organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,7-Di­phenyl-2,9-bis­­(tri­chloro­meth­yl)-1,10-phenanthroline

aJiangsu Institute of Nuclear Medicine, Wuxi 214063, People's Republic of China
*Correspondence e-mail: xiemh0704@sina.com

(Received 17 November 2009; accepted 26 November 2009; online 4 December 2009)

In the title compound, C26H14Cl6N2, the phenanthroline ring system is essentially planar, with an r.m.s. deviation of 0.048 (6) Å, and makes dihedral angles of 64.8 (14) and 66.6 (6)° with the two terminal phenyl rings. One of the trichloro­methyl groups is disordered over two positions, with occupancies of 0.42 (2) and 0.58 (2).

Related literature

For 4,7-bis­(chloro­sulfophen­yl)-1,10-phenanthroline-2,9-dicarboxylic acid, see: Evangelista et al. (1988[Evangelista, R. A., Pollak, A., Allore, B., Templeton, E. F. & Morton, R. C. (1988). Clin. Biochem. 21, 173-178.]); Papanastasiou-Diamandi et al. (1989[Papanastasiou-Diamandi, A., Conway, K. & Diamandis, E. P. (1989). J. Pharm. Sci. 78, 617-621.]); Scorilas & Diamandis (2000[Scorilas, A. & Diamandis, E. P. (2000). Clin. Biochem. 33, 345-350.]). For a related structure, see: Wang et al. (2007[Wang, J., Ye, J.-W. & Wang, Y. (2007). Acta Cryst. E63, o2007-o2008.]).

[Scheme 1]

Experimental

Crystal data
  • C26H14Cl6N2

  • Mr = 567.09

  • Monoclinic, P 21 /c

  • a = 11.253 (2) Å

  • b = 19.789 (4) Å

  • c = 11.299 (2) Å

  • β = 106.544 (3)°

  • V = 2411.9 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.73 mm−1

  • T = 133 K

  • 0.30 × 0.27 × 0.20 mm

Data collection
  • Rigaku SPIDER diffractometer

  • Absorption correction: multi-scan (ABSCOR, Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.810, Tmax = 0.867

  • 19334 measured reflections

  • 5453 independent reflections

  • 4573 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.080

  • S = 1.00

  • 5453 reflections

  • 335 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.31 e Å−3

Data collection: RAPID-AUTO (Rigaku 2004[Rigaku (2004). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The molecule of the title complex (DDTP), (Fig.1), is an important intermediate for the synthesis of 4,7-bis(chlorosulfophenyl)-1,10- phenanthroline-2,9-dicarboxylic acid (BCPDA), a chelator that forms stable and highly fluorescent complexes with Eu3+ (Evangelista et al., 1988). BCPDA can be covalently incorporated into proteins under relatively mild conditions (Papanastasiou-Diamandi et al., 1989). and when complexes with Eu3+ forms a fluorescent product that has a lifetime in the range of 0.4 to 0.7 ms, it is useful for time-resolved fluorescence immunoassay applications (Scorilas & Diamandis, 2000). However, the crystal structure of DDTP has not been reported until now and therefore, we have determined its structure. In the crystal structure of the title compound, all bond lengths and angles are in good agreement with those observed in related compounds (Wang et al., 2007). The phenanthroline ring is planar to within 0.048 (6) Å. The dihedral angles between the terminal phenyl rings and the phenanthroline unit are 64.8 (14) and 66.6 (6)°.

Related literature top

For 4,7-bis(chlorosulfophenyl)-1,10-phenanthroline-2,9-dicarboxylic acid, see: Evangelista et al. (1988); Papanastasiou-Diamandi et al. (1989); Scorilas & Diamandis (2000). For a related structure, see: Wang et al. (2007).

Experimental top

4,7-Diphenyl-2,9-dimethyl-1,10-phenanthroline (0.5 mmol, 180.2 mg), N-chlorosuccinimide (3.3 mmol, 440.6 mg) and benzoyl peroxide (0.5 mg) were dissolved in carbon tetrachlorid (6 ml). The reaction mixture was refluxed for 6 h. After cooling to room temperature, the reaction mixture was filtered. The filtrate was concentrated in vacuo and the residue was dissolved in chlorobenzene (3 mL). The solution was evaporated in air affording colourless block-shaped crystals suitable for X-ray analysis (yield: 80.1%).

Refinement top

H atoms were placed in calculated positions (C—H = 0.95 Å) and were refined using a riding model, with Uiso(H) = 1.2Ueq(C). The bond lengths of C14—Cl4, C14—Cl5, C14—Cl6, C14—Cl4', C14—Cl5' and C14—Cl6' were restrained to 1.777 (8) Å.

Computing details top

Data collection: RAPID-AUTO (Rigaku 2004); cell refinement: RAPID-AUTO (Rigaku 2004); data reduction: RAPID-AUTO (Rigaku 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atom-numbering scheme. Displacement ellipsoids were drawn at the 50% probability level and H atoms are represented as spheres of arbitrary radius.
4,7-Diphenyl-2,9-bis(trichloromethyl)-1,10-phenanthroline top
Crystal data top
C26H14Cl6N2F(000) = 1144
Mr = 567.09Dx = 1.562 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7807 reflections
a = 11.253 (2) Åθ = 3.0–27.5°
b = 19.789 (4) ŵ = 0.73 mm1
c = 11.299 (2) ÅT = 133 K
β = 106.544 (3)°Block, colourless
V = 2411.9 (8) Å30.30 × 0.27 × 0.20 mm
Z = 4
Data collection top
Rigaku SPIDER
diffractometer
5453 independent reflections
Radiation source: Rotating Anode4573 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR, Higashi, 1995)
h = 1414
Tmin = 0.810, Tmax = 0.867k = 2525
19334 measured reflectionsl = 1114
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0386P)2 + 0.845P]
where P = (Fo2 + 2Fc2)/3
5453 reflections(Δ/σ)max = 0.001
335 parametersΔρmax = 0.35 e Å3
6 restraintsΔρmin = 0.31 e Å3
Crystal data top
C26H14Cl6N2V = 2411.9 (8) Å3
Mr = 567.09Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.253 (2) ŵ = 0.73 mm1
b = 19.789 (4) ÅT = 133 K
c = 11.299 (2) Å0.30 × 0.27 × 0.20 mm
β = 106.544 (3)°
Data collection top
Rigaku SPIDER
diffractometer
5453 independent reflections
Absorption correction: multi-scan
(ABSCOR, Higashi, 1995)
4573 reflections with I > 2σ(I)
Tmin = 0.810, Tmax = 0.867Rint = 0.031
19334 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0336 restraints
wR(F2) = 0.080H-atom parameters constrained
S = 1.00Δρmax = 0.35 e Å3
5453 reflectionsΔρmin = 0.31 e Å3
335 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.77991 (4)0.20665 (2)0.26183 (5)0.03026 (12)
Cl20.87385 (4)0.34261 (2)0.28505 (4)0.02826 (11)
Cl30.70433 (4)0.29867 (3)0.05663 (4)0.03175 (12)
Cl40.8632 (9)0.5763 (2)0.7849 (9)0.0382 (18)0.42 (2)
Cl50.9336 (8)0.4395 (4)0.8454 (7)0.0288 (11)0.42 (2)
Cl60.9431 (4)0.4847 (7)0.6140 (4)0.0361 (12)0.42 (2)
Cl4'0.8577 (6)0.57471 (16)0.7930 (5)0.0220 (7)0.58 (2)
Cl5'0.9403 (6)0.4374 (3)0.8367 (6)0.0398 (12)0.58 (2)
Cl6'0.9246 (6)0.5098 (5)0.6005 (4)0.0377 (11)0.58 (2)
N10.65388 (13)0.35117 (7)0.36420 (13)0.0176 (3)
N20.69870 (13)0.43350 (7)0.56595 (13)0.0189 (3)
C10.63101 (15)0.31204 (8)0.26646 (15)0.0184 (3)
C20.51453 (16)0.28295 (9)0.20857 (16)0.0206 (4)
H20.50270.25670.13570.025*
C30.41832 (15)0.29307 (8)0.25905 (16)0.0187 (3)
C40.44090 (15)0.33316 (8)0.36810 (15)0.0175 (3)
C50.34884 (15)0.34379 (8)0.43131 (15)0.0186 (3)
H50.26900.32430.39930.022*
C60.37361 (15)0.38123 (9)0.53598 (15)0.0189 (3)
H60.31130.38670.57700.023*
C70.49177 (15)0.41274 (8)0.58584 (15)0.0177 (3)
C80.52306 (15)0.44919 (9)0.69909 (16)0.0193 (3)
C90.63987 (16)0.47611 (10)0.74061 (16)0.0237 (4)
H90.66420.50020.81640.028*
C100.72327 (16)0.46772 (9)0.66991 (16)0.0212 (4)
C110.58475 (15)0.40500 (8)0.52455 (15)0.0174 (3)
C120.55943 (15)0.36274 (8)0.41452 (15)0.0167 (3)
C130.74181 (16)0.29291 (9)0.22063 (16)0.0200 (4)
C140.85598 (15)0.49422 (8)0.72133 (13)0.0259 (4)
C150.29361 (15)0.26235 (8)0.20141 (16)0.0185 (3)
C160.22094 (17)0.28428 (9)0.08735 (16)0.0244 (4)
H160.25100.31870.04470.029*
C170.10426 (18)0.25642 (11)0.03459 (19)0.0320 (5)
H170.05480.27210.04330.038*
C180.06033 (18)0.20584 (11)0.09570 (19)0.0324 (5)
H180.01950.18690.06020.039*
C190.13328 (19)0.18308 (10)0.20874 (18)0.0308 (4)
H190.10390.14790.25040.037*
C200.24910 (18)0.21126 (9)0.26165 (17)0.0259 (4)
H200.29830.19550.33960.031*
C210.43708 (15)0.45433 (9)0.77745 (15)0.0186 (3)
C220.32389 (16)0.48808 (9)0.73897 (16)0.0218 (4)
H220.29880.50880.65990.026*
C230.24798 (16)0.49136 (10)0.81640 (17)0.0252 (4)
H230.17130.51490.79060.030*
C240.28335 (17)0.46052 (10)0.93113 (17)0.0253 (4)
H240.22960.46160.98250.030*
C250.39631 (18)0.42821 (10)0.97102 (17)0.0252 (4)
H250.42120.40791.05050.030*
C260.47359 (16)0.42539 (9)0.89462 (16)0.0217 (4)
H260.55180.40360.92250.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0312 (2)0.0216 (2)0.0385 (3)0.00736 (18)0.0109 (2)0.00183 (19)
Cl20.0198 (2)0.0314 (2)0.0348 (3)0.00346 (18)0.00969 (19)0.00712 (19)
Cl30.0298 (2)0.0472 (3)0.0188 (2)0.0067 (2)0.00781 (19)0.0009 (2)
Cl40.027 (2)0.030 (2)0.051 (4)0.0075 (14)0.000 (2)0.0095 (16)
Cl50.020 (2)0.0270 (18)0.032 (2)0.0059 (11)0.0049 (14)0.0020 (12)
Cl60.0212 (9)0.063 (3)0.0263 (9)0.0124 (12)0.0111 (8)0.0113 (14)
Cl4'0.0240 (12)0.0194 (11)0.0206 (12)0.0074 (9)0.0027 (9)0.0040 (9)
Cl5'0.0176 (11)0.0264 (13)0.071 (3)0.0007 (9)0.0053 (12)0.0114 (12)
Cl6'0.0262 (11)0.065 (2)0.0277 (8)0.0212 (14)0.0167 (8)0.0187 (10)
N10.0180 (7)0.0173 (7)0.0173 (7)0.0013 (5)0.0048 (6)0.0003 (6)
N20.0165 (7)0.0230 (7)0.0166 (7)0.0031 (6)0.0037 (6)0.0025 (6)
C10.0188 (8)0.0182 (8)0.0181 (9)0.0007 (6)0.0050 (7)0.0005 (7)
C20.0217 (9)0.0206 (8)0.0187 (9)0.0002 (7)0.0043 (7)0.0026 (7)
C30.0179 (8)0.0157 (8)0.0205 (9)0.0004 (6)0.0024 (7)0.0008 (7)
C40.0190 (8)0.0157 (8)0.0167 (8)0.0008 (6)0.0034 (7)0.0013 (6)
C50.0158 (8)0.0186 (8)0.0201 (9)0.0020 (6)0.0029 (7)0.0012 (7)
C60.0174 (8)0.0209 (8)0.0185 (9)0.0005 (6)0.0054 (7)0.0018 (7)
C70.0171 (8)0.0185 (8)0.0171 (9)0.0002 (6)0.0040 (7)0.0013 (6)
C80.0180 (8)0.0204 (8)0.0195 (9)0.0003 (7)0.0052 (7)0.0003 (7)
C90.0212 (9)0.0317 (10)0.0178 (9)0.0057 (7)0.0051 (7)0.0079 (7)
C100.0160 (8)0.0276 (9)0.0193 (9)0.0058 (7)0.0041 (7)0.0031 (7)
C110.0172 (8)0.0181 (8)0.0162 (8)0.0008 (6)0.0037 (6)0.0014 (6)
C120.0179 (8)0.0159 (8)0.0154 (8)0.0007 (6)0.0031 (6)0.0025 (6)
C130.0199 (8)0.0210 (8)0.0177 (9)0.0010 (7)0.0032 (7)0.0014 (7)
C140.0199 (9)0.0382 (11)0.0210 (10)0.0082 (8)0.0079 (7)0.0083 (8)
C150.0175 (8)0.0175 (8)0.0208 (9)0.0016 (6)0.0059 (7)0.0049 (7)
C160.0245 (9)0.0252 (9)0.0218 (9)0.0037 (7)0.0038 (7)0.0008 (7)
C170.0262 (10)0.0381 (11)0.0262 (11)0.0041 (8)0.0017 (8)0.0020 (8)
C180.0225 (10)0.0388 (12)0.0356 (12)0.0122 (8)0.0076 (8)0.0113 (9)
C190.0346 (11)0.0278 (10)0.0339 (11)0.0129 (8)0.0161 (9)0.0035 (8)
C200.0284 (10)0.0243 (9)0.0235 (10)0.0031 (7)0.0048 (8)0.0009 (7)
C210.0185 (8)0.0207 (8)0.0173 (9)0.0043 (6)0.0063 (7)0.0039 (7)
C220.0191 (9)0.0255 (9)0.0198 (9)0.0026 (7)0.0040 (7)0.0006 (7)
C230.0168 (8)0.0292 (10)0.0297 (10)0.0009 (7)0.0067 (7)0.0046 (8)
C240.0232 (9)0.0341 (10)0.0223 (10)0.0089 (8)0.0123 (7)0.0079 (8)
C250.0302 (10)0.0291 (10)0.0161 (9)0.0082 (8)0.0063 (7)0.0007 (7)
C260.0199 (8)0.0230 (9)0.0210 (9)0.0005 (7)0.0040 (7)0.0002 (7)
Geometric parameters (Å, º) top
Cl1—C131.7890 (18)C8—C211.489 (2)
Cl2—C131.7575 (18)C9—C101.405 (2)
Cl3—C131.7831 (18)C9—H90.9500
Cl4—C141.769 (3)C10—C141.533 (2)
Cl5—C141.791 (3)C11—C121.458 (2)
Cl6—C141.773 (3)C15—C161.385 (2)
Cl4'—C141.784 (2)C15—C201.389 (2)
Cl5'—C141.777 (2)C16—C171.392 (3)
Cl6'—C141.777 (2)C16—H160.9500
N1—C11.313 (2)C17—C181.385 (3)
N1—C121.360 (2)C17—H170.9500
N2—C101.315 (2)C18—C191.382 (3)
N2—C111.356 (2)C18—H180.9500
C1—C21.410 (2)C19—C201.387 (3)
C1—C131.528 (2)C19—H190.9500
C2—C31.375 (2)C20—H200.9500
C2—H20.9500C21—C261.393 (2)
C3—C41.426 (2)C21—C221.394 (2)
C3—C151.498 (2)C22—C231.388 (2)
C4—C121.414 (2)C22—H220.9500
C4—C51.431 (2)C23—C241.385 (3)
C5—C61.356 (2)C23—H230.9500
C5—H50.9500C24—C251.379 (3)
C6—C71.431 (2)C24—H240.9500
C6—H60.9500C25—C261.390 (2)
C7—C111.418 (2)C25—H250.9500
C7—C81.423 (2)C26—H260.9500
C8—C91.371 (2)
C1—N1—C12117.49 (14)Cl4—C14—Cl6113.9 (4)
C10—N2—C11117.37 (14)C10—C14—Cl6'110.97 (16)
N1—C1—C2124.37 (15)C10—C14—Cl5'108.7 (2)
N1—C1—C13116.60 (14)Cl6'—C14—Cl5'114.5 (4)
C2—C1—C13118.83 (15)C10—C14—Cl4'111.2 (2)
C3—C2—C1119.08 (16)Cl6'—C14—Cl4'104.1 (3)
C3—C2—H2120.5Cl5'—C14—Cl4'107.3 (3)
C1—C2—H2120.5C10—C14—Cl5107.2 (3)
C2—C3—C4118.16 (15)Cl4—C14—Cl5106.4 (4)
C2—C3—C15120.78 (15)Cl6—C14—Cl5103.3 (5)
C4—C3—C15121.07 (15)C16—C15—C20118.96 (16)
C12—C4—C3117.91 (15)C16—C15—C3120.62 (15)
C12—C4—C5119.64 (15)C20—C15—C3120.42 (16)
C3—C4—C5122.45 (15)C15—C16—C17120.63 (17)
C6—C5—C4121.15 (15)C15—C16—H16119.7
C6—C5—H5119.4C17—C16—H16119.7
C4—C5—H5119.4C18—C17—C16120.00 (19)
C5—C6—C7121.25 (16)C18—C17—H17120.0
C5—C6—H6119.4C16—C17—H17120.0
C7—C6—H6119.4C19—C18—C17119.60 (18)
C11—C7—C8117.76 (15)C19—C18—H18120.2
C11—C7—C6119.54 (15)C17—C18—H18120.2
C8—C7—C6122.62 (15)C18—C19—C20120.34 (18)
C9—C8—C7118.18 (15)C18—C19—H19119.8
C9—C8—C21119.46 (15)C20—C19—H19119.8
C7—C8—C21122.20 (15)C19—C20—C15120.47 (18)
C8—C9—C10119.34 (16)C19—C20—H20119.8
C8—C9—H9120.3C15—C20—H20119.8
C10—C9—H9120.3C26—C21—C22119.32 (16)
N2—C10—C9124.34 (16)C26—C21—C8118.11 (15)
N2—C10—C14116.68 (14)C22—C21—C8122.55 (15)
C9—C10—C14118.73 (14)C23—C22—C21119.86 (16)
N2—C11—C7122.92 (15)C23—C22—H22120.1
N2—C11—C12117.95 (14)C21—C22—H22120.1
C7—C11—C12119.10 (15)C24—C23—C22120.34 (17)
N1—C12—C4122.85 (15)C24—C23—H23119.8
N1—C12—C11117.83 (14)C22—C23—H23119.8
C4—C12—C11119.25 (15)C25—C24—C23120.19 (16)
C1—C13—Cl2113.35 (12)C25—C24—H24119.9
C1—C13—Cl3111.23 (12)C23—C24—H24119.9
Cl2—C13—Cl3108.45 (9)C24—C25—C26119.82 (17)
C1—C13—Cl1107.85 (12)C24—C25—H25120.1
Cl2—C13—Cl1108.33 (9)C26—C25—H25120.1
Cl3—C13—Cl1107.44 (9)C25—C26—C21120.42 (17)
C10—C14—Cl4113.3 (4)C25—C26—H26119.8
C10—C14—Cl6111.90 (18)C21—C26—H26119.8
C12—N1—C1—C21.9 (2)C2—C1—C13—Cl2170.74 (13)
C12—N1—C1—C13172.95 (14)N1—C1—C13—Cl3136.63 (14)
N1—C1—C2—C33.0 (3)C2—C1—C13—Cl348.23 (19)
C13—C1—C2—C3171.78 (15)N1—C1—C13—Cl1105.80 (15)
C1—C2—C3—C40.4 (2)C2—C1—C13—Cl169.34 (18)
C1—C2—C3—C15179.20 (15)N2—C10—C14—Cl4140.4 (4)
C2—C3—C4—C122.9 (2)C9—C10—C14—Cl445.1 (4)
C15—C3—C4—C12177.55 (15)N2—C10—C14—Cl69.9 (5)
C2—C3—C4—C5176.69 (16)C9—C10—C14—Cl6175.5 (5)
C15—C3—C4—C52.9 (2)N2—C10—C14—Cl6'28.8 (4)
C12—C4—C5—C60.7 (2)C9—C10—C14—Cl6'156.6 (4)
C3—C4—C5—C6178.88 (16)N2—C10—C14—Cl5'98.0 (3)
C4—C5—C6—C71.3 (3)C9—C10—C14—Cl5'76.6 (4)
C5—C6—C7—C110.3 (2)N2—C10—C14—Cl4'144.1 (3)
C5—C6—C7—C8176.41 (16)C9—C10—C14—Cl4'41.3 (3)
C11—C7—C8—C91.7 (2)N2—C10—C14—Cl5102.6 (4)
C6—C7—C8—C9178.40 (17)C9—C10—C14—Cl571.9 (4)
C11—C7—C8—C21173.61 (15)C2—C3—C15—C1668.2 (2)
C6—C7—C8—C213.1 (3)C4—C3—C15—C16112.29 (19)
C7—C8—C9—C100.9 (3)C2—C3—C15—C20111.8 (2)
C21—C8—C9—C10176.27 (17)C4—C3—C15—C2067.8 (2)
C11—N2—C10—C90.5 (3)C20—C15—C16—C171.0 (3)
C11—N2—C10—C14174.73 (14)C3—C15—C16—C17179.04 (17)
C8—C9—C10—N22.1 (3)C15—C16—C17—C180.6 (3)
C8—C9—C10—C14176.22 (16)C16—C17—C18—C190.4 (3)
C10—N2—C11—C72.3 (2)C17—C18—C19—C200.9 (3)
C10—N2—C11—C12175.49 (15)C18—C19—C20—C150.4 (3)
C8—C7—C11—N23.4 (2)C16—C15—C20—C190.5 (3)
C6—C7—C11—N2179.78 (15)C3—C15—C20—C19179.56 (17)
C8—C7—C11—C12174.39 (15)C9—C8—C21—C2659.3 (2)
C6—C7—C11—C122.5 (2)C7—C8—C21—C26115.88 (19)
C1—N1—C12—C41.7 (2)C9—C8—C21—C22119.2 (2)
C1—N1—C12—C11178.76 (15)C7—C8—C21—C2265.6 (2)
C3—C4—C12—N14.1 (2)C26—C21—C22—C231.3 (3)
C5—C4—C12—N1175.48 (15)C8—C21—C22—C23179.75 (16)
C3—C4—C12—C11178.89 (15)C21—C22—C23—C240.8 (3)
C5—C4—C12—C111.5 (2)C22—C23—C24—C252.2 (3)
N2—C11—C12—N13.8 (2)C23—C24—C25—C261.4 (3)
C7—C11—C12—N1174.08 (15)C24—C25—C26—C210.7 (3)
N2—C11—C12—C4179.07 (15)C22—C21—C26—C252.0 (3)
C7—C11—C12—C43.1 (2)C8—C21—C26—C25179.40 (16)
N1—C1—C13—Cl214.1 (2)

Experimental details

Crystal data
Chemical formulaC26H14Cl6N2
Mr567.09
Crystal system, space groupMonoclinic, P21/c
Temperature (K)133
a, b, c (Å)11.253 (2), 19.789 (4), 11.299 (2)
β (°) 106.544 (3)
V3)2411.9 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.73
Crystal size (mm)0.30 × 0.27 × 0.20
Data collection
DiffractometerRigaku SPIDER
diffractometer
Absorption correctionMulti-scan
(ABSCOR, Higashi, 1995)
Tmin, Tmax0.810, 0.867
No. of measured, independent and
observed [I > 2σ(I)] reflections
19334, 5453, 4573
Rint0.031
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.080, 1.00
No. of reflections5453
No. of parameters335
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.31

Computer programs: RAPID-AUTO (Rigaku 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008).

 

Acknowledgements

We acknowledge financial support by the National 863 Plan Foundation of China (grant No. 2008 A A10Z415), the Social Development Foundation of Jiangsu (grant No. BE2008633) and the Medical Research Project of Jiangsu (grant No. H200736).

References

First citationEvangelista, R. A., Pollak, A., Allore, B., Templeton, E. F. & Morton, R. C. (1988). Clin. Biochem. 21, 173–178.  CrossRef CAS PubMed Web of Science Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationPapanastasiou-Diamandi, A., Conway, K. & Diamandis, E. P. (1989). J. Pharm. Sci. 78, 617–621.  CrossRef CAS PubMed Web of Science Google Scholar
First citationRigaku (2004). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationScorilas, A. & Diamandis, E. P. (2000). Clin. Biochem. 33, 345–350.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, J., Ye, J.-W. & Wang, Y. (2007). Acta Cryst. E63, o2007–o2008.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds