.193 (1), 96.449 (1)
V3)1023.66 (13)
Z1
Radiation typeMo Kα
µ (mm1)2.80
Crystal size (mm)0.19 × 0.15 × 0.12
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.611, 0.715
No. of measured, independent and
observed [I > 2σ(I)] reflections
5395, 3568, 2956
Rint0.097
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.108, 0.99
No. of reflections3568
No. of parameters253
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.28, 1.03

Computer programs: APEX2 (Bruker, 2007), SAINT-Plus (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—I12.6550 (7)Cu1—N12.037 (4)
Cu1—I1i2.6579 (8)Cu1—N6ii2.060 (4)
Symmetry codes: (i) x+1, y+2, z; (ii) x, y+1, z1.
 

Acknowledgements

The author acknowledges finanical support from the China Postdoctoral Reseach Fund (20070411010).

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHorikoshi, R. & Mochida, T. (2006). Coord. Chem. Rev. 250, 2595–2609.  Web of Science CrossRef CAS Google Scholar
First citationJi, J.-F., Li, L. & Zhu, H.-B. (2009). Acta Cryst. E65, o1253.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhu, H.-B., Wang, H., Kong, F., Gou, S.-H. & Sun, Y.-M. (2009). J. Mol. Struct. 936, 99–103.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds