organic compounds
2-Methyl-5-nitrobenzenesulfonamide
aApplied Chemistry Research Centre, PCSIR Laboratories Complex, Ferozpure Road, Lahore 54600, Pakistan, bDepartment of Chemistry, Government College University, Lahore 54000, Pakistan, and cLahore College for Women University, Jail Road, Lahore 54000, Pakistan
*Correspondence e-mail: rehman_pcsir@hotmail.com
In the title compound, C7H8N2O4S, the nitro group is twisted by 9.61 (2)° relative to the benzene ring. In the crystal, molecules are linked by N—H⋯O and N—H⋯(O,O) hydrogen bonds between the amino and sulfonyl groups, forming layers parallel to (001).
Related literature
For the biological activity of et al. (2007); Parari et al. (2008); Ratish et al. (2009); Selnam et al. (2001). For related structures, see: Arshad et al. (2009); Gowda et al. (2007a,b,c); Khan et al. (2009); Haider et al.(2009). For bond-length data, see: Allen et al. (1987).
see: OzbekExperimental
Crystal data
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.
Supporting information
10.1107/S1600536809053069/is2494sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809053069/is2494Isup2.hkl
A well ground mixture of 2-methyl-5-nitrobenzenesulfonyl chloride (2.36 g, 10.0 mmol) and ammonium carbonate (10.0 g) was heated in a china dish till the complete removal of typical smell of sulfonyl chloride. Contents were cooled and washed with water followed by crystallization from methanol.
All H atoms were identified in a difference map and then were treated as riding (C—H = 0.93 or 0.97 Å), with Uiso(H) = 1.2Ueq(C). The reflection '0 0 2' affected by beamstop was removed during refinement.
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).C7H8N2O4S | F(000) = 448 |
Mr = 216.21 | Dx = 1.605 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 1325 reflections |
a = 4.9872 (4) Å | θ = 2.9–25.4° |
b = 6.2814 (5) Å | µ = 0.35 mm−1 |
c = 28.557 (2) Å | T = 296 K |
V = 894.60 (12) Å3 | Needles, colourless |
Z = 4 | 0.43 × 0.17 × 0.11 mm |
Bruker APEXII CCD area-detector diffractometer | 2113 independent reflections |
Radiation source: fine-focus sealed tube | 1549 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.036 |
ϕ and ω scans | θmax = 28.3°, θmin = 1.4° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −3→6 |
Tmin = 0.864, Tmax = 0.962 | k = −8→8 |
5964 measured reflections | l = −38→38 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.043 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.099 | w = 1/[σ2(Fo2) + (0.0508P)2 + 0.1986P] where P = (Fo2 + 2Fc2)/3 |
S = 0.89 | (Δ/σ)max < 0.001 |
2112 reflections | Δρmax = 0.23 e Å−3 |
136 parameters | Δρmin = −0.23 e Å−3 |
0 restraints | Absolute structure: Flack (1983), 766 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.02 (11) |
C7H8N2O4S | V = 894.60 (12) Å3 |
Mr = 216.21 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 4.9872 (4) Å | µ = 0.35 mm−1 |
b = 6.2814 (5) Å | T = 296 K |
c = 28.557 (2) Å | 0.43 × 0.17 × 0.11 mm |
Bruker APEXII CCD area-detector diffractometer | 2113 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1549 reflections with I > 2σ(I) |
Tmin = 0.864, Tmax = 0.962 | Rint = 0.036 |
5964 measured reflections |
R[F2 > 2σ(F2)] = 0.043 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.099 | Δρmax = 0.23 e Å−3 |
S = 0.89 | Δρmin = −0.23 e Å−3 |
2112 reflections | Absolute structure: Flack (1983), 766 Friedel pairs |
136 parameters | Absolute structure parameter: −0.02 (11) |
0 restraints |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.7436 (6) | 0.4718 (4) | 0.85981 (8) | 0.0294 (6) | |
C2 | 0.6274 (6) | 0.6621 (4) | 0.87573 (9) | 0.0336 (6) | |
C3 | 0.7125 (7) | 0.7374 (4) | 0.91916 (10) | 0.0433 (8) | |
H3 | 0.6392 | 0.8629 | 0.9308 | 0.052* | |
C4 | 0.9018 (6) | 0.6316 (5) | 0.94542 (9) | 0.0425 (7) | |
H4 | 0.9568 | 0.6857 | 0.9742 | 0.051* | |
C5 | 1.0083 (7) | 0.4455 (4) | 0.92867 (9) | 0.0342 (6) | |
C6 | 0.9298 (6) | 0.3616 (4) | 0.88605 (8) | 0.0330 (6) | |
H6 | 1.0009 | 0.2338 | 0.8753 | 0.040* | |
C7 | 0.4234 (7) | 0.7867 (5) | 0.84858 (11) | 0.0473 (9) | |
H7A | 0.3861 | 0.9178 | 0.8646 | 0.071* | |
H7B | 0.2615 | 0.7051 | 0.8459 | 0.071* | |
H7C | 0.4922 | 0.8171 | 0.8179 | 0.071* | |
N1 | 1.2116 (5) | 0.3335 (4) | 0.95582 (8) | 0.0431 (6) | |
O4 | 0.3903 (4) | 0.3752 (4) | 0.79524 (7) | 0.0525 (6) | |
O1 | 1.3007 (5) | 0.4194 (3) | 0.99090 (7) | 0.0568 (6) | |
O2 | 1.2851 (5) | 0.1593 (4) | 0.94205 (8) | 0.0677 (7) | |
O3 | 0.7986 (4) | 0.1599 (3) | 0.80208 (7) | 0.0465 (5) | |
N3 | 0.8152 (8) | 0.5117 (5) | 0.76612 (9) | 0.0532 (8) | |
S1 | 0.67301 (15) | 0.36352 (11) | 0.80358 (2) | 0.03595 (19) | |
H1N | 0.720 (8) | 0.605 (5) | 0.7540 (12) | 0.062 (12)* | |
H2N | 0.994 (12) | 0.509 (7) | 0.7660 (14) | 0.091 (16)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0257 (18) | 0.0334 (12) | 0.0292 (11) | −0.0031 (12) | 0.0030 (11) | 0.0005 (10) |
C2 | 0.0294 (18) | 0.0338 (13) | 0.0374 (12) | −0.0008 (13) | 0.0030 (11) | 0.0044 (11) |
C3 | 0.046 (2) | 0.0403 (14) | 0.0437 (15) | 0.0085 (15) | 0.0036 (15) | −0.0086 (12) |
C4 | 0.047 (2) | 0.0469 (15) | 0.0334 (12) | 0.0080 (17) | −0.0022 (13) | −0.0102 (13) |
C5 | 0.0295 (18) | 0.0429 (14) | 0.0301 (12) | 0.0029 (13) | 0.0029 (12) | 0.0031 (11) |
C6 | 0.0313 (17) | 0.0345 (12) | 0.0333 (12) | 0.0013 (14) | 0.0065 (11) | −0.0029 (12) |
C7 | 0.045 (2) | 0.0428 (16) | 0.0541 (17) | 0.0074 (15) | 0.0010 (16) | 0.0078 (13) |
N1 | 0.0377 (16) | 0.0553 (14) | 0.0362 (11) | 0.0095 (15) | −0.0022 (11) | 0.0052 (11) |
O4 | 0.0291 (12) | 0.0768 (14) | 0.0515 (12) | −0.0103 (12) | −0.0018 (9) | −0.0106 (11) |
O1 | 0.0521 (16) | 0.0746 (15) | 0.0436 (11) | 0.0029 (13) | −0.0166 (11) | −0.0034 (10) |
O2 | 0.0711 (19) | 0.0721 (14) | 0.0598 (14) | 0.0387 (16) | −0.0127 (13) | −0.0080 (12) |
O3 | 0.0495 (14) | 0.0433 (10) | 0.0467 (10) | −0.0050 (11) | 0.0040 (10) | −0.0132 (9) |
N3 | 0.039 (2) | 0.079 (2) | 0.0415 (13) | −0.0008 (19) | 0.0032 (15) | 0.0203 (14) |
S1 | 0.0296 (4) | 0.0473 (4) | 0.0310 (3) | −0.0068 (4) | 0.0021 (3) | −0.0038 (3) |
C1—C6 | 1.379 (4) | C6—H6 | 0.9300 |
C1—C2 | 1.404 (4) | C7—H7A | 0.9600 |
C1—S1 | 1.779 (3) | C7—H7B | 0.9600 |
C2—C3 | 1.393 (4) | C7—H7C | 0.9600 |
C2—C7 | 1.499 (4) | N1—O1 | 1.221 (3) |
C3—C4 | 1.377 (4) | N1—O2 | 1.219 (3) |
C3—H3 | 0.9300 | O4—S1 | 1.432 (2) |
C4—C5 | 1.370 (4) | O3—S1 | 1.425 (2) |
C4—H4 | 0.9300 | N3—S1 | 1.586 (3) |
C5—C6 | 1.383 (3) | N3—H1N | 0.83 (4) |
C5—N1 | 1.457 (4) | N3—H2N | 0.89 (6) |
C6—C1—C2 | 122.0 (2) | C2—C7—H7A | 109.5 |
C6—C1—S1 | 115.57 (19) | C2—C7—H7B | 109.5 |
C2—C1—S1 | 122.4 (2) | H7A—C7—H7B | 109.5 |
C3—C2—C1 | 116.8 (2) | C2—C7—H7C | 109.5 |
C3—C2—C7 | 119.3 (3) | H7A—C7—H7C | 109.5 |
C1—C2—C7 | 123.9 (2) | H7B—C7—H7C | 109.5 |
C4—C3—C2 | 122.0 (3) | O1—N1—O2 | 123.5 (3) |
C4—C3—H3 | 119.0 | O1—N1—C5 | 118.5 (2) |
C2—C3—H3 | 119.0 | O2—N1—C5 | 118.1 (2) |
C5—C4—C3 | 119.2 (3) | S1—N3—H1N | 116 (3) |
C5—C4—H4 | 120.4 | S1—N3—H2N | 116 (3) |
C3—C4—H4 | 120.4 | H1N—N3—H2N | 126 (4) |
C4—C5—C6 | 121.5 (3) | O3—S1—O4 | 118.28 (15) |
C4—C5—N1 | 119.7 (2) | O3—S1—N3 | 108.08 (18) |
C6—C5—N1 | 118.8 (2) | O4—S1—N3 | 107.33 (18) |
C1—C6—C5 | 118.5 (2) | O3—S1—C1 | 106.47 (12) |
C1—C6—H6 | 120.7 | O4—S1—C1 | 108.99 (13) |
C5—C6—H6 | 120.7 | N3—S1—C1 | 107.21 (15) |
C6—C1—C2—C3 | 1.2 (4) | N1—C5—C6—C1 | −177.9 (2) |
S1—C1—C2—C3 | −175.9 (2) | C4—C5—N1—O1 | −6.9 (4) |
C6—C1—C2—C7 | −179.7 (3) | C6—C5—N1—O1 | 172.3 (3) |
S1—C1—C2—C7 | 3.3 (4) | C4—C5—N1—O2 | 173.7 (3) |
C1—C2—C3—C4 | 0.1 (4) | C6—C5—N1—O2 | −7.1 (4) |
C7—C2—C3—C4 | −179.1 (3) | C6—C1—S1—O3 | 9.8 (2) |
C2—C3—C4—C5 | −0.6 (5) | C2—C1—S1—O3 | −173.0 (2) |
C3—C4—C5—C6 | 0.0 (4) | C6—C1—S1—O4 | 138.5 (2) |
C3—C4—C5—N1 | 179.2 (3) | C2—C1—S1—O4 | −44.3 (3) |
C2—C1—C6—C5 | −1.8 (4) | C6—C1—S1—N3 | −105.7 (2) |
S1—C1—C6—C5 | 175.4 (2) | C2—C1—S1—N3 | 71.6 (3) |
C4—C5—C6—C1 | 1.3 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H1N···O4i | 0.83 (4) | 2.27 (4) | 3.055 (4) | 158 (3) |
N3—H2N···O4ii | 0.89 (6) | 2.30 (6) | 3.107 (4) | 150 (4) |
N3—H2N···O3iii | 0.89 (6) | 2.40 (4) | 2.893 (4) | 115 (3) |
Symmetry codes: (i) −x+1, y+1/2, −z+3/2; (ii) x+1, y, z; (iii) −x+2, y+1/2, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | C7H8N2O4S |
Mr | 216.21 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 296 |
a, b, c (Å) | 4.9872 (4), 6.2814 (5), 28.557 (2) |
V (Å3) | 894.60 (12) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.35 |
Crystal size (mm) | 0.43 × 0.17 × 0.11 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.864, 0.962 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5964, 2113, 1549 |
Rint | 0.036 |
(sin θ/λ)max (Å−1) | 0.667 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.043, 0.099, 0.89 |
No. of reflections | 2112 |
No. of parameters | 136 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.23, −0.23 |
Absolute structure | Flack (1983), 766 Friedel pairs |
Absolute structure parameter | −0.02 (11) |
Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H1N···O4i | 0.83 (4) | 2.27 (4) | 3.055 (4) | 158 (3) |
N3—H2N···O4ii | 0.89 (6) | 2.30 (6) | 3.107 (4) | 150 (4) |
N3—H2N···O3iii | 0.89 (6) | 2.40 (4) | 2.893 (4) | 115 (3) |
Symmetry codes: (i) −x+1, y+1/2, −z+3/2; (ii) x+1, y, z; (iii) −x+2, y+1/2, −z+3/2. |
Acknowledgements
The authors are grateful to PCSIR Laboratories Complex, Lahore, Pakistan, for the provision of necessary chemicals and to the Higher Education Commission of Pakistan for its grant for the purchase of diffractometer.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans 2, pp. S1–19. CrossRef Web of Science Google Scholar
Arshad, M. N., Khan, I. U., Zia-ur-Rehman, M. & Shafiq, M. (2009). Acta Cryst. E65, o1204. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Gowda, B. T., Foro, S. & Fuess, H. (2007a). Acta Cryst. E63, o2339. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gowda, B. T., Foro, S. & Fuess, H. (2007b). Acta Cryst. E63, o2570. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gowda, B. T., Foro, S. & Fuess, H. (2007c). Acta Cryst. E63, o2597. Web of Science CSD CrossRef IUCr Journals Google Scholar
Haider, Z., Khan, I. U., Zia-ur-Rehman, M. & Arshad, M. N. (2009). Acta Cryst. E65, o3053. Web of Science CSD CrossRef IUCr Journals Google Scholar
Khan, I. U., Haider, Z., Zia-ur-Rehman, M., Arshad, M. N. & Shafiq, M. (2009). Acta Cryst. E65, o2867. Web of Science CrossRef IUCr Journals Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ozbek, N., Katircioğ lu, H., Karacan, N. & Baykal, T. (2007). Bioorg. Med. Chem. 15, 5105–5109. Web of Science CrossRef PubMed Google Scholar
Parari, M. K., Panda, G., Srivastava, K. & Puri, S. K. (2008). Bioorg. Med. Chem. Lett. 18, 776–781. PubMed Google Scholar
Ratish, G. I., Javed, K., Ahmad, S., Bano, S., Alam, M. S., Pillai, K. K., Singh, S. & Bagchi, V. (2009). Bioorg. Med. Chem. Lett. 19, 255–258. Web of Science PubMed Google Scholar
Selnam, P., Chandramohan, M., Clercq, E. D., Witvrouw, M. & Pannecouque, C. (2001). Eur. J. Pharm. Sci. 14, 313–316. Web of Science PubMed Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Sulfonamides are familiar for their anti-HIV (Selnam et al., 2001), anti-inflamatory (Ratish et al., 2009) and anti-microbial (Ozbek et al., 2007; Parari et al., 2008) activities. In continuation of our work regarding the synthesis of various sulfonamides (Arshad et al., 2009; Khan et al., 2009), structure of 2-methyl-5-nitrobenzenesulfonamide (I) has been determined. Bond lengths and bond angles of the title molecule (Fig. 1) are almost similar to those in the related molecules (Gowda et al., 2007a,b,c; Haider et al., 2009) and are within the normal ranges (Allen et al., 1987). Each molecule is linked to its adjacent ones through intermolecular N—H···O hydrogen bonds forming a chain along the a axis, while each chain is linked to its neighbouring chain running in opposite direction via intermolecular N—H···O═S hydrogen bonds (Table 1 and Fig. 2).