organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ammonium hydrogen (RS)-[(5-methyl-2-oxo-1,3-oxazolidin-3-yl)meth­yl]phospho­nate

aUniversity of Chemical Technology and Metallurgy, Department of Organic Chemistry, 8 Kl. Ohridski Boulevard, 1756 Sofia, Bulgaria, and bCentral Laboratory of Mineralogy and Crystallography, Bulgarian Academy of Sciences, Acad G. Bonchev Str. build. 107, 1113 Sofia, Bulgaria
*Correspondence e-mail: blshivachev@gmail.com

(Received 16 November 2009; accepted 23 November 2009; online 4 December 2009)

In the title compound, NH4+·C5H9NO5P, the five-membered methyl­oxazolidin-2-one unit is disordered over two positions, the major component having a site occupancy of 0.832 (9). A three-dimensional network of O—H⋯O and N—H⋯O hydrogen bonds stabilizes the crystal structure.

Related literature

For general background of the use of phospho­nic and amino­phospho­nic acids as chelating agents in metal extraction and as medicinal compounds, see: Metlushka et al. (2009[Metlushka, K. E., Kashemirov, B. A., Zheltukhin, V. F., Sadkova, D. N., Buchner, B., Hess, C., Kataeva, O. N., McKenna, C. N. & Alfonsov, V. A. (2009). Chem. Eur. J. 15, 6718-6722.]); Naydenova et al. (2009[Naydenova, E. D., Todorov, P. T. & Troev, K. D. (2009). Amino Acids. In the press, doi: 10.1007/s00726-009-0254-7.]); Matczak-Jon & Videnova-Adrabinska (2005[Matczak-Jon, E. & Videnova-Adrabinska, V. (2005). Coord. Chem. Rev. 249, 2458-2488.]). For related structures, see: Dudko et al. (200[Dudko, A., Bon, V., Kozachkova, A. & Pekhnyo, V. (2009). Acta Cryst. E65, o1961.]9); Shivachev et al. (2005[Shivachev, B., Petrova, R., Kossev, K. & Troev, K. (2005). Acta Cryst. E61, o134-o136.]); Todorov et al. (2006[Todorov, P., Naydenova, E., Petrova, R., Shivachev, B. & Troev, K. (2006). Acta Cryst. C62, o661-o662.]); Ying et al. (2007[Ying, S.-M., Lin, J.-Y., Zhou, G.-P., Luo, Q.-Y. & Wu, J.-H. (2007). Acta Cryst. E63, o1153-o1154.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • NH4+·C5H9NO5P

  • Mr = 212.14

  • Triclinic, [P \overline 1]

  • a = 6.471 (3) Å

  • b = 8.801 (3) Å

  • c = 9.427 (4) Å

  • α = 70.76 (2)°

  • β = 70.658 (18)°

  • γ = 89.363 (16)°

  • V = 475.4 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 290 K

  • 0.30 × 0.28 × 0.21 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 3673 measured reflections

  • 1855 independent reflections

  • 1606 reflections with I > 2σ(I)

  • Rint = 0.027

  • 3 standard reflections frequency: 120 min intensity decay: −1%

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.097

  • S = 1.05

  • 1855 reflections

  • 159 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—HN1⋯O1 0.85 1.94 2.789 (2) 177
O2—H1A⋯O3i 1.07 1.53 2.5770 (19) 166
N2—HN2⋯O1ii 0.86 1.93 2.772 (2) 165
N2—HN3⋯O3iii 0.89 1.93 2.793 (2) 161
N2—HN4⋯O4iv 0.97 1.88 2.827 (2) 167
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x, -y+1, -z+1; (iii) -x+1, -y+1, -z+1; (iv) -x+1, -y+1, -z.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Phosphonic and aminophosphonic derivatives have a high potential for biological activity. These derivatives have been widely used in the manufacture of herbicides, as chelating agents in metal extraction and as medicinal compounds (Metlushka et al., 2009; Naydenova et al., 2009; Matczak-Jon & Videnova-Adrabinska, 2005). As part of our ongoing studies of the structure-activity relationships for phosphonic acid derivatives (Todorov et al., 2006; Shivachev et al., 2005) herein we report the structure of the titled compound.

The asymmetric unit of the title compound (Fig. 1) contains one molecule, with a proton transferred from the phosphonic group to the ammonia group. The ammonium cation attendant in structure neutralizes the negatively charged phosphonic acid residue. In the crystal structure, the methyloxazolidin-2-one moiety is disordered over two positions. In one of them (major occupancy) the oxazolidine ring (N1/C2/C3/O5/c4) is almost planar [r.m.s. of 0.017 (2) Å] while in the other one it adopts an envelope conformation, with atom C22 deviating within 0.367 (33) Å from the plane defined by the other four atoms [N1/C4/O25/C23 with r.m.s. 0.006 (5) Å]. Bond lengths and angles have normal values and compare well with related structures (Allen et al., 1987; Dudko et al., 2009; Ying et al., 2007; Todorov et al., 2006). The phosphorus atom displays a slightly distorted tetrahedral geometry provided by three oxygen atoms and one carbon atom.

The crystal structure of title compound shows three-dimensional network of O—H···O and N—H···O hydrogen bonds which additionally stabilize the structure (Table 1 and Fig. 2).

Related literature top

For general background of the use of phosphonic and aminophosphonic acids as chelating agents in metal extraction and as medicinal compounds, see: Metlushka et al. (2009); Naydenova et al. (2009); Matczak-Jon & Videnova-Adrabinska (2005). For related structures, see: Dudko et al. (2009); Shivachev et al. (2005); Todorov et al. (2006); Ying et al. (2007). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound, NH4+.C5H10N2O5P-, was obtained from the reaction of 5-methyloxazolidin-2-one with formaldehyde and phosphorus trichloride in glacial acetic acid. The solution was left at room temperature. Colorless crystals of the title compound were obtained after several days staying.

Refinement top

The hydroxy and ammonium H atoms were located in a difference map. H atoms bonded to C were placed in idealized positions (C—H = 0.97 Å for CH3, C—H = 0.96 Å for CH2 and C—H = 0.98 Å for CH). All H atoms were constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C, O) and Uiso(H) = 1.5Ueq(methyl C). The Uiso(H) values of N-bound H atoms were freely refined.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of title compound with the atom numbering scheme showing 50% probability displacement ellipsoids. H atoms are shown as small spheres of arbitrary radii. Minor occupancy disorder component is represented with dashed lines.
[Figure 2] Fig. 2. A view of the molecular packing in the title compound. All H atoms not involved in the short contact interactions have been omitted for clarity. [Symmetry codes: (i) -x + 1, -y, z + 1; (ii) 1 + x, -y + 1, -z + 1; (iii) -x + 1, -y + 1, -z + 1; (iv) -x + 1, -y + 1, -z.]
Ammonium hydrogen (RS)-[(5-methyl-2-oxo-1,3-oxazolidin-3-yl)methyl]phosphonate top
Crystal data top
NH4+·C5H9NO5PZ = 2
Mr = 212.14F(000) = 224
Triclinic, P1Dx = 1.482 Mg m3
Hall symbol: -P 1Melting point: not measured K
a = 6.471 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.801 (3) ÅCell parameters from 22 reflections
c = 9.427 (4) Åθ = 18.2–19.9°
α = 70.76 (2)°µ = 0.29 mm1
β = 70.658 (18)°T = 290 K
γ = 89.363 (16)°Prismatic, pale yellow
V = 475.4 (3) Å30.30 × 0.28 × 0.21 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.027
Radiation source: fine-focus sealed tubeθmax = 26.0°, θmin = 2.4°
Graphite monochromatorh = 77
ω/2θ scansk = 1010
3673 measured reflectionsl = 1111
1855 independent reflections3 standard reflections every 120 min
1606 reflections with I > 2σ(I) intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0517P)2 + 0.1432P]
where P = (Fo2 + 2Fc2)/3
1855 reflections(Δ/σ)max = 0.001
159 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
NH4+·C5H9NO5Pγ = 89.363 (16)°
Mr = 212.14V = 475.4 (3) Å3
Triclinic, P1Z = 2
a = 6.471 (3) ÅMo Kα radiation
b = 8.801 (3) ŵ = 0.29 mm1
c = 9.427 (4) ÅT = 290 K
α = 70.76 (2)°0.30 × 0.28 × 0.21 mm
β = 70.658 (18)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.027
3673 measured reflections3 standard reflections every 120 min
1855 independent reflections intensity decay: 1%
1606 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.05Δρmax = 0.24 e Å3
1855 reflectionsΔρmin = 0.33 e Å3
159 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
P10.41857 (7)0.24449 (5)0.45738 (5)0.02797 (16)
O30.5389 (2)0.15751 (15)0.56719 (15)0.0337 (3)
O10.2459 (2)0.34533 (16)0.51681 (16)0.0398 (3)
O40.6905 (3)0.3598 (2)0.03575 (18)0.0551 (4)
O20.3153 (2)0.12049 (16)0.40620 (19)0.0451 (4)
H1A0.39570.01290.41920.054*
N10.7900 (3)0.3121 (2)0.18552 (19)0.0384 (4)
C40.8154 (3)0.3152 (3)0.0385 (2)0.0409 (5)
C10.6134 (3)0.3843 (2)0.2730 (2)0.0344 (4)
H1B0.53310.43840.20350.041*
H1C0.67780.46640.29850.041*
N20.2060 (2)0.66240 (18)0.34358 (18)0.0328 (4)
HN20.07040.67900.38370.045 (6)*
HN10.22220.56700.39720.052 (7)*
HN30.30090.73180.34850.056 (7)*
HN40.25410.67120.23220.054 (7)*
C20.9747 (8)0.2620 (6)0.2347 (6)0.0391 (10)0.832 (9)
H2A0.93230.16670.33090.047*0.832 (9)
H2B1.04330.34800.25270.047*0.832 (9)
O51.0145 (8)0.2687 (6)0.0269 (6)0.0502 (9)0.832 (9)
C51.1711 (12)0.0514 (6)0.1183 (8)0.094 (2)0.832 (9)
H5A1.26410.04000.02000.141*0.832 (9)
H5B1.03420.01590.15780.141*0.832 (9)
H5C1.24320.01910.19610.141*0.832 (9)
C31.1272 (5)0.2245 (4)0.0887 (3)0.0421 (10)0.832 (9)
H31.26770.29320.04430.050*0.832 (9)
C220.988 (5)0.221 (3)0.217 (3)0.039 (5)0.168 (9)
H22A1.11190.29840.19180.047*0.168 (9)
H22B0.94590.15360.32920.047*0.168 (9)
O250.957 (3)0.209 (3)0.005 (3)0.043 (4)0.168 (9)
C251.273 (4)0.128 (3)0.054 (3)0.070 (7)0.168 (9)
H25A1.30780.08330.03050.105*0.168 (9)
H25B1.32860.06480.13520.105*0.168 (9)
H25C1.34040.23760.01120.105*0.168 (9)
C231.047 (3)0.125 (2)0.1196 (16)0.041 (5)0.168 (9)
H230.97580.01330.17810.049*0.168 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0290 (3)0.0249 (2)0.0322 (3)0.00831 (17)0.01321 (19)0.01013 (19)
O30.0414 (7)0.0289 (6)0.0372 (7)0.0081 (5)0.0215 (6)0.0115 (6)
O10.0367 (7)0.0324 (7)0.0418 (8)0.0125 (6)0.0063 (6)0.0097 (6)
O40.0615 (10)0.0769 (11)0.0407 (8)0.0307 (9)0.0294 (8)0.0266 (8)
O20.0516 (8)0.0327 (7)0.0715 (10)0.0147 (6)0.0440 (8)0.0214 (7)
N10.0343 (8)0.0544 (10)0.0328 (8)0.0181 (8)0.0147 (7)0.0202 (8)
C40.0418 (11)0.0482 (12)0.0313 (10)0.0140 (9)0.0122 (9)0.0129 (9)
C10.0363 (10)0.0335 (9)0.0314 (9)0.0108 (8)0.0100 (8)0.0107 (8)
N20.0338 (9)0.0310 (8)0.0338 (8)0.0066 (6)0.0128 (7)0.0108 (7)
C20.0315 (15)0.054 (3)0.0355 (17)0.0178 (18)0.0107 (12)0.0209 (18)
O50.046 (2)0.065 (2)0.0321 (13)0.0220 (15)0.0070 (15)0.0147 (17)
C50.158 (7)0.063 (3)0.130 (5)0.064 (3)0.111 (5)0.059 (3)
C30.0309 (14)0.045 (2)0.0543 (17)0.0107 (13)0.0152 (12)0.0220 (14)
C220.059 (9)0.041 (11)0.044 (8)0.037 (8)0.042 (7)0.037 (8)
O250.034 (9)0.067 (12)0.035 (8)0.023 (7)0.013 (7)0.025 (9)
C250.066 (14)0.087 (18)0.104 (19)0.049 (11)0.050 (13)0.073 (16)
C230.045 (8)0.037 (9)0.043 (7)0.009 (7)0.015 (6)0.016 (6)
Geometric parameters (Å, º) top
P1—O11.4969 (14)C2—C31.539 (5)
P1—O31.5041 (13)C2—H2A0.9700
P1—O21.5645 (14)C2—H2B0.9700
P1—C11.816 (2)O5—C31.454 (6)
O4—C41.218 (2)C5—C31.497 (6)
O2—H1A1.0666C5—H5A0.9600
N1—C41.332 (3)C5—H5B0.9600
N1—C21.435 (6)C5—H5C0.9600
N1—C11.447 (2)C3—H30.9800
N1—C221.56 (2)C22—C231.41 (2)
C4—O51.355 (5)C22—H22A0.9700
C4—O251.36 (2)C22—H22B0.9700
C1—H1B0.9700O25—C231.46 (3)
C1—H1C0.9700C25—C231.39 (3)
N2—HN20.8645C25—H25A0.9600
N2—HN10.8517C25—H25B0.9600
N2—HN30.8934C25—H25C0.9600
N2—HN40.9676C23—H230.9800
O1—P1—O3117.20 (8)H2A—C2—H2B109.3
O1—P1—O2109.29 (9)C4—O5—C3109.8 (4)
O3—P1—O2109.68 (8)C3—C5—H5A109.5
O1—P1—C1104.86 (8)C3—C5—H5B109.5
O3—P1—C1109.63 (9)H5A—C5—H5B109.5
O2—P1—C1105.49 (10)C3—C5—H5C109.4
P1—O2—H1A112.0H5A—C5—H5C109.5
C4—N1—C2114.0 (2)H5B—C5—H5C109.5
C4—N1—C1122.16 (16)O5—C3—C5108.1 (3)
C2—N1—C1122.7 (2)O5—C3—C2104.9 (3)
C4—N1—C22101.9 (8)C5—C3—C2115.8 (4)
C1—N1—C22135.9 (8)O5—C3—H3109.2
O4—C4—N1127.90 (19)C5—C3—H3109.2
O4—C4—O5122.2 (3)C2—C3—H3109.3
N1—C4—O5109.8 (3)C23—C22—N1108.1 (16)
O4—C4—O25116.8 (9)C23—C22—H22A110.5
N1—C4—O25111.6 (10)N1—C22—H22A110.4
N1—C1—P1115.39 (13)C23—C22—H22B109.8
N1—C1—H1B108.4N1—C22—H22B109.7
P1—C1—H1B108.4H22A—C22—H22B108.3
N1—C1—H1C108.4C4—O25—C23112.2 (16)
P1—C1—H1C108.4C23—C25—H25A109.5
H1B—C1—H1C107.5C23—C25—H25B109.5
HN2—N2—HN1108.1H25A—C25—H25B109.5
HN2—N2—HN3112.5C23—C25—H25C109.4
HN1—N2—HN3108.1H25A—C25—H25C109.5
HN2—N2—HN4115.2H25B—C25—H25C109.5
HN1—N2—HN4107.4C25—C23—C22112 (2)
HN3—N2—HN4105.2C25—C23—O25110.4 (17)
N1—C2—C3101.4 (3)C22—C23—O25100.2 (16)
N1—C2—H2A111.6C25—C23—H23111.1
C3—C2—H2A111.5C22—C23—H23111.5
N1—C2—H2B111.5O25—C23—H23111.2
C3—C2—H2B111.4
C2—N1—C4—O4176.3 (3)O4—C4—O5—C3179.2 (2)
C1—N1—C4—O48.3 (4)N1—C4—O5—C32.6 (4)
C22—N1—C4—O4172.4 (11)O25—C4—O5—C396 (3)
C2—N1—C4—O50.1 (3)C4—O5—C3—C5120.3 (5)
C1—N1—C4—O5168.1 (3)C4—O5—C3—C23.9 (4)
C22—N1—C4—O511.2 (11)N1—C2—C3—O53.7 (4)
C2—N1—C4—O2526.4 (9)N1—C2—C3—C5115.5 (5)
C1—N1—C4—O25165.6 (9)C4—N1—C22—C2325 (2)
C22—N1—C4—O2515.1 (13)C2—N1—C22—C23165 (6)
C4—N1—C1—P1117.3 (2)C1—N1—C22—C23156.3 (11)
C2—N1—C1—P175.7 (3)O4—C4—O25—C23161.7 (9)
C22—N1—C1—P163.7 (15)N1—C4—O25—C231.7 (15)
O1—P1—C1—N1175.71 (13)O5—C4—O25—C2389 (3)
O3—P1—C1—N157.66 (16)N1—C22—C23—C25140 (2)
O2—P1—C1—N160.36 (15)N1—C22—C23—O2522 (2)
C4—N1—C2—C32.4 (4)C4—O25—C23—C25132 (2)
C1—N1—C2—C3170.3 (2)C4—O25—C23—C2214 (2)
C22—N1—C2—C341 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—HN1···O10.851.942.789 (2)177
O2—H1A···O3i1.071.532.5770 (19)166
N2—HN2···O1ii0.861.932.772 (2)165
N2—HN3···O3iii0.891.932.793 (2)161
N2—HN4···O4iv0.971.882.827 (2)167
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1, z+1; (iii) x+1, y+1, z+1; (iv) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaNH4+·C5H9NO5P
Mr212.14
Crystal system, space groupTriclinic, P1
Temperature (K)290
a, b, c (Å)6.471 (3), 8.801 (3), 9.427 (4)
α, β, γ (°)70.76 (2), 70.658 (18), 89.363 (16)
V3)475.4 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.30 × 0.28 × 0.21
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3673, 1855, 1606
Rint0.027
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.097, 1.05
No. of reflections1855
No. of parameters159
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.33

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—HN1···O10.851.942.789 (2)176.8
O2—H1A···O3i1.071.532.5770 (19)165.8
N2—HN2···O1ii0.861.932.772 (2)164.5
N2—HN3···O3iii0.891.932.793 (2)161.2
N2—HN4···O4iv0.971.882.827 (2)166.5
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1, z+1; (iii) x+1, y+1, z+1; (iv) x+1, y+1, z.
 

Acknowledgements

This work was supported by the University of Chemical Metallurgy and Technology (project 10646).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationDudko, A., Bon, V., Kozachkova, A. & Pekhnyo, V. (2009). Acta Cryst. E65, o1961.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMatczak-Jon, E. & Videnova-Adrabinska, V. (2005). Coord. Chem. Rev. 249, 2458–2488.  Web of Science CrossRef CAS Google Scholar
First citationMetlushka, K. E., Kashemirov, B. A., Zheltukhin, V. F., Sadkova, D. N., Buchner, B., Hess, C., Kataeva, O. N., McKenna, C. N. & Alfonsov, V. A. (2009). Chem. Eur. J. 15, 6718–6722.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNaydenova, E. D., Todorov, P. T. & Troev, K. D. (2009). Amino Acids. In the press, doi: 10.1007/s00726-009-0254-7.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShivachev, B., Petrova, R., Kossev, K. & Troev, K. (2005). Acta Cryst. E61, o134–o136.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTodorov, P., Naydenova, E., Petrova, R., Shivachev, B. & Troev, K. (2006). Acta Cryst. C62, o661–o662.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationYing, S.-M., Lin, J.-Y., Zhou, G.-P., Luo, Q.-Y. & Wu, J.-H. (2007). Acta Cryst. E63, o1153–o1154.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds