organic compounds
Ammonium hydrogen (RS)-[(5-methyl-2-oxo-1,3-oxazolidin-3-yl)methyl]phosphonate
aUniversity of Chemical Technology and Metallurgy, Department of Organic Chemistry, 8 Kl. Ohridski Boulevard, 1756 Sofia, Bulgaria, and bCentral Laboratory of Mineralogy and Crystallography, Bulgarian Academy of Sciences, Acad G. Bonchev Str. build. 107, 1113 Sofia, Bulgaria
*Correspondence e-mail: blshivachev@gmail.com
In the title compound, NH4+·C5H9NO5P−, the five-membered methyloxazolidin-2-one unit is disordered over two positions, the major component having a site occupancy of 0.832 (9). A three-dimensional network of O—H⋯O and N—H⋯O hydrogen bonds stabilizes the crystal structure.
Related literature
For general background of the use of phosphonic and aminophosphonic acids as chelating agents in metal extraction and as medicinal compounds, see: Metlushka et al. (2009); Naydenova et al. (2009); Matczak-Jon & Videnova-Adrabinska (2005). For related structures, see: Dudko et al. (2009); Shivachev et al. (2005); Todorov et al. (2006); Ying et al. (2007). For bond-length data, see: Allen et al. (1987).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536809050338/is2491sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809050338/is2491Isup2.hkl
The title compound, NH4+.C5H10N2O5P-, was obtained from the reaction of 5-methyloxazolidin-2-one with formaldehyde and phosphorus trichloride in glacial acetic acid. The solution was left at room temperature. Colorless crystals of the title compound were obtained after several days staying.
The hydroxy and ammonium H atoms were located in a difference map. H atoms bonded to C were placed in idealized positions (C—H = 0.97 Å for CH3, C—H = 0.96 Å for CH2 and C—H = 0.98 Å for CH). All H atoms were constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C, O) and Uiso(H) = 1.5Ueq(methyl C). The Uiso(H) values of N-bound H atoms were freely refined.
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell
CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. The asymmetric unit of title compound with the atom numbering scheme showing 50% probability displacement ellipsoids. H atoms are shown as small spheres of arbitrary radii. Minor occupancy disorder component is represented with dashed lines. | |
Fig. 2. A view of the molecular packing in the title compound. All H atoms not involved in the short contact interactions have been omitted for clarity. [Symmetry codes: (i) -x + 1, -y, z + 1; (ii) 1 + x, -y + 1, -z + 1; (iii) -x + 1, -y + 1, -z + 1; (iv) -x + 1, -y + 1, -z.] |
NH4+·C5H9NO5P− | Z = 2 |
Mr = 212.14 | F(000) = 224 |
Triclinic, P1 | Dx = 1.482 Mg m−3 |
Hall symbol: -P 1 | Melting point: not measured K |
a = 6.471 (3) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 8.801 (3) Å | Cell parameters from 22 reflections |
c = 9.427 (4) Å | θ = 18.2–19.9° |
α = 70.76 (2)° | µ = 0.29 mm−1 |
β = 70.658 (18)° | T = 290 K |
γ = 89.363 (16)° | Prismatic, pale yellow |
V = 475.4 (3) Å3 | 0.30 × 0.28 × 0.21 mm |
Enraf–Nonius CAD-4 diffractometer | Rint = 0.027 |
Radiation source: fine-focus sealed tube | θmax = 26.0°, θmin = 2.4° |
Graphite monochromator | h = −7→7 |
ω/2θ scans | k = −10→10 |
3673 measured reflections | l = −11→11 |
1855 independent reflections | 3 standard reflections every 120 min |
1606 reflections with I > 2σ(I) | intensity decay: −1% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.035 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.097 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0517P)2 + 0.1432P] where P = (Fo2 + 2Fc2)/3 |
1855 reflections | (Δ/σ)max = 0.001 |
159 parameters | Δρmax = 0.24 e Å−3 |
0 restraints | Δρmin = −0.33 e Å−3 |
NH4+·C5H9NO5P− | γ = 89.363 (16)° |
Mr = 212.14 | V = 475.4 (3) Å3 |
Triclinic, P1 | Z = 2 |
a = 6.471 (3) Å | Mo Kα radiation |
b = 8.801 (3) Å | µ = 0.29 mm−1 |
c = 9.427 (4) Å | T = 290 K |
α = 70.76 (2)° | 0.30 × 0.28 × 0.21 mm |
β = 70.658 (18)° |
Enraf–Nonius CAD-4 diffractometer | Rint = 0.027 |
3673 measured reflections | 3 standard reflections every 120 min |
1855 independent reflections | intensity decay: −1% |
1606 reflections with I > 2σ(I) |
R[F2 > 2σ(F2)] = 0.035 | 0 restraints |
wR(F2) = 0.097 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.24 e Å−3 |
1855 reflections | Δρmin = −0.33 e Å−3 |
159 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
P1 | 0.41857 (7) | 0.24449 (5) | 0.45738 (5) | 0.02797 (16) | |
O3 | 0.5389 (2) | 0.15751 (15) | 0.56719 (15) | 0.0337 (3) | |
O1 | 0.2459 (2) | 0.34533 (16) | 0.51681 (16) | 0.0398 (3) | |
O4 | 0.6905 (3) | 0.3598 (2) | −0.03575 (18) | 0.0551 (4) | |
O2 | 0.3153 (2) | 0.12049 (16) | 0.40620 (19) | 0.0451 (4) | |
H1A | 0.3957 | 0.0129 | 0.4192 | 0.054* | |
N1 | 0.7900 (3) | 0.3121 (2) | 0.18552 (19) | 0.0384 (4) | |
C4 | 0.8154 (3) | 0.3152 (3) | 0.0385 (2) | 0.0409 (5) | |
C1 | 0.6134 (3) | 0.3843 (2) | 0.2730 (2) | 0.0344 (4) | |
H1B | 0.5331 | 0.4384 | 0.2035 | 0.041* | |
H1C | 0.6778 | 0.4664 | 0.2985 | 0.041* | |
N2 | 0.2060 (2) | 0.66240 (18) | 0.34358 (18) | 0.0328 (4) | |
HN2 | 0.0704 | 0.6790 | 0.3837 | 0.045 (6)* | |
HN1 | 0.2222 | 0.5670 | 0.3972 | 0.052 (7)* | |
HN3 | 0.3009 | 0.7318 | 0.3485 | 0.056 (7)* | |
HN4 | 0.2541 | 0.6712 | 0.2322 | 0.054 (7)* | |
C2 | 0.9747 (8) | 0.2620 (6) | 0.2347 (6) | 0.0391 (10) | 0.832 (9) |
H2A | 0.9323 | 0.1667 | 0.3309 | 0.047* | 0.832 (9) |
H2B | 1.0433 | 0.3480 | 0.2527 | 0.047* | 0.832 (9) |
O5 | 1.0145 (8) | 0.2687 (6) | −0.0269 (6) | 0.0502 (9) | 0.832 (9) |
C5 | 1.1711 (12) | 0.0514 (6) | 0.1183 (8) | 0.094 (2) | 0.832 (9) |
H5A | 1.2641 | 0.0400 | 0.0200 | 0.141* | 0.832 (9) |
H5B | 1.0342 | −0.0159 | 0.1578 | 0.141* | 0.832 (9) |
H5C | 1.2432 | 0.0191 | 0.1961 | 0.141* | 0.832 (9) |
C3 | 1.1272 (5) | 0.2245 (4) | 0.0887 (3) | 0.0421 (10) | 0.832 (9) |
H3 | 1.2677 | 0.2932 | 0.0443 | 0.050* | 0.832 (9) |
C22 | 0.988 (5) | 0.221 (3) | 0.217 (3) | 0.039 (5) | 0.168 (9) |
H22A | 1.1119 | 0.2984 | 0.1918 | 0.047* | 0.168 (9) |
H22B | 0.9459 | 0.1536 | 0.3292 | 0.047* | 0.168 (9) |
O25 | 0.957 (3) | 0.209 (3) | −0.005 (3) | 0.043 (4) | 0.168 (9) |
C25 | 1.273 (4) | 0.128 (3) | 0.054 (3) | 0.070 (7) | 0.168 (9) |
H25A | 1.3078 | 0.0833 | −0.0305 | 0.105* | 0.168 (9) |
H25B | 1.3286 | 0.0648 | 0.1352 | 0.105* | 0.168 (9) |
H25C | 1.3404 | 0.2376 | 0.0112 | 0.105* | 0.168 (9) |
C23 | 1.047 (3) | 0.125 (2) | 0.1196 (16) | 0.041 (5) | 0.168 (9) |
H23 | 0.9758 | 0.0133 | 0.1781 | 0.049* | 0.168 (9) |
U11 | U22 | U33 | U12 | U13 | U23 | |
P1 | 0.0290 (3) | 0.0249 (2) | 0.0322 (3) | 0.00831 (17) | −0.01321 (19) | −0.01013 (19) |
O3 | 0.0414 (7) | 0.0289 (6) | 0.0372 (7) | 0.0081 (5) | −0.0215 (6) | −0.0115 (6) |
O1 | 0.0367 (7) | 0.0324 (7) | 0.0418 (8) | 0.0125 (6) | −0.0063 (6) | −0.0097 (6) |
O4 | 0.0615 (10) | 0.0769 (11) | 0.0407 (8) | 0.0307 (9) | −0.0294 (8) | −0.0266 (8) |
O2 | 0.0516 (8) | 0.0327 (7) | 0.0715 (10) | 0.0147 (6) | −0.0440 (8) | −0.0214 (7) |
N1 | 0.0343 (8) | 0.0544 (10) | 0.0328 (8) | 0.0181 (8) | −0.0147 (7) | −0.0202 (8) |
C4 | 0.0418 (11) | 0.0482 (12) | 0.0313 (10) | 0.0140 (9) | −0.0122 (9) | −0.0129 (9) |
C1 | 0.0363 (10) | 0.0335 (9) | 0.0314 (9) | 0.0108 (8) | −0.0100 (8) | −0.0107 (8) |
N2 | 0.0338 (9) | 0.0310 (8) | 0.0338 (8) | 0.0066 (6) | −0.0128 (7) | −0.0108 (7) |
C2 | 0.0315 (15) | 0.054 (3) | 0.0355 (17) | 0.0178 (18) | −0.0107 (12) | −0.0209 (18) |
O5 | 0.046 (2) | 0.065 (2) | 0.0321 (13) | 0.0220 (15) | −0.0070 (15) | −0.0147 (17) |
C5 | 0.158 (7) | 0.063 (3) | 0.130 (5) | 0.064 (3) | −0.111 (5) | −0.059 (3) |
C3 | 0.0309 (14) | 0.045 (2) | 0.0543 (17) | 0.0107 (13) | −0.0152 (12) | −0.0220 (14) |
C22 | 0.059 (9) | 0.041 (11) | 0.044 (8) | 0.037 (8) | −0.042 (7) | −0.037 (8) |
O25 | 0.034 (9) | 0.067 (12) | 0.035 (8) | 0.023 (7) | −0.013 (7) | −0.025 (9) |
C25 | 0.066 (14) | 0.087 (18) | 0.104 (19) | 0.049 (11) | −0.050 (13) | −0.073 (16) |
C23 | 0.045 (8) | 0.037 (9) | 0.043 (7) | 0.009 (7) | −0.015 (6) | −0.016 (6) |
P1—O1 | 1.4969 (14) | C2—C3 | 1.539 (5) |
P1—O3 | 1.5041 (13) | C2—H2A | 0.9700 |
P1—O2 | 1.5645 (14) | C2—H2B | 0.9700 |
P1—C1 | 1.816 (2) | O5—C3 | 1.454 (6) |
O4—C4 | 1.218 (2) | C5—C3 | 1.497 (6) |
O2—H1A | 1.0666 | C5—H5A | 0.9600 |
N1—C4 | 1.332 (3) | C5—H5B | 0.9600 |
N1—C2 | 1.435 (6) | C5—H5C | 0.9600 |
N1—C1 | 1.447 (2) | C3—H3 | 0.9800 |
N1—C22 | 1.56 (2) | C22—C23 | 1.41 (2) |
C4—O5 | 1.355 (5) | C22—H22A | 0.9700 |
C4—O25 | 1.36 (2) | C22—H22B | 0.9700 |
C1—H1B | 0.9700 | O25—C23 | 1.46 (3) |
C1—H1C | 0.9700 | C25—C23 | 1.39 (3) |
N2—HN2 | 0.8645 | C25—H25A | 0.9600 |
N2—HN1 | 0.8517 | C25—H25B | 0.9600 |
N2—HN3 | 0.8934 | C25—H25C | 0.9600 |
N2—HN4 | 0.9676 | C23—H23 | 0.9800 |
O1—P1—O3 | 117.20 (8) | H2A—C2—H2B | 109.3 |
O1—P1—O2 | 109.29 (9) | C4—O5—C3 | 109.8 (4) |
O3—P1—O2 | 109.68 (8) | C3—C5—H5A | 109.5 |
O1—P1—C1 | 104.86 (8) | C3—C5—H5B | 109.5 |
O3—P1—C1 | 109.63 (9) | H5A—C5—H5B | 109.5 |
O2—P1—C1 | 105.49 (10) | C3—C5—H5C | 109.4 |
P1—O2—H1A | 112.0 | H5A—C5—H5C | 109.5 |
C4—N1—C2 | 114.0 (2) | H5B—C5—H5C | 109.5 |
C4—N1—C1 | 122.16 (16) | O5—C3—C5 | 108.1 (3) |
C2—N1—C1 | 122.7 (2) | O5—C3—C2 | 104.9 (3) |
C4—N1—C22 | 101.9 (8) | C5—C3—C2 | 115.8 (4) |
C1—N1—C22 | 135.9 (8) | O5—C3—H3 | 109.2 |
O4—C4—N1 | 127.90 (19) | C5—C3—H3 | 109.2 |
O4—C4—O5 | 122.2 (3) | C2—C3—H3 | 109.3 |
N1—C4—O5 | 109.8 (3) | C23—C22—N1 | 108.1 (16) |
O4—C4—O25 | 116.8 (9) | C23—C22—H22A | 110.5 |
N1—C4—O25 | 111.6 (10) | N1—C22—H22A | 110.4 |
N1—C1—P1 | 115.39 (13) | C23—C22—H22B | 109.8 |
N1—C1—H1B | 108.4 | N1—C22—H22B | 109.7 |
P1—C1—H1B | 108.4 | H22A—C22—H22B | 108.3 |
N1—C1—H1C | 108.4 | C4—O25—C23 | 112.2 (16) |
P1—C1—H1C | 108.4 | C23—C25—H25A | 109.5 |
H1B—C1—H1C | 107.5 | C23—C25—H25B | 109.5 |
HN2—N2—HN1 | 108.1 | H25A—C25—H25B | 109.5 |
HN2—N2—HN3 | 112.5 | C23—C25—H25C | 109.4 |
HN1—N2—HN3 | 108.1 | H25A—C25—H25C | 109.5 |
HN2—N2—HN4 | 115.2 | H25B—C25—H25C | 109.5 |
HN1—N2—HN4 | 107.4 | C25—C23—C22 | 112 (2) |
HN3—N2—HN4 | 105.2 | C25—C23—O25 | 110.4 (17) |
N1—C2—C3 | 101.4 (3) | C22—C23—O25 | 100.2 (16) |
N1—C2—H2A | 111.6 | C25—C23—H23 | 111.1 |
C3—C2—H2A | 111.5 | C22—C23—H23 | 111.5 |
N1—C2—H2B | 111.5 | O25—C23—H23 | 111.2 |
C3—C2—H2B | 111.4 | ||
C2—N1—C4—O4 | −176.3 (3) | O4—C4—O5—C3 | 179.2 (2) |
C1—N1—C4—O4 | −8.3 (4) | N1—C4—O5—C3 | 2.6 (4) |
C22—N1—C4—O4 | 172.4 (11) | O25—C4—O5—C3 | −96 (3) |
C2—N1—C4—O5 | 0.1 (3) | C4—O5—C3—C5 | 120.3 (5) |
C1—N1—C4—O5 | 168.1 (3) | C4—O5—C3—C2 | −3.9 (4) |
C22—N1—C4—O5 | −11.2 (11) | N1—C2—C3—O5 | 3.7 (4) |
C2—N1—C4—O25 | 26.4 (9) | N1—C2—C3—C5 | −115.5 (5) |
C1—N1—C4—O25 | −165.6 (9) | C4—N1—C22—C23 | −25 (2) |
C22—N1—C4—O25 | 15.1 (13) | C2—N1—C22—C23 | −165 (6) |
C4—N1—C1—P1 | 117.3 (2) | C1—N1—C22—C23 | 156.3 (11) |
C2—N1—C1—P1 | −75.7 (3) | O4—C4—O25—C23 | −161.7 (9) |
C22—N1—C1—P1 | −63.7 (15) | N1—C4—O25—C23 | −1.7 (15) |
O1—P1—C1—N1 | −175.71 (13) | O5—C4—O25—C23 | 89 (3) |
O3—P1—C1—N1 | 57.66 (16) | N1—C22—C23—C25 | 140 (2) |
O2—P1—C1—N1 | −60.36 (15) | N1—C22—C23—O25 | 22 (2) |
C4—N1—C2—C3 | −2.4 (4) | C4—O25—C23—C25 | −132 (2) |
C1—N1—C2—C3 | −170.3 (2) | C4—O25—C23—C22 | −14 (2) |
C22—N1—C2—C3 | 41 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—HN1···O1 | 0.85 | 1.94 | 2.789 (2) | 177 |
O2—H1A···O3i | 1.07 | 1.53 | 2.5770 (19) | 166 |
N2—HN2···O1ii | 0.86 | 1.93 | 2.772 (2) | 165 |
N2—HN3···O3iii | 0.89 | 1.93 | 2.793 (2) | 161 |
N2—HN4···O4iv | 0.97 | 1.88 | 2.827 (2) | 167 |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x, −y+1, −z+1; (iii) −x+1, −y+1, −z+1; (iv) −x+1, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | NH4+·C5H9NO5P− |
Mr | 212.14 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 290 |
a, b, c (Å) | 6.471 (3), 8.801 (3), 9.427 (4) |
α, β, γ (°) | 70.76 (2), 70.658 (18), 89.363 (16) |
V (Å3) | 475.4 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.29 |
Crystal size (mm) | 0.30 × 0.28 × 0.21 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3673, 1855, 1606 |
Rint | 0.027 |
(sin θ/λ)max (Å−1) | 0.616 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.035, 0.097, 1.05 |
No. of reflections | 1855 |
No. of parameters | 159 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.24, −0.33 |
Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N2—HN1···O1 | 0.85 | 1.94 | 2.789 (2) | 176.8 |
O2—H1A···O3i | 1.07 | 1.53 | 2.5770 (19) | 165.8 |
N2—HN2···O1ii | 0.86 | 1.93 | 2.772 (2) | 164.5 |
N2—HN3···O3iii | 0.89 | 1.93 | 2.793 (2) | 161.2 |
N2—HN4···O4iv | 0.97 | 1.88 | 2.827 (2) | 166.5 |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x, −y+1, −z+1; (iii) −x+1, −y+1, −z+1; (iv) −x+1, −y+1, −z. |
Acknowledgements
This work was supported by the University of Chemical Metallurgy and Technology (project 10646).
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Dudko, A., Bon, V., Kozachkova, A. & Pekhnyo, V. (2009). Acta Cryst. E65, o1961. Web of Science CSD CrossRef IUCr Journals Google Scholar
Enraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Matczak-Jon, E. & Videnova-Adrabinska, V. (2005). Coord. Chem. Rev. 249, 2458–2488. Web of Science CrossRef CAS Google Scholar
Metlushka, K. E., Kashemirov, B. A., Zheltukhin, V. F., Sadkova, D. N., Buchner, B., Hess, C., Kataeva, O. N., McKenna, C. N. & Alfonsov, V. A. (2009). Chem. Eur. J. 15, 6718–6722. Web of Science CSD CrossRef PubMed CAS Google Scholar
Naydenova, E. D., Todorov, P. T. & Troev, K. D. (2009). Amino Acids. In the press, doi: 10.1007/s00726-009-0254-7. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shivachev, B., Petrova, R., Kossev, K. & Troev, K. (2005). Acta Cryst. E61, o134–o136. Web of Science CSD CrossRef IUCr Journals Google Scholar
Todorov, P., Naydenova, E., Petrova, R., Shivachev, B. & Troev, K. (2006). Acta Cryst. C62, o661–o662. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Ying, S.-M., Lin, J.-Y., Zhou, G.-P., Luo, Q.-Y. & Wu, J.-H. (2007). Acta Cryst. E63, o1153–o1154. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Phosphonic and aminophosphonic derivatives have a high potential for biological activity. These derivatives have been widely used in the manufacture of herbicides, as chelating agents in metal extraction and as medicinal compounds (Metlushka et al., 2009; Naydenova et al., 2009; Matczak-Jon & Videnova-Adrabinska, 2005). As part of our ongoing studies of the structure-activity relationships for phosphonic acid derivatives (Todorov et al., 2006; Shivachev et al., 2005) herein we report the structure of the titled compound.
The asymmetric unit of the title compound (Fig. 1) contains one molecule, with a proton transferred from the phosphonic group to the ammonia group. The ammonium cation attendant in structure neutralizes the negatively charged phosphonic acid residue. In the crystal structure, the methyloxazolidin-2-one moiety is disordered over two positions. In one of them (major occupancy) the oxazolidine ring (N1/C2/C3/O5/c4) is almost planar [r.m.s. of 0.017 (2) Å] while in the other one it adopts an envelope conformation, with atom C22 deviating within 0.367 (33) Å from the plane defined by the other four atoms [N1/C4/O25/C23 with r.m.s. 0.006 (5) Å]. Bond lengths and angles have normal values and compare well with related structures (Allen et al., 1987; Dudko et al., 2009; Ying et al., 2007; Todorov et al., 2006). The phosphorus atom displays a slightly distorted tetrahedral geometry provided by three oxygen atoms and one carbon atom.
The crystal structure of title compound shows three-dimensional network of O—H···O and N—H···O hydrogen bonds which additionally stabilize the structure (Table 1 and Fig. 2).