metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­(2-oxido-2,2-di­phenyl­acetato-κ2O1,O2)(1,10-phenanthroline-κ2N,N′)copper(II)

aDepartment of Chemistry, Jinan University, Guangzhou 510632, People's Republic of China
*Correspondence e-mail: xuhs09@126.com

(Received 6 December 2009; accepted 11 December 2009; online 16 December 2009)

In the title mononuclear complex, [Cu(C14H10O3)(C12H8N2)(H2O)], the CuII atom is five-coordinated by two N atoms from a 1,10-phenanthroline (phen) ligand, two O atoms from a benzilate ligand and one O atom from a water mol­ecule in a distorted square-pyramidal geometry. The crystal structure is stabilized via inter­molecular O—H⋯O and C—H⋯O hydrogen bonds, C—H⋯π inter­actions and ππ stacking inter­actions between the pyridine and benzene rings of neighboring phen ligands [centroid–centroid distances = 3.684 (2), 3.564 (2) and 3.380 (1) Å].

Related literature

For related structures of benzilate compounds, see: Mora et al. (2003[Mora, A. J., Fitch, A. N., Ramirez, B. M., Delgado, G. E., Brunelli, M. & Wright, J. (2003). Acta Cryst. B59, 378-383.]); Rojas et al. (2003[Rojas, L. S., Ramírez, B. M., Mora, A. J., Delgado, G. E. & Delgado, G. D. (2003). Acta Cryst. E59, m647-m651.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C14H10O3)(C12H8N2)(H2O)]

  • Mr = 487.98

  • Triclinic, [P \overline 1]

  • a = 7.4473 (15) Å

  • b = 9.757 (2) Å

  • c = 15.319 (3) Å

  • α = 102.99 (3)°

  • β = 98.39 (3)°

  • γ = 96.70 (3)°

  • V = 1060.1 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.07 mm−1

  • T = 293 K

  • 0.30 × 0.26 × 0.21 mm

Data collection
  • Rigaku/MSC Mercury CCD diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.]) Tmin = 0.740, Tmax = 0.807

  • 8229 measured reflections

  • 3802 independent reflections

  • 2607 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.073

  • wR(F2) = 0.229

  • S = 1.09

  • 3802 reflections

  • 298 parameters

  • H-atom parameters constrained

  • Δρmax = 0.73 e Å−3

  • Δρmin = −1.54 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—O2 1.949 (4)
Cu1—O3 1.853 (4)
Cu1—N1 2.014 (4)
Cu1—N2 2.019 (5)
Cu1—O1W 2.476 (5)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯O2i 0.82 2.07 2.883 (6) 171
O1W—H2W⋯O1ii 0.83 2.13 2.954 (4) 175
C17—H17⋯O1iii 0.93 2.41 3.312 (8) 162
C21—H21⋯Cg1i 0.93 2.46 3.267 (8) 146
Symmetry codes: (i) -x, -y+1, -z; (ii) x-1, y, z; (iii) x-1, y-1, z. Cg1 is the centroid of the C9–C14 ring.

Data collection: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalStructure; data reduction: CrystalStructure; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the structural investigations of benzilate complexes, it has been found that the benzilic acid functions as a multidentate ligand with versatile binding and coordination modes (Mora et al., 2003; Rojas et al., 2003). In this paper, we report the structure of the title compound, a copper(II) complex obtained by the reaction of benzilic acid, 1,10-phenanthroline (phen) and copper chloride in an alkaline aqueous solution.

As depicted in Fig. 1, the CuII atom exists in a square-pyramidal environment, defined by two O atoms from one benzilate ligand, two N atoms from one phen ligand and one water molecule. The crystal structure is stabilized via intermolecular O—H···O and C—H···O hydrogen bonds, C—H···π interactions (Table 1) and ππ stacking interactions between the pyridine and benzene rings of neighboring phen ligands (Fig. 2), with the centroid–centroid distances of Cg2···Cg3i = 3.684 (2), Cg3···Cg4i = 3.564 (2) and Cg4···Cg4ii = 3.380 (1) Å [Cg2, Cg3 and Cg4 are the centroids of the N1, C15, C16, C17, C23, C25 ring, the N2, C20, C21, C22, C24, C26 ring and the C18, C19, C23, C24, C25, C26 ring, respectively. Symmetry codes: (i) -x, -y, -z; (ii) -1-x, -y, -z].

Related literature top

For related structures of benzilate compounds, see: Mora et al. (2003); Rojas et al. (2003).

Experimental top

A mixture of copper chloride (0.134 g, 1 mmol), benzilic acid (0.228 g, 1 mmol), phen (0.18 g, 1 mmol), NaOH (0.06 g, 1.5 mmol), EtOH (6 ml) and H2O (6 ml) was placed in a 23 ml Teflon-lined reactor, which was heated to 358 K for 8 h and then cooled to room temperature at a rate of 10 K h-1. The blue crystals obtained were washed with water and dried in air.

Refinement top

H atoms on C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C). H atoms of water molecule were found in a difference Fourier map and refined as riding atoms, with Uiso(H) = 1.5Ueq(O). The highest residual electron density peak is located 0.73 Å from N2 and the deepest hole is located 1.54 Å from Cu1.

Computing details top

Data collection: CrystalStructure (Rigaku/MSC, 2002); cell refinement: CrystalStructure (Rigaku/MSC, 2002); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. A packing view of the title compound. C—H···π interactions and ππ stacking interactions are shown as dashed lines.
Aqua(2-oxido-2,2-diphenylacetato-κ2O1,O2)(1,10- phenanthroline-κ2N,N')copper(II) top
Crystal data top
[Cu(C14H10O3)(C12H8N2)(H2O)]Z = 2
Mr = 487.98F(000) = 502
Triclinic, P1Dx = 1.529 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4473 (15) ÅCell parameters from 2895 reflections
b = 9.757 (2) Åθ = 2.4–27.9°
c = 15.319 (3) ŵ = 1.07 mm1
α = 102.99 (3)°T = 293 K
β = 98.39 (3)°Block, blue
γ = 96.70 (3)°0.30 × 0.26 × 0.21 mm
V = 1060.1 (4) Å3
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
3802 independent reflections
Radiation source: fine-focus sealed tube2607 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
ω scansθmax = 25.2°, θmin = 3.1°
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
h = 88
Tmin = 0.740, Tmax = 0.807k = 1111
8229 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.073Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.229H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.1409P)2]
where P = (Fo2 + 2Fc2)/3
3802 reflections(Δ/σ)max < 0.001
298 parametersΔρmax = 0.73 e Å3
0 restraintsΔρmin = 1.54 e Å3
Crystal data top
[Cu(C14H10O3)(C12H8N2)(H2O)]γ = 96.70 (3)°
Mr = 487.98V = 1060.1 (4) Å3
Triclinic, P1Z = 2
a = 7.4473 (15) ÅMo Kα radiation
b = 9.757 (2) ŵ = 1.07 mm1
c = 15.319 (3) ÅT = 293 K
α = 102.99 (3)°0.30 × 0.26 × 0.21 mm
β = 98.39 (3)°
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
3802 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
2607 reflections with I > 2σ(I)
Tmin = 0.740, Tmax = 0.807Rint = 0.049
8229 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0730 restraints
wR(F2) = 0.229H-atom parameters constrained
S = 1.09Δρmax = 0.73 e Å3
3802 reflectionsΔρmin = 1.54 e Å3
298 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.01419 (8)0.32886 (6)0.11584 (5)0.0478 (3)
O10.4514 (5)0.5892 (4)0.1612 (3)0.0550 (10)
O20.1851 (5)0.4550 (4)0.0914 (3)0.0480 (9)
O30.0740 (5)0.4170 (4)0.2375 (3)0.0536 (10)
N10.1600 (6)0.1655 (5)0.1476 (4)0.0507 (12)
N20.0958 (6)0.2006 (5)0.0106 (3)0.0471 (11)
C10.3024 (7)0.5192 (5)0.1632 (4)0.0430 (12)
C20.2428 (7)0.5060 (6)0.2553 (4)0.0458 (13)
C30.3883 (8)0.4467 (5)0.3150 (4)0.0505 (13)
C40.3222 (9)0.3619 (7)0.3695 (5)0.0617 (16)
H40.19620.33900.36610.074*
C50.4417 (11)0.3116 (7)0.4283 (5)0.072 (2)
H50.39510.25490.46370.087*
C60.6278 (11)0.3443 (7)0.4350 (5)0.0717 (19)
H60.70760.31040.47480.086*
C70.6948 (10)0.4270 (8)0.3826 (5)0.0727 (19)
H70.82110.45060.38740.087*
C80.5765 (8)0.4766 (7)0.3222 (5)0.0595 (16)
H80.62490.53090.28600.071*
C90.2267 (8)0.6559 (6)0.3114 (4)0.0481 (13)
C100.3750 (8)0.7666 (6)0.3423 (4)0.0532 (14)
H100.49020.75180.32890.064*
C110.3524 (10)0.8971 (7)0.3922 (5)0.0641 (17)
H110.45190.97040.41080.077*
C120.1844 (10)0.9215 (7)0.4153 (5)0.0704 (18)
H120.17101.00920.45090.085*
C130.0366 (11)0.8128 (8)0.3845 (5)0.079 (2)
H130.07780.82790.39900.095*
C140.0569 (9)0.6817 (7)0.3324 (5)0.0633 (17)
H140.04440.61030.31130.076*
C150.1857 (8)0.1530 (7)0.2300 (5)0.0600 (16)
H150.13920.22870.28020.072*
C160.2811 (9)0.0283 (8)0.2425 (6)0.0707 (19)
H160.29580.02220.30090.085*
C170.3527 (9)0.0840 (7)0.1704 (6)0.068 (2)
H170.41870.16560.17880.081*
C180.3932 (8)0.1834 (6)0.0027 (6)0.0660 (19)
H180.45900.26810.00680.079*
C190.3644 (8)0.1664 (6)0.0801 (6)0.070 (2)
H190.41250.23930.13180.085*
C200.2216 (8)0.0133 (7)0.1706 (5)0.0630 (17)
H200.26240.08330.22450.076*
C210.1223 (8)0.1146 (7)0.1719 (5)0.0626 (16)
H210.09520.13110.22640.075*
C220.0627 (8)0.2192 (6)0.0902 (4)0.0540 (15)
H220.00300.30540.09180.065*
C230.3250 (7)0.0746 (6)0.0826 (5)0.0572 (17)
C240.2607 (8)0.0375 (6)0.0896 (5)0.0545 (15)
C250.2280 (6)0.0541 (5)0.0764 (5)0.0481 (14)
C260.1937 (7)0.0717 (5)0.0108 (4)0.0486 (14)
O1W0.2525 (6)0.4712 (4)0.0741 (3)0.0641 (12)
H1W0.23440.50190.02990.096*
H2W0.33730.50690.09580.096*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0511 (4)0.0331 (4)0.0568 (5)0.0027 (3)0.0079 (3)0.0093 (3)
O10.051 (2)0.052 (2)0.062 (3)0.0036 (18)0.013 (2)0.018 (2)
O20.052 (2)0.042 (2)0.048 (2)0.0046 (17)0.0058 (18)0.0105 (18)
O30.055 (2)0.047 (2)0.052 (3)0.0086 (18)0.0080 (19)0.0090 (19)
N10.048 (2)0.036 (2)0.069 (3)0.006 (2)0.014 (2)0.012 (2)
N20.047 (2)0.038 (2)0.059 (3)0.0138 (19)0.009 (2)0.014 (2)
C10.057 (3)0.030 (3)0.046 (3)0.011 (2)0.013 (3)0.013 (2)
C20.044 (3)0.038 (3)0.055 (4)0.003 (2)0.011 (3)0.012 (3)
C30.069 (3)0.032 (3)0.052 (3)0.009 (2)0.016 (3)0.008 (2)
C40.070 (4)0.050 (3)0.066 (4)0.001 (3)0.012 (3)0.020 (3)
C50.103 (5)0.050 (4)0.071 (5)0.011 (4)0.011 (4)0.033 (4)
C60.092 (5)0.060 (4)0.070 (5)0.033 (4)0.005 (4)0.023 (4)
C70.074 (4)0.071 (5)0.081 (5)0.032 (4)0.016 (4)0.023 (4)
C80.059 (3)0.058 (4)0.069 (4)0.017 (3)0.015 (3)0.024 (3)
C90.057 (3)0.039 (3)0.048 (3)0.008 (2)0.008 (3)0.012 (3)
C100.058 (3)0.042 (3)0.055 (4)0.000 (3)0.002 (3)0.011 (3)
C110.084 (4)0.042 (3)0.055 (4)0.002 (3)0.005 (3)0.002 (3)
C120.092 (5)0.044 (4)0.069 (5)0.012 (4)0.014 (4)0.002 (3)
C130.094 (5)0.076 (5)0.080 (5)0.042 (4)0.036 (4)0.019 (4)
C140.063 (4)0.051 (4)0.076 (5)0.004 (3)0.020 (3)0.013 (3)
C150.061 (3)0.046 (3)0.074 (5)0.003 (3)0.017 (3)0.014 (3)
C160.069 (4)0.067 (4)0.087 (5)0.012 (3)0.027 (4)0.031 (4)
C170.055 (3)0.049 (4)0.110 (6)0.009 (3)0.022 (4)0.037 (4)
C180.053 (3)0.031 (3)0.108 (6)0.005 (3)0.003 (4)0.013 (4)
C190.054 (3)0.033 (3)0.107 (6)0.012 (3)0.016 (4)0.004 (4)
C200.058 (3)0.051 (4)0.067 (5)0.020 (3)0.008 (3)0.005 (3)
C210.063 (4)0.059 (4)0.064 (4)0.024 (3)0.000 (3)0.012 (3)
C220.051 (3)0.050 (3)0.065 (4)0.016 (3)0.008 (3)0.020 (3)
C230.038 (3)0.038 (3)0.097 (5)0.011 (2)0.011 (3)0.018 (3)
C240.046 (3)0.043 (3)0.068 (4)0.015 (2)0.005 (3)0.006 (3)
C250.032 (2)0.032 (3)0.079 (4)0.006 (2)0.008 (3)0.012 (3)
C260.043 (3)0.032 (3)0.068 (4)0.014 (2)0.000 (3)0.008 (3)
O1W0.067 (2)0.062 (3)0.072 (3)0.021 (2)0.019 (2)0.026 (2)
Geometric parameters (Å, º) top
Cu1—O21.949 (4)C11—C121.381 (10)
Cu1—O31.853 (4)C11—H110.9300
Cu1—N12.014 (4)C12—C131.382 (10)
Cu1—N22.019 (5)C12—H120.9300
Cu1—O1W2.476 (5)C13—C141.385 (10)
O1—C11.241 (6)C13—H130.9300
O2—C11.283 (7)C14—H140.9300
O3—C21.396 (6)C15—C161.402 (9)
N1—C151.333 (8)C15—H150.9300
N1—C251.343 (8)C16—C171.361 (10)
N2—C221.325 (8)C16—H160.9300
N2—C261.377 (7)C17—C231.411 (10)
C1—C21.567 (7)C17—H170.9300
C2—C91.548 (8)C18—C191.360 (10)
C2—C31.562 (8)C18—C231.411 (10)
C3—C81.381 (8)C18—H180.9300
C3—C41.400 (8)C19—C241.445 (9)
C4—C51.382 (10)C19—H190.9300
C4—H40.9300C20—C241.379 (9)
C5—C61.369 (10)C20—C211.380 (9)
C5—H50.9300C20—H200.9300
C6—C71.363 (10)C21—C221.402 (9)
C6—H60.9300C21—H210.9300
C7—C81.389 (9)C22—H220.9300
C7—H70.9300C23—C251.403 (7)
C8—H80.9300C24—C261.401 (9)
C9—C141.387 (8)C25—C261.441 (9)
C9—C101.397 (8)O1W—H1W0.8214
C10—C111.373 (9)O1W—H2W0.8307
C10—H100.9300
O3—Cu1—O285.53 (16)C9—C10—H10119.7
O3—Cu1—N191.89 (19)C10—C11—C12121.2 (6)
O2—Cu1—N1163.11 (17)C10—C11—H11119.4
O3—Cu1—N2169.49 (17)C12—C11—H11119.4
O2—Cu1—N298.71 (17)C11—C12—C13118.6 (6)
N1—Cu1—N281.2 (2)C11—C12—H12120.7
N1—Cu1—O1W102.84 (17)C13—C12—H12120.7
N2—Cu1—O1W86.73 (17)C12—C13—C14120.7 (7)
O2—Cu1—O1W93.99 (16)C12—C13—H13119.7
O3—Cu1—O1W102.66 (16)C14—C13—H13119.7
C1—O2—Cu1113.1 (3)C13—C14—C9120.7 (6)
C2—O3—Cu1115.2 (3)C13—C14—H14119.6
C15—N1—C25117.9 (5)C9—C14—H14119.6
C15—N1—Cu1127.8 (4)N1—C15—C16121.5 (7)
C25—N1—Cu1114.2 (4)N1—C15—H15119.2
C22—N2—C26116.9 (5)C16—C15—H15119.2
C22—N2—Cu1130.3 (4)C17—C16—C15120.8 (7)
C26—N2—Cu1112.7 (4)C17—C16—H16119.6
O1—C1—O2123.3 (5)C15—C16—H16119.6
O1—C1—C2121.6 (5)C16—C17—C23118.9 (6)
O2—C1—C2115.1 (4)C16—C17—H17120.6
O3—C2—C9110.0 (4)C23—C17—H17120.6
O3—C2—C3109.6 (4)C19—C18—C23121.1 (6)
C9—C2—C3106.6 (5)C19—C18—H18119.5
O3—C2—C1109.5 (5)C23—C18—H18119.5
C9—C2—C1109.1 (4)C18—C19—C24121.4 (6)
C3—C2—C1112.0 (4)C18—C19—H19119.3
C8—C3—C4117.2 (6)C24—C19—H19119.3
C8—C3—C2125.7 (5)C24—C20—C21120.1 (6)
C4—C3—C2117.0 (5)C24—C20—H20119.9
C5—C4—C3120.9 (6)C21—C20—H20119.9
C5—C4—H4119.5C20—C21—C22119.2 (6)
C3—C4—H4119.5C20—C21—H21120.4
C6—C5—C4120.7 (6)C22—C21—H21120.4
C6—C5—H5119.6N2—C22—C21122.8 (6)
C4—C5—H5119.6N2—C22—H22118.6
C7—C6—C5119.2 (7)C21—C22—H22118.6
C7—C6—H6120.4C25—C23—C17116.4 (6)
C5—C6—H6120.4C25—C23—C18119.5 (7)
C6—C7—C8120.7 (7)C17—C23—C18124.1 (6)
C6—C7—H7119.6C20—C24—C26117.0 (6)
C8—C7—H7119.6C20—C24—C19125.0 (6)
C3—C8—C7121.2 (6)C26—C24—C19118.0 (6)
C3—C8—H8119.4N1—C25—C23124.5 (6)
C7—C8—H8119.4N1—C25—C26115.8 (5)
C14—C9—C10118.2 (6)C23—C25—C26119.7 (6)
C14—C9—C2118.6 (5)N2—C26—C24123.8 (6)
C10—C9—C2123.2 (5)N2—C26—C25115.9 (5)
C11—C10—C9120.6 (6)C24—C26—C25120.3 (5)
C11—C10—H10119.7H1W—O1W—H2W109.4
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C9–C14 ring.
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O2i0.822.072.883 (6)171
O1W—H2W···O1ii0.832.132.954 (4)175
C17—H17···O1iii0.932.413.312 (8)162
C21—H21···Cg1i0.932.463.267 (8)146
Symmetry codes: (i) x, y+1, z; (ii) x1, y, z; (iii) x1, y1, z.

Experimental details

Crystal data
Chemical formula[Cu(C14H10O3)(C12H8N2)(H2O)]
Mr487.98
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.4473 (15), 9.757 (2), 15.319 (3)
α, β, γ (°)102.99 (3), 98.39 (3), 96.70 (3)
V3)1060.1 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.07
Crystal size (mm)0.30 × 0.26 × 0.21
Data collection
DiffractometerRigaku/MSC Mercury CCD
diffractometer
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.740, 0.807
No. of measured, independent and
observed [I > 2σ(I)] reflections
8229, 3802, 2607
Rint0.049
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.073, 0.229, 1.09
No. of reflections3802
No. of parameters298
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.73, 1.54

Computer programs: CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—O21.949 (4)Cu1—N22.019 (5)
Cu1—O31.853 (4)Cu1—O1W2.476 (5)
Cu1—N12.014 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C9–C14 ring.
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O2i0.822.072.883 (6)171
O1W—H2W···O1ii0.832.132.954 (4)175
C17—H17···O1iii0.932.413.312 (8)162
C21—H21···Cg1i0.932.463.267 (8)146
Symmetry codes: (i) x, y+1, z; (ii) x1, y, z; (iii) x1, y1, z.
 

Acknowledgements

The authors kindly acknowledge the 863 Program of China (2006 A A09Z408) and the National Natural Science Foundation of China (20772048) for supporting this work.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationJacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationMora, A. J., Fitch, A. N., Ramirez, B. M., Delgado, G. E., Brunelli, M. & Wright, J. (2003). Acta Cryst. B59, 378–383.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationRojas, L. S., Ramírez, B. M., Mora, A. J., Delgado, G. E. & Delgado, G. D. (2003). Acta Cryst. E59, m647–m651.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds