metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­chlorido{μ-6,6′-dieth­­oxy-2,2′-[1,2-phenyl­enebis(nitrilo­methyl­­idyne)]diphenolato}copper(II)sodium(I) N,N-di­methyl­formamide solvate

aSchool of Chemistry & Chemical Technology, Shandong University, Jinan 250100, People's Republic of China
*Correspondence e-mail: maxj@sdu.edu.cn

(Received 14 November 2009; accepted 27 November 2009; online 12 December 2009)

In the heterometallic dinuclear title compound, [CuNa(C24H22N2O4)Cl(H2O)]·C3H7NO, the CuII ion is coord­inated in a square-planar geometry by two N atoms and two O atoms of the 6,6′-dieth­oxy-2,2′-[1,2-phenyl­enebis(nitrilo­methyl­­idyne)]diphenolate ligand. The NaI ion is hexa­coordinated by four O atoms of the ligand, defining the equatorial plan, and by one O atom of the water mol­ecule and one Cl atom occuping axial positions. The CuII and NaI ions are bridged by two phenolate O atoms.

Related literature

For related heteronuclear complexes, see: Karlin (1993[ Karlin, K. D. (1993). Science, 261, 701-708.]); Ni et al. (2005[ Ni, Z. H., Kou, H. Z., Zhao, Y. H., Zheng, L., Wang, R. J., Cui, A. L. & Sato, O. (2005). Inorg. Chem. 44, 2050-2059.]). For related structures, see: Bian (2008[ Bian, J. (2008). Acta Cryst. E64, m625.]); Xiao & Zhu (2003[ Xiao, H.-P. & Zhu, L.-G. (2003). Acta Cryst. E59, m964-m966.]). For the synthesis of 6,6′-dieth­yloxy-2,2′-[1,2-phenyl­enebis(nitrilo­methyl­idyne)]diphenol and its Cu complex, see: Lo et al. (2004[ Lo, W. K., Wong, W. K., Guo, J., Wong, W. Y., Li, K. F. & Cheah, K. W. (2004). Inorg. Chim. Acta, 357, 4510-4521.]); Sui et al. (2007[ Sui, Y., Sui, Y.-H., Luo, Q.-Y. & Wang, Y.-D. (2007). Acta Cryst. E63, m2277-m2278.]).

[Scheme 1]

Experimental

Crystal data
  • [CuNa(C24H22N2O4)Cl(H2O)]·C3H7NO

  • Mr = 615.53

  • Monoclinic, P 21 /n

  • a = 12.2528 (17) Å

  • b = 19.566 (3) Å

  • c = 12.4901 (17) Å

  • β = 111.653 (2)°

  • V = 2783.1 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.94 mm−1

  • T = 298 K

  • 0.15 × 0.10 × 0.08 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[ Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.872, Tmax = 0.928

  • 13672 measured reflections

  • 4903 independent reflections

  • 4233 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.092

  • S = 1.07

  • 4903 reflections

  • 354 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.46 e Å−3

Data collection: APEX2 (Bruker, 2004[ Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[ Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[ Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[ Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[ Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Heterometallic complexes have been intensively studied owing to their unique physical and chemical properties (Ni et al., 2005). In addition, these compounds exist at the active sites of many metalloenzymes and play important roles in biological systems (Karlin, 1993). Therefore, investigation of the synthesis and the crystal structures of these heterometallic compounds is necessary in order to further widening the application of the compounds. Herein, a novel heterometallic nuclear (CuIINaI) compound has been obtained by step-by-step method and its structure is depicted.

As shown in Fig.1, the compound I is a dinuclear neutral complex with a planar square configuration. The Cu(II) atom is coordinated in a planar square geometry with the basal square formed by two nitrogen atoms and two oxygen atoms from the 6,6'-diethyloxy-2,2'-[1,2-phenylenebis(nitrilomethylidyne)]diphenolate (L) ligand. The Na(I) atom is coordinated by four oxygen atoms from the ligand, one oxygen atom from water and one chlorine atom. The bond lengths of Cu—O, Cu—N and Na—Cl are normal (Xiao et al., 2003).

Related literature top

For related heteronuclear complexes, see: Karlin (1993); Ni et al. (2005). For related structures, see: Bian (2008); Xiao & Zhu (2003). For the synthesis of 6,6'-diethyloxy-2,2'-[1,2-phenylenebis(nitrilomethylidyne)]diphenol and its Cu complex, see: Lo et al. (2004); Sui et al. (2007).

Experimental top

The H2L ligand and complex CuL was synthesized according to the previous literature (Lo et al., 2004; Sui et al. 2007). The compound I was obtained by allowing the mixure of CuL (0.047 g, 0.1 mmol) and NaCl (0.006 g, 0.1 mmol) being stirred in the DMF solution at room temperature for 1 h, then filtered, suitable brown crystals were obtained via slow evaporation of the filtrate at room temperature (yield: about 45%)

Refinement top

All H-atoms bound to the C atoms were refined using a riding model, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic atoms, C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for methylene atoms, and C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl atoms. The H atoms of the water molecule were contrained, with O—H = 0.85 Å, and with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
Aquachlorido{µ-6,6'-diethoxy-2,2'-[1,2- phenylenebis(nitrilomethylidyne)]diphenolato}copper(II)sodium(I) N,N-dimethylformamide solvate top
Crystal data top
[CuNa(C24H22N2O4)Cl(H2O)]·C3H7NOF(000) = 1276
Mr = 615.53Dx = 1.469 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7372 reflections
a = 12.2528 (17) Åθ = 2.3–27.5°
b = 19.566 (3) ŵ = 0.94 mm1
c = 12.4901 (17) ÅT = 298 K
β = 111.653 (2)°Needle, brown
V = 2783.1 (7) Å30.15 × 0.10 × 0.08 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4903 independent reflections
Radiation source: fine-focus sealed tube4233 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 0 pixels mm-1θmax = 25.0°, θmin = 2.0°
ϕ and ω scansh = 1414
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 2323
Tmin = 0.872, Tmax = 0.928l = 1214
13672 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.055P)2 + 0.6422P]
where P = (Fo2 + 2Fc2)/3
4903 reflections(Δ/σ)max < 0.001
354 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
[CuNa(C24H22N2O4)Cl(H2O)]·C3H7NOV = 2783.1 (7) Å3
Mr = 615.53Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.2528 (17) ŵ = 0.94 mm1
b = 19.566 (3) ÅT = 298 K
c = 12.4901 (17) Å0.15 × 0.10 × 0.08 mm
β = 111.653 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4903 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
4233 reflections with I > 2σ(I)
Tmin = 0.872, Tmax = 0.928Rint = 0.024
13672 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 1.07Δρmax = 0.51 e Å3
4903 reflectionsΔρmin = 0.46 e Å3
354 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4298 (3)0.29377 (13)0.0350 (3)0.0753 (8)
H1A0.45920.33900.03310.113*
H1B0.46290.27610.11210.113*
H1C0.34580.29520.01080.113*
C20.4633 (2)0.24849 (10)0.0442 (2)0.0472 (5)
H2A0.43040.26590.12240.057*
H2B0.54800.24670.02070.057*
C30.44513 (16)0.13019 (10)0.09867 (16)0.0350 (4)
C40.51898 (18)0.13645 (11)0.15763 (17)0.0426 (5)
H40.55110.17890.16260.051*
C50.5466 (2)0.07961 (12)0.21056 (19)0.0488 (5)
H50.59720.08430.25020.059*
C60.4997 (2)0.01743 (11)0.20428 (19)0.0439 (5)
H60.52050.02040.23770.053*
C70.41968 (17)0.00950 (10)0.14769 (17)0.0337 (4)
C80.39040 (16)0.06668 (9)0.09376 (15)0.0314 (4)
C90.37331 (17)0.05756 (10)0.14566 (16)0.0352 (4)
H90.40060.09260.17950.042*
C100.25323 (16)0.14097 (10)0.10326 (16)0.0356 (4)
C110.27395 (18)0.19532 (10)0.16551 (18)0.0430 (5)
H110.31850.18860.21090.052*
C120.2284 (2)0.25866 (11)0.1596 (2)0.0508 (6)
H120.24270.29490.20070.061*
C130.1616 (2)0.26903 (11)0.0931 (2)0.0522 (6)
H130.13230.31240.08910.063*
C140.13774 (19)0.21583 (11)0.03232 (18)0.0459 (5)
H140.09170.22320.01140.055*
C150.18307 (17)0.15112 (10)0.03704 (16)0.0363 (4)
C160.09870 (17)0.09228 (10)0.08093 (17)0.0380 (4)
H160.06170.13310.08550.046*
C170.07786 (17)0.03460 (11)0.14138 (17)0.0385 (4)
C180.00260 (19)0.04354 (13)0.20363 (18)0.0487 (5)
H180.03080.08610.20430.058*
C190.0213 (2)0.00910 (13)0.2621 (2)0.0526 (6)
H190.07070.00210.30250.063*
C200.02749 (19)0.07394 (13)0.26241 (18)0.0483 (5)
H200.01100.10950.30350.058*
C210.09936 (17)0.08496 (11)0.20221 (16)0.0387 (4)
C220.12742 (16)0.03082 (10)0.14010 (16)0.0351 (4)
C230.1425 (2)0.20234 (11)0.26047 (19)0.0492 (5)
H23A0.18260.19170.34140.059*
H23B0.06120.21300.24720.059*
C240.2003 (2)0.26168 (12)0.2272 (2)0.0617 (7)
H24A0.19740.30090.27230.092*
H24B0.15980.27170.14690.092*
H24C0.28060.25050.24090.092*
C250.3559 (3)0.03387 (18)0.4305 (3)0.0904 (11)
H250.39420.00800.39250.108*
C260.3037 (6)0.0754 (2)0.4803 (5)0.169 (2)
H26A0.23030.09270.42740.253*
H26B0.31900.09420.55540.253*
H26C0.36570.08820.45460.253*
C270.2338 (4)0.0311 (3)0.5408 (3)0.139 (2)
H27A0.28530.04460.61650.208*
H27B0.17470.00080.54680.208*
H27C0.19700.07090.49750.208*
N10.29705 (13)0.07355 (8)0.10098 (13)0.0328 (3)
N20.16488 (13)0.09243 (8)0.02039 (13)0.0346 (4)
N30.2978 (2)0.00202 (13)0.4854 (2)0.0744 (7)
O10.41778 (13)0.18169 (7)0.03841 (13)0.0450 (3)
O20.31963 (12)0.06507 (7)0.03795 (12)0.0401 (3)
O30.19590 (12)0.04606 (7)0.08560 (12)0.0410 (3)
O40.14894 (13)0.14563 (7)0.19102 (12)0.0466 (4)
O50.43276 (14)0.15357 (8)0.24781 (14)0.0584 (4)
H5A0.47870.18780.26150.088*
H5B0.42250.14370.30970.088*
O60.3640 (2)0.09160 (14)0.4248 (2)0.1041 (8)
Cu10.243871 (19)0.012818 (12)0.008330 (19)0.03398 (10)
Na10.27089 (7)0.15365 (4)0.06022 (7)0.0437 (2)
Cl10.10362 (6)0.23100 (3)0.10680 (6)0.06409 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.084 (2)0.0393 (14)0.112 (2)0.0106 (13)0.0475 (18)0.0153 (14)
C20.0468 (12)0.0323 (11)0.0554 (13)0.0061 (9)0.0103 (10)0.0059 (9)
C30.0335 (10)0.0338 (10)0.0367 (10)0.0046 (8)0.0116 (8)0.0060 (8)
C40.0426 (11)0.0420 (11)0.0472 (11)0.0018 (9)0.0211 (9)0.0092 (9)
C50.0515 (13)0.0535 (14)0.0535 (13)0.0004 (11)0.0335 (11)0.0037 (10)
C60.0482 (12)0.0449 (12)0.0468 (12)0.0051 (10)0.0273 (10)0.0013 (9)
C70.0338 (10)0.0343 (10)0.0327 (10)0.0048 (8)0.0119 (8)0.0035 (8)
C80.0301 (9)0.0321 (10)0.0327 (9)0.0031 (8)0.0125 (8)0.0043 (8)
C90.0373 (10)0.0332 (10)0.0346 (10)0.0057 (8)0.0126 (8)0.0010 (8)
C100.0321 (10)0.0312 (10)0.0365 (10)0.0016 (8)0.0046 (8)0.0003 (8)
C110.0410 (11)0.0382 (11)0.0438 (11)0.0034 (9)0.0088 (9)0.0067 (9)
C120.0501 (13)0.0339 (11)0.0555 (13)0.0027 (10)0.0042 (11)0.0101 (10)
C130.0553 (14)0.0308 (11)0.0575 (14)0.0068 (10)0.0056 (11)0.0018 (10)
C140.0453 (12)0.0382 (12)0.0480 (12)0.0072 (9)0.0100 (10)0.0025 (9)
C150.0347 (10)0.0307 (10)0.0365 (10)0.0019 (8)0.0049 (8)0.0011 (8)
C160.0333 (10)0.0369 (11)0.0423 (11)0.0063 (8)0.0121 (9)0.0054 (8)
C170.0318 (10)0.0471 (12)0.0360 (10)0.0022 (9)0.0117 (8)0.0031 (9)
C180.0420 (12)0.0627 (15)0.0455 (12)0.0087 (11)0.0208 (10)0.0049 (11)
C190.0457 (13)0.0757 (17)0.0469 (13)0.0026 (12)0.0295 (11)0.0030 (11)
C200.0421 (12)0.0668 (15)0.0392 (11)0.0066 (11)0.0188 (9)0.0046 (10)
C210.0335 (10)0.0485 (12)0.0345 (10)0.0044 (9)0.0129 (8)0.0000 (9)
C220.0306 (10)0.0414 (11)0.0327 (10)0.0015 (8)0.0107 (8)0.0013 (8)
C230.0512 (13)0.0496 (13)0.0485 (12)0.0094 (10)0.0202 (10)0.0140 (10)
C240.0727 (17)0.0460 (14)0.0739 (16)0.0052 (12)0.0359 (14)0.0157 (12)
C250.100 (3)0.063 (2)0.086 (2)0.0051 (19)0.010 (2)0.0020 (17)
C260.197 (5)0.077 (3)0.176 (5)0.047 (3)0.004 (4)0.027 (3)
C270.088 (3)0.255 (6)0.069 (2)0.035 (4)0.024 (2)0.023 (3)
N10.0344 (8)0.0278 (8)0.0354 (8)0.0014 (6)0.0119 (7)0.0012 (6)
N20.0334 (8)0.0309 (8)0.0380 (9)0.0028 (7)0.0114 (7)0.0009 (7)
N30.0758 (17)0.0785 (17)0.0646 (15)0.0128 (13)0.0209 (13)0.0074 (12)
O10.0520 (9)0.0299 (7)0.0622 (9)0.0036 (6)0.0318 (7)0.0011 (6)
O20.0459 (8)0.0293 (7)0.0566 (8)0.0021 (6)0.0323 (7)0.0029 (6)
O30.0459 (8)0.0350 (7)0.0535 (8)0.0052 (6)0.0316 (7)0.0077 (6)
O40.0569 (9)0.0404 (8)0.0520 (9)0.0023 (7)0.0311 (7)0.0096 (6)
O50.0619 (10)0.0516 (10)0.0621 (10)0.0085 (8)0.0234 (8)0.0081 (8)
O60.114 (2)0.0975 (19)0.1034 (18)0.0205 (16)0.0428 (15)0.0090 (15)
Cu10.03799 (16)0.02756 (15)0.04243 (16)0.00246 (9)0.02191 (12)0.00293 (9)
Na10.0476 (5)0.0339 (4)0.0542 (5)0.0006 (3)0.0243 (4)0.0038 (4)
Cl10.0566 (4)0.0601 (4)0.0712 (4)0.0090 (3)0.0184 (3)0.0195 (3)
Geometric parameters (Å, º) top
C1—C21.494 (4)C18—H180.9300
C1—H1A0.9600C19—C201.402 (3)
C1—H1B0.9600C19—H190.9300
C1—H1C0.9600C20—C211.370 (3)
C2—O11.433 (2)C20—H200.9300
C2—H2A0.9700C21—O41.364 (3)
C2—H2B0.9700C21—C221.428 (3)
C3—C41.367 (3)C22—O31.295 (2)
C3—O11.371 (2)C23—O41.428 (2)
C3—C81.424 (3)C23—C241.496 (3)
C4—C51.397 (3)C23—H23A0.9700
C4—H40.9300C23—H23B0.9700
C5—C61.360 (3)C24—H24A0.9600
C5—H50.9300C24—H24B0.9600
C6—C71.412 (3)C24—H24C0.9600
C6—H60.9300C25—O61.138 (4)
C7—C81.419 (3)C25—N31.353 (5)
C7—C91.434 (3)C25—H250.9300
C8—O21.298 (2)C26—N31.440 (5)
C9—N11.291 (3)C26—H26A0.9600
C9—H90.9300C26—H26B0.9600
C10—C111.395 (3)C26—H26C0.9600
C10—C151.410 (3)C27—N31.384 (6)
C10—N11.420 (2)C27—H27A0.9600
C11—C121.372 (3)C27—H27B0.9600
C11—H110.9300C27—H27C0.9600
C12—C131.379 (4)N1—Cu11.9320 (15)
C12—H120.9300N2—Cu11.9360 (15)
C13—C141.382 (3)O1—Na12.5874 (16)
C13—H130.9300O2—Cu11.8907 (13)
C14—C151.393 (3)O2—Na12.3247 (15)
C14—H140.9300O3—Cu11.8862 (13)
C15—N21.414 (3)O3—Na12.3646 (16)
C16—N21.297 (3)O4—Na12.5938 (16)
C16—C171.432 (3)O5—Na12.4483 (18)
C16—H160.9300O5—H5A0.8500
C17—C181.419 (3)O5—H5B0.8499
C17—C221.419 (3)Cu1—Na13.3529 (9)
C18—C191.355 (3)Na1—Cl12.7726 (10)
C2—C1—H1A109.5H23A—C23—H23B108.5
C2—C1—H1B109.5C23—C24—H24A109.5
H1A—C1—H1B109.5C23—C24—H24B109.5
C2—C1—H1C109.5H24A—C24—H24B109.5
H1A—C1—H1C109.5C23—C24—H24C109.5
H1B—C1—H1C109.5H24A—C24—H24C109.5
O1—C2—C1107.50 (19)H24B—C24—H24C109.5
O1—C2—H2A110.2O6—C25—N3128.4 (4)
C1—C2—H2A110.2O6—C25—H25115.8
O1—C2—H2B110.2N3—C25—H25115.8
C1—C2—H2B110.2N3—C26—H26A109.5
H2A—C2—H2B108.5N3—C26—H26B109.5
C4—C3—O1125.06 (18)H26A—C26—H26B109.5
C4—C3—C8121.16 (18)N3—C26—H26C109.5
O1—C3—C8113.78 (16)H26A—C26—H26C109.5
C3—C4—C5120.48 (19)H26B—C26—H26C109.5
C3—C4—H4119.8N3—C27—H27A109.5
C5—C4—H4119.8N3—C27—H27B109.5
C6—C5—C4120.24 (19)H27A—C27—H27B109.5
C6—C5—H5119.9N3—C27—H27C109.5
C4—C5—H5119.9H27A—C27—H27C109.5
C5—C6—C7120.9 (2)H27B—C27—H27C109.5
C5—C6—H6119.6C9—N1—C10123.02 (16)
C7—C6—H6119.6C9—N1—Cu1124.58 (13)
C6—C7—C8119.65 (18)C10—N1—Cu1112.00 (12)
C6—C7—C9117.51 (18)C16—N2—C15123.16 (17)
C8—C7—C9122.82 (18)C16—N2—Cu1124.68 (14)
O2—C8—C7124.89 (17)C15—N2—Cu1112.10 (12)
O2—C8—C3117.57 (16)C25—N3—C27120.8 (4)
C7—C8—C3117.52 (17)C25—N3—C26116.8 (4)
N1—C9—C7125.74 (18)C27—N3—C26122.4 (4)
N1—C9—H9117.1C3—O1—C2117.65 (16)
C7—C9—H9117.1C3—O1—Na1117.35 (11)
C11—C10—C15119.70 (18)C2—O1—Na1124.69 (12)
C11—C10—N1125.02 (19)C8—O2—Cu1126.74 (12)
C15—C10—N1115.27 (16)C8—O2—Na1128.15 (12)
C12—C11—C10119.8 (2)Cu1—O2—Na1104.92 (6)
C12—C11—H11120.1C22—O3—Cu1126.68 (13)
C10—C11—H11120.1C22—O3—Na1129.38 (12)
C11—C12—C13120.6 (2)Cu1—O3—Na1103.57 (6)
C11—C12—H12119.7C21—O4—C23119.18 (16)
C13—C12—H12119.7C21—O4—Na1119.93 (11)
C12—C13—C14120.9 (2)C23—O4—Na1120.61 (13)
C12—C13—H13119.6Na1—O5—H5A115.8
C14—C13—H13119.6Na1—O5—H5B122.1
C13—C14—C15119.5 (2)H5A—O5—H5B107.7
C13—C14—H14120.2O3—Cu1—O285.28 (6)
C15—C14—H14120.2O3—Cu1—N1178.41 (6)
C14—C15—C10119.47 (19)O2—Cu1—N194.59 (6)
C14—C15—N2125.23 (19)O3—Cu1—N294.84 (6)
C10—C15—N2115.30 (16)O2—Cu1—N2179.37 (7)
N2—C16—C17125.50 (18)N1—Cu1—N285.31 (7)
N2—C16—H16117.2O3—Cu1—Na143.28 (4)
C17—C16—H16117.2O2—Cu1—Na142.07 (4)
C18—C17—C22119.0 (2)N1—Cu1—Na1136.65 (5)
C18—C17—C16118.03 (19)N2—Cu1—Na1138.01 (5)
C22—C17—C16122.98 (18)O2—Na1—O366.12 (5)
C19—C18—C17121.0 (2)O2—Na1—O5103.25 (6)
C19—C18—H18119.5O3—Na1—O595.10 (6)
C17—C18—H18119.5O2—Na1—O163.11 (5)
C18—C19—C20120.9 (2)O3—Na1—O1128.73 (5)
C18—C19—H19119.6O5—Na1—O189.74 (6)
C20—C19—H19119.6O2—Na1—O4127.37 (6)
C21—C20—C19120.0 (2)O3—Na1—O461.25 (5)
C21—C20—H20120.0O5—Na1—O481.30 (6)
C19—C20—H20120.0O1—Na1—O4167.51 (6)
O4—C21—C20126.45 (19)O2—Na1—Cl1105.82 (5)
O4—C21—C22112.61 (16)O3—Na1—Cl1111.77 (5)
C20—C21—C22120.9 (2)O5—Na1—Cl1146.43 (5)
O3—C22—C17125.19 (18)O1—Na1—Cl188.68 (4)
O3—C22—C21116.57 (18)O4—Na1—Cl193.97 (5)
C17—C22—C21118.24 (18)O2—Na1—Cu133.02 (3)
O4—C23—C24107.24 (18)O3—Na1—Cu133.15 (3)
O4—C23—H23A110.3O5—Na1—Cu1102.27 (4)
C24—C23—H23A110.3O1—Na1—Cu196.02 (4)
O4—C23—H23B110.3O4—Na1—Cu194.39 (4)
C24—C23—H23B110.3Cl1—Na1—Cu1111.24 (3)

Experimental details

Crystal data
Chemical formula[CuNa(C24H22N2O4)Cl(H2O)]·C3H7NO
Mr615.53
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)12.2528 (17), 19.566 (3), 12.4901 (17)
β (°) 111.653 (2)
V3)2783.1 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.94
Crystal size (mm)0.15 × 0.10 × 0.08
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.872, 0.928
No. of measured, independent and
observed [I > 2σ(I)] reflections
13672, 4903, 4233
Rint0.024
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.092, 1.07
No. of reflections4903
No. of parameters354
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.46

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the Natural Science Foundation of China and the Post-Doctoral Innovation Project of Shandong Province.

References

First citation Bian, J. (2008). Acta Cryst. E64, m625.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citation Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citation Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citation Karlin, K. D. (1993). Science, 261, 701–708.  CrossRef CAS PubMed Web of Science Google Scholar
First citation Lo, W. K., Wong, W. K., Guo, J., Wong, W. Y., Li, K. F. & Cheah, K. W. (2004). Inorg. Chim. Acta, 357, 4510–4521.  Web of Science CSD CrossRef CAS Google Scholar
First citation Ni, Z. H., Kou, H. Z., Zhao, Y. H., Zheng, L., Wang, R. J., Cui, A. L. & Sato, O. (2005). Inorg. Chem. 44, 2050–2059.  Web of Science CrossRef PubMed CAS Google Scholar
First citation Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citation Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef IUCr Journals Google Scholar
First citation Sui, Y., Sui, Y.-H., Luo, Q.-Y. & Wang, Y.-D. (2007). Acta Cryst. E63, m2277–m2278.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citation Xiao, H.-P. & Zhu, L.-G. (2003). Acta Cryst. E59, m964–m966.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds