organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Methyl-5-nitro­benzene­sulfonamide

aApplied Chemistry Research Centre, PCSIR Laboratories Complex, Ferozpure Road, Lahore 54600, Pakistan, bDepartment of Chemistry, Government College University, Lahore 54000, Pakistan, and cLahore College for Women University, Jail Road, Lahore 54000, Pakistan
*Correspondence e-mail: rehman_pcsir@hotmail.com

(Received 16 November 2009; accepted 9 December 2009; online 12 December 2009)

In the title compound, C7H8N2O4S, the nitro group is twisted by 9.61 (2)° relative to the benzene ring. In the crystal, mol­ecules are linked by N—H⋯O and N—H⋯(O,O) hydrogen bonds between the amino and sulfonyl groups, forming layers parallel to (001).

Related literature

For the biological activity of sulfonamides, see: Ozbek et al. (2007[Ozbek, N., Katircioğ lu, H., Karacan, N. & Baykal, T. (2007). Bioorg. Med. Chem. 15, 5105-5109.]); Parari et al. (2008[Parari, M. K., Panda, G., Srivastava, K. & Puri, S. K. (2008). Bioorg. Med. Chem. Lett. 18, 776-781.]); Ratish et al. (2009[Ratish, G. I., Javed, K., Ahmad, S., Bano, S., Alam, M. S., Pillai, K. K., Singh, S. & Bagchi, V. (2009). Bioorg. Med. Chem. Lett. 19, 255-258.]); Selnam et al. (2001[Selnam, P., Chandramohan, M., Clercq, E. D., Witvrouw, M. & Pannecouque, C. (2001). Eur. J. Pharm. Sci. 14, 313-316.]). For related structures, see: Arshad et al. (2009[Arshad, M. N., Khan, I. U., Zia-ur-Rehman, M. & Shafiq, M. (2009). Acta Cryst. E65, o1204.]); Gowda et al. (2007a[Gowda, B. T., Foro, S. & Fuess, H. (2007a). Acta Cryst. E63, o2339.],b[Gowda, B. T., Foro, S. & Fuess, H. (2007b). Acta Cryst. E63, o2570.],c[Gowda, B. T., Foro, S. & Fuess, H. (2007c). Acta Cryst. E63, o2597.]); Khan et al. (2009[Khan, I. U., Haider, Z., Zia-ur-Rehman, M., Arshad, M. N. & Shafiq, M. (2009). Acta Cryst. E65, o2867.]); Haider et al.(2009[Haider, Z., Khan, I. U., Zia-ur-Rehman, M. & Arshad, M. N. (2009). Acta Cryst. E65, o3053.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C7H8N2O4S

  • Mr = 216.21

  • Orthorhombic, P 21 21 21

  • a = 4.9872 (4) Å

  • b = 6.2814 (5) Å

  • c = 28.557 (2) Å

  • V = 894.60 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 296 K

  • 0.43 × 0.17 × 0.11 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.864, Tmax = 0.962

  • 5964 measured reflections

  • 2113 independent reflections

  • 1549 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.099

  • S = 0.89

  • 2112 reflections

  • 136 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.23 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 766 Friedel pairs

  • Flack parameter: −0.02 (11)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1N⋯O4i 0.83 (4) 2.27 (4) 3.055 (4) 158 (3)
N3—H2N⋯O4ii 0.89 (6) 2.30 (6) 3.107 (4) 150 (4)
N3—H2N⋯O3iii 0.89 (6) 2.40 (4) 2.893 (4) 115 (3)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x+1, y, z; (iii) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Sulfonamides are familiar for their anti-HIV (Selnam et al., 2001), anti-inflamatory (Ratish et al., 2009) and anti-microbial (Ozbek et al., 2007; Parari et al., 2008) activities. In continuation of our work regarding the synthesis of various sulfonamides (Arshad et al., 2009; Khan et al., 2009), structure of 2-methyl-5-nitrobenzenesulfonamide (I) has been determined. Bond lengths and bond angles of the title molecule (Fig. 1) are almost similar to those in the related molecules (Gowda et al., 2007a,b,c; Haider et al., 2009) and are within the normal ranges (Allen et al., 1987). Each molecule is linked to its adjacent ones through intermolecular N—H···O hydrogen bonds forming a chain along the a axis, while each chain is linked to its neighbouring chain running in opposite direction via intermolecular N—H···OS hydrogen bonds (Table 1 and Fig. 2).

Related literature top

For the biological activity of sulfonamides, see: Ozbek et al. (2007); Parari et al. (2008); Ratish et al. (2009); Selnam et al. (2001). For related structures, see: Arshad et al. (2009); Gowda et al. (2007a,b,c); Khan et al. (2009); Haider et al.(2009). For bond-length data, see: Allen et al. (1987).

Experimental top

A well ground mixture of 2-methyl-5-nitrobenzenesulfonyl chloride (2.36 g, 10.0 mmol) and ammonium carbonate (10.0 g) was heated in a china dish till the complete removal of typical smell of sulfonyl chloride. Contents were cooled and washed with water followed by crystallization from methanol.

Refinement top

All H atoms were identified in a difference map and then were treated as riding (C—H = 0.93 or 0.97 Å), with Uiso(H) = 1.2Ueq(C). The reflection '0 0 2' affected by beamstop was removed during refinement.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Perspective view of the three-dimensional crystal packing showing intermolecular hydrogen-bonded interactions (dashed lines). [Symmetry codes: (i) -x + 1, y + 1/2, -z + 3/2; (ii) x + 1, y, z and (iii) -x + 2, y + 1/2, -z + 3/2]. H atoms not involved in hydrogen bonding have been omitted for clarity.
2-Methyl-5-nitrobenzenesulfonamide top
Crystal data top
C7H8N2O4SF(000) = 448
Mr = 216.21Dx = 1.605 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1325 reflections
a = 4.9872 (4) Åθ = 2.9–25.4°
b = 6.2814 (5) ŵ = 0.35 mm1
c = 28.557 (2) ÅT = 296 K
V = 894.60 (12) Å3Needles, colourless
Z = 40.43 × 0.17 × 0.11 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2113 independent reflections
Radiation source: fine-focus sealed tube1549 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ϕ and ω scansθmax = 28.3°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 36
Tmin = 0.864, Tmax = 0.962k = 88
5964 measured reflectionsl = 3838
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0508P)2 + 0.1986P]
where P = (Fo2 + 2Fc2)/3
S = 0.89(Δ/σ)max < 0.001
2112 reflectionsΔρmax = 0.23 e Å3
136 parametersΔρmin = 0.23 e Å3
0 restraintsAbsolute structure: Flack (1983), 766 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (11)
Crystal data top
C7H8N2O4SV = 894.60 (12) Å3
Mr = 216.21Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 4.9872 (4) ŵ = 0.35 mm1
b = 6.2814 (5) ÅT = 296 K
c = 28.557 (2) Å0.43 × 0.17 × 0.11 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2113 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1549 reflections with I > 2σ(I)
Tmin = 0.864, Tmax = 0.962Rint = 0.036
5964 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.099Δρmax = 0.23 e Å3
S = 0.89Δρmin = 0.23 e Å3
2112 reflectionsAbsolute structure: Flack (1983), 766 Friedel pairs
136 parametersAbsolute structure parameter: 0.02 (11)
0 restraints
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7436 (6)0.4718 (4)0.85981 (8)0.0294 (6)
C20.6274 (6)0.6621 (4)0.87573 (9)0.0336 (6)
C30.7125 (7)0.7374 (4)0.91916 (10)0.0433 (8)
H30.63920.86290.93080.052*
C40.9018 (6)0.6316 (5)0.94542 (9)0.0425 (7)
H40.95680.68570.97420.051*
C51.0083 (7)0.4455 (4)0.92867 (9)0.0342 (6)
C60.9298 (6)0.3616 (4)0.88605 (8)0.0330 (6)
H61.00090.23380.87530.040*
C70.4234 (7)0.7867 (5)0.84858 (11)0.0473 (9)
H7A0.38610.91780.86460.071*
H7B0.26150.70510.84590.071*
H7C0.49220.81710.81790.071*
N11.2116 (5)0.3335 (4)0.95582 (8)0.0431 (6)
O40.3903 (4)0.3752 (4)0.79524 (7)0.0525 (6)
O11.3007 (5)0.4194 (3)0.99090 (7)0.0568 (6)
O21.2851 (5)0.1593 (4)0.94205 (8)0.0677 (7)
O30.7986 (4)0.1599 (3)0.80208 (7)0.0465 (5)
N30.8152 (8)0.5117 (5)0.76612 (9)0.0532 (8)
S10.67301 (15)0.36352 (11)0.80358 (2)0.03595 (19)
H1N0.720 (8)0.605 (5)0.7540 (12)0.062 (12)*
H2N0.994 (12)0.509 (7)0.7660 (14)0.091 (16)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0257 (18)0.0334 (12)0.0292 (11)0.0031 (12)0.0030 (11)0.0005 (10)
C20.0294 (18)0.0338 (13)0.0374 (12)0.0008 (13)0.0030 (11)0.0044 (11)
C30.046 (2)0.0403 (14)0.0437 (15)0.0085 (15)0.0036 (15)0.0086 (12)
C40.047 (2)0.0469 (15)0.0334 (12)0.0080 (17)0.0022 (13)0.0102 (13)
C50.0295 (18)0.0429 (14)0.0301 (12)0.0029 (13)0.0029 (12)0.0031 (11)
C60.0313 (17)0.0345 (12)0.0333 (12)0.0013 (14)0.0065 (11)0.0029 (12)
C70.045 (2)0.0428 (16)0.0541 (17)0.0074 (15)0.0010 (16)0.0078 (13)
N10.0377 (16)0.0553 (14)0.0362 (11)0.0095 (15)0.0022 (11)0.0052 (11)
O40.0291 (12)0.0768 (14)0.0515 (12)0.0103 (12)0.0018 (9)0.0106 (11)
O10.0521 (16)0.0746 (15)0.0436 (11)0.0029 (13)0.0166 (11)0.0034 (10)
O20.0711 (19)0.0721 (14)0.0598 (14)0.0387 (16)0.0127 (13)0.0080 (12)
O30.0495 (14)0.0433 (10)0.0467 (10)0.0050 (11)0.0040 (10)0.0132 (9)
N30.039 (2)0.079 (2)0.0415 (13)0.0008 (19)0.0032 (15)0.0203 (14)
S10.0296 (4)0.0473 (4)0.0310 (3)0.0068 (4)0.0021 (3)0.0038 (3)
Geometric parameters (Å, º) top
C1—C61.379 (4)C6—H60.9300
C1—C21.404 (4)C7—H7A0.9600
C1—S11.779 (3)C7—H7B0.9600
C2—C31.393 (4)C7—H7C0.9600
C2—C71.499 (4)N1—O11.221 (3)
C3—C41.377 (4)N1—O21.219 (3)
C3—H30.9300O4—S11.432 (2)
C4—C51.370 (4)O3—S11.425 (2)
C4—H40.9300N3—S11.586 (3)
C5—C61.383 (3)N3—H1N0.83 (4)
C5—N11.457 (4)N3—H2N0.89 (6)
C6—C1—C2122.0 (2)C2—C7—H7A109.5
C6—C1—S1115.57 (19)C2—C7—H7B109.5
C2—C1—S1122.4 (2)H7A—C7—H7B109.5
C3—C2—C1116.8 (2)C2—C7—H7C109.5
C3—C2—C7119.3 (3)H7A—C7—H7C109.5
C1—C2—C7123.9 (2)H7B—C7—H7C109.5
C4—C3—C2122.0 (3)O1—N1—O2123.5 (3)
C4—C3—H3119.0O1—N1—C5118.5 (2)
C2—C3—H3119.0O2—N1—C5118.1 (2)
C5—C4—C3119.2 (3)S1—N3—H1N116 (3)
C5—C4—H4120.4S1—N3—H2N116 (3)
C3—C4—H4120.4H1N—N3—H2N126 (4)
C4—C5—C6121.5 (3)O3—S1—O4118.28 (15)
C4—C5—N1119.7 (2)O3—S1—N3108.08 (18)
C6—C5—N1118.8 (2)O4—S1—N3107.33 (18)
C1—C6—C5118.5 (2)O3—S1—C1106.47 (12)
C1—C6—H6120.7O4—S1—C1108.99 (13)
C5—C6—H6120.7N3—S1—C1107.21 (15)
C6—C1—C2—C31.2 (4)N1—C5—C6—C1177.9 (2)
S1—C1—C2—C3175.9 (2)C4—C5—N1—O16.9 (4)
C6—C1—C2—C7179.7 (3)C6—C5—N1—O1172.3 (3)
S1—C1—C2—C73.3 (4)C4—C5—N1—O2173.7 (3)
C1—C2—C3—C40.1 (4)C6—C5—N1—O27.1 (4)
C7—C2—C3—C4179.1 (3)C6—C1—S1—O39.8 (2)
C2—C3—C4—C50.6 (5)C2—C1—S1—O3173.0 (2)
C3—C4—C5—C60.0 (4)C6—C1—S1—O4138.5 (2)
C3—C4—C5—N1179.2 (3)C2—C1—S1—O444.3 (3)
C2—C1—C6—C51.8 (4)C6—C1—S1—N3105.7 (2)
S1—C1—C6—C5175.4 (2)C2—C1—S1—N371.6 (3)
C4—C5—C6—C11.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1N···O4i0.83 (4)2.27 (4)3.055 (4)158 (3)
N3—H2N···O4ii0.89 (6)2.30 (6)3.107 (4)150 (4)
N3—H2N···O3iii0.89 (6)2.40 (4)2.893 (4)115 (3)
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+1, y, z; (iii) x+2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC7H8N2O4S
Mr216.21
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)4.9872 (4), 6.2814 (5), 28.557 (2)
V3)894.60 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.35
Crystal size (mm)0.43 × 0.17 × 0.11
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.864, 0.962
No. of measured, independent and
observed [I > 2σ(I)] reflections
5964, 2113, 1549
Rint0.036
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.099, 0.89
No. of reflections2112
No. of parameters136
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.23
Absolute structureFlack (1983), 766 Friedel pairs
Absolute structure parameter0.02 (11)

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1N···O4i0.83 (4)2.27 (4)3.055 (4)158 (3)
N3—H2N···O4ii0.89 (6)2.30 (6)3.107 (4)150 (4)
N3—H2N···O3iii0.89 (6)2.40 (4)2.893 (4)115 (3)
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+1, y, z; (iii) x+2, y+1/2, z+3/2.
 

Acknowledgements

The authors are grateful to PCSIR Laboratories Complex, Lahore, Pakistan, for the provision of necessary chemicals and to the Higher Education Commission of Pakistan for its grant for the purchase of diffractometer.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationArshad, M. N., Khan, I. U., Zia-ur-Rehman, M. & Shafiq, M. (2009). Acta Cryst. E65, o1204.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007a). Acta Cryst. E63, o2339.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007b). Acta Cryst. E63, o2570.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007c). Acta Cryst. E63, o2597.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHaider, Z., Khan, I. U., Zia-ur-Rehman, M. & Arshad, M. N. (2009). Acta Cryst. E65, o3053.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhan, I. U., Haider, Z., Zia-ur-Rehman, M., Arshad, M. N. & Shafiq, M. (2009). Acta Cryst. E65, o2867.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOzbek, N., Katircioğ lu, H., Karacan, N. & Baykal, T. (2007). Bioorg. Med. Chem. 15, 5105–5109.  Web of Science CrossRef PubMed Google Scholar
First citationParari, M. K., Panda, G., Srivastava, K. & Puri, S. K. (2008). Bioorg. Med. Chem. Lett. 18, 776–781.  PubMed Google Scholar
First citationRatish, G. I., Javed, K., Ahmad, S., Bano, S., Alam, M. S., Pillai, K. K., Singh, S. & Bagchi, V. (2009). Bioorg. Med. Chem. Lett. 19, 255–258.  Web of Science PubMed Google Scholar
First citationSelnam, P., Chandramohan, M., Clercq, E. D., Witvrouw, M. & Pannecouque, C. (2001). Eur. J. Pharm. Sci. 14, 313–316.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds