organic compounds
1-(6-Chloro-2-methyl-4-phenylquinolin-3-yl)-3-(3-methoxyphenyl)prop-2-en-1-one
aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bOrganic Chemistry Division, School of Advanced Sciences, VIT University, Vellore-632 014, India
*Correspondence e-mail: hkfun@usm.my
In the title compound, C26H20ClNO2, the quinoline ring system is approximately planar with a maximum deviation of 0.028 (2) Å and forms a dihedral angle of 73.84 (5)° with the phenyl ring. Two neighbouring molecules are arranged into a centrosymmetric dimer through a pair of intermolecular C—H⋯Cl interactions. A pair of intermolecular C—H⋯O hydrogen bonds link two methoxyphenyl groups into another centrosymmetric dimer, generating an R22(8) ring motif. The structure is further stabilized by C—H⋯π interactions.
Related literature
For background to and the biological activity of quinolines, see: Michael (1997); Markees et al. (1970); Kalluraya & Sreenivasa (1998); Chen et al. (2001). For the biological activity of see: Dimmock et al. (1999); Zi & Simoneau (2005). For related structures, see: Fun et al. (2009); Loh et al. (2009). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2005); cell SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536809052179/is2501sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809052179/is2501Isup2.hkl
To the solution of 3-acetyl-6-chloro-2-methyl-4-phenylquinoline (2.95 g, 0.01 M), 3-methoxybenzaldehyde (1.36 g, 0.01 M) and a catalytic amount of KOH in distilled ethanol was added and stirred for about 12 h. The resulting mixture was concentrated to remove the ethanol and then poured onto ice and neutralized with diluted acetic acid. The resultant solid was filtered, dried and purified by
using 1:1 mixture of ethylacetate and petroleum ether (m.p. 405–407 K).All hydrogen atoms were positioned geometrically (C–H = 0.93 or 0.96 Å) and were refined using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(C). A rotating group model was applied to the methyl groups.
Data collection: APEX2 (Bruker, 2005); cell
SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. | |
Fig. 2. The crystal packing of the title compound, viewed along the c axis. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity. |
C26H20ClNO2 | F(000) = 864 |
Mr = 413.88 | Dx = 1.316 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 9882 reflections |
a = 15.6338 (2) Å | θ = 2.6–30.3° |
b = 14.0408 (2) Å | µ = 0.21 mm−1 |
c = 10.0321 (1) Å | T = 100 K |
β = 108.462 (1)° | Block, colourless |
V = 2088.82 (5) Å3 | 0.33 × 0.25 × 0.17 mm |
Z = 4 |
Bruker SMART APEXII CCD area-detector diffractometer | 6303 independent reflections |
Radiation source: fine-focus sealed tube | 5132 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.042 |
ϕ and ω scans | θmax = 30.4°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | h = −22→22 |
Tmin = 0.936, Tmax = 0.967 | k = −19→19 |
51550 measured reflections | l = −14→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.042 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.112 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0521P)2 + 0.7676P] where P = (Fo2 + 2Fc2)/3 |
6303 reflections | (Δ/σ)max = 0.001 |
273 parameters | Δρmax = 0.38 e Å−3 |
0 restraints | Δρmin = −0.41 e Å−3 |
C26H20ClNO2 | V = 2088.82 (5) Å3 |
Mr = 413.88 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 15.6338 (2) Å | µ = 0.21 mm−1 |
b = 14.0408 (2) Å | T = 100 K |
c = 10.0321 (1) Å | 0.33 × 0.25 × 0.17 mm |
β = 108.462 (1)° |
Bruker SMART APEXII CCD area-detector diffractometer | 6303 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | 5132 reflections with I > 2σ(I) |
Tmin = 0.936, Tmax = 0.967 | Rint = 0.042 |
51550 measured reflections |
R[F2 > 2σ(F2)] = 0.042 | 0 restraints |
wR(F2) = 0.112 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.38 e Å−3 |
6303 reflections | Δρmin = −0.41 e Å−3 |
273 parameters |
Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.33917 (2) | 0.33164 (3) | 0.58574 (4) | 0.03525 (10) | |
O1 | 0.89366 (6) | 0.37834 (7) | 0.92588 (10) | 0.0275 (2) | |
O2 | 0.99503 (6) | 0.88427 (6) | 1.10271 (9) | 0.02503 (19) | |
N1 | 0.69406 (7) | 0.37222 (7) | 0.50187 (10) | 0.0202 (2) | |
C1 | 0.76533 (8) | 0.39716 (8) | 0.60758 (12) | 0.0194 (2) | |
C2 | 0.61229 (8) | 0.36683 (8) | 0.52489 (12) | 0.0186 (2) | |
C3 | 0.53676 (9) | 0.33562 (9) | 0.41238 (13) | 0.0232 (2) | |
H3A | 0.5437 | 0.3220 | 0.3257 | 0.028* | |
C4 | 0.45373 (9) | 0.32536 (9) | 0.42991 (13) | 0.0245 (3) | |
H4A | 0.4046 | 0.3044 | 0.3560 | 0.029* | |
C5 | 0.44385 (8) | 0.34703 (10) | 0.56185 (13) | 0.0230 (2) | |
C6 | 0.51471 (8) | 0.37833 (9) | 0.67275 (12) | 0.0208 (2) | |
H6A | 0.5063 | 0.3926 | 0.7583 | 0.025* | |
C7 | 0.60098 (8) | 0.38886 (8) | 0.65627 (11) | 0.0175 (2) | |
C8 | 0.67867 (8) | 0.41709 (8) | 0.76909 (11) | 0.0170 (2) | |
C9 | 0.76028 (7) | 0.41997 (8) | 0.74412 (12) | 0.0174 (2) | |
C10 | 0.84595 (8) | 0.44340 (9) | 0.86210 (12) | 0.0195 (2) | |
C11 | 0.87075 (8) | 0.54318 (9) | 0.89574 (13) | 0.0217 (2) | |
H11A | 0.9200 | 0.5564 | 0.9744 | 0.026* | |
C12 | 0.82630 (8) | 0.61647 (9) | 0.81913 (13) | 0.0204 (2) | |
H12A | 0.7752 | 0.6020 | 0.7441 | 0.024* | |
C13 | 0.85050 (7) | 0.71727 (9) | 0.84237 (12) | 0.0191 (2) | |
C14 | 0.91311 (8) | 0.74920 (9) | 0.96894 (12) | 0.0196 (2) | |
H14A | 0.9381 | 0.7067 | 1.0420 | 0.024* | |
C15 | 0.93706 (8) | 0.84453 (9) | 0.98366 (12) | 0.0198 (2) | |
C16 | 0.90136 (8) | 0.90856 (9) | 0.87281 (13) | 0.0226 (2) | |
H16A | 0.9193 | 0.9720 | 0.8824 | 0.027* | |
C17 | 0.83926 (8) | 0.87700 (9) | 0.74883 (13) | 0.0227 (2) | |
H17A | 0.8152 | 0.9195 | 0.6753 | 0.027* | |
C18 | 0.81280 (8) | 0.78194 (9) | 0.73403 (13) | 0.0214 (2) | |
H18A | 0.7699 | 0.7614 | 0.6517 | 0.026* | |
C19 | 0.67020 (7) | 0.43834 (9) | 0.91020 (11) | 0.0177 (2) | |
C20 | 0.70262 (9) | 0.37333 (9) | 1.01947 (13) | 0.0233 (2) | |
H20A | 0.7325 | 0.3187 | 1.0058 | 0.028* | |
C21 | 0.69045 (9) | 0.38998 (10) | 1.14923 (13) | 0.0269 (3) | |
H21A | 0.7115 | 0.3461 | 1.2217 | 0.032* | |
C22 | 0.64704 (9) | 0.47190 (10) | 1.17049 (13) | 0.0260 (3) | |
H22A | 0.6389 | 0.4829 | 1.2571 | 0.031* | |
C23 | 0.61572 (9) | 0.53749 (10) | 1.06250 (13) | 0.0257 (3) | |
H23A | 0.5872 | 0.5928 | 1.0772 | 0.031* | |
C24 | 0.62681 (8) | 0.52078 (9) | 0.93238 (12) | 0.0221 (2) | |
H24A | 0.6053 | 0.5646 | 0.8600 | 0.027* | |
C25 | 0.85421 (9) | 0.40069 (11) | 0.57958 (14) | 0.0269 (3) | |
H25A | 0.8444 | 0.3918 | 0.4810 | 0.040* | |
H25B | 0.8928 | 0.3511 | 0.6316 | 0.040* | |
H25C | 0.8822 | 0.4614 | 0.6083 | 0.040* | |
C26 | 1.04176 (9) | 0.82146 (10) | 1.21483 (13) | 0.0257 (3) | |
H26A | 1.0808 | 0.8579 | 1.2908 | 0.038* | |
H26B | 1.0769 | 0.7769 | 1.1815 | 0.038* | |
H26C | 0.9988 | 0.7875 | 1.2472 | 0.038* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.01933 (15) | 0.0596 (2) | 0.02639 (17) | −0.01311 (14) | 0.00657 (12) | −0.01568 (15) |
O1 | 0.0238 (4) | 0.0259 (5) | 0.0278 (5) | 0.0019 (4) | 0.0009 (4) | 0.0005 (4) |
O2 | 0.0280 (5) | 0.0226 (4) | 0.0205 (4) | −0.0053 (3) | 0.0019 (4) | −0.0048 (3) |
N1 | 0.0225 (5) | 0.0224 (5) | 0.0164 (4) | −0.0023 (4) | 0.0071 (4) | −0.0014 (4) |
C1 | 0.0212 (5) | 0.0193 (5) | 0.0189 (5) | −0.0015 (4) | 0.0079 (4) | 0.0005 (4) |
C2 | 0.0210 (5) | 0.0197 (5) | 0.0143 (5) | −0.0027 (4) | 0.0047 (4) | −0.0011 (4) |
C3 | 0.0262 (6) | 0.0283 (6) | 0.0141 (5) | −0.0031 (5) | 0.0050 (4) | −0.0037 (4) |
C4 | 0.0238 (6) | 0.0308 (7) | 0.0156 (5) | −0.0056 (5) | 0.0015 (4) | −0.0043 (5) |
C5 | 0.0179 (5) | 0.0307 (7) | 0.0192 (5) | −0.0043 (4) | 0.0042 (4) | −0.0045 (5) |
C6 | 0.0197 (5) | 0.0263 (6) | 0.0157 (5) | −0.0039 (4) | 0.0046 (4) | −0.0050 (4) |
C7 | 0.0189 (5) | 0.0187 (5) | 0.0139 (5) | −0.0022 (4) | 0.0038 (4) | −0.0014 (4) |
C8 | 0.0190 (5) | 0.0170 (5) | 0.0140 (5) | −0.0016 (4) | 0.0036 (4) | −0.0008 (4) |
C9 | 0.0177 (5) | 0.0165 (5) | 0.0172 (5) | −0.0019 (4) | 0.0045 (4) | −0.0005 (4) |
C10 | 0.0167 (5) | 0.0230 (6) | 0.0182 (5) | −0.0017 (4) | 0.0046 (4) | −0.0018 (4) |
C11 | 0.0166 (5) | 0.0241 (6) | 0.0220 (6) | −0.0034 (4) | 0.0026 (4) | −0.0044 (5) |
C12 | 0.0169 (5) | 0.0238 (6) | 0.0202 (5) | −0.0043 (4) | 0.0054 (4) | −0.0043 (4) |
C13 | 0.0155 (5) | 0.0223 (6) | 0.0199 (5) | −0.0024 (4) | 0.0060 (4) | −0.0034 (4) |
C14 | 0.0181 (5) | 0.0221 (6) | 0.0183 (5) | −0.0025 (4) | 0.0053 (4) | −0.0018 (4) |
C15 | 0.0174 (5) | 0.0231 (6) | 0.0189 (5) | −0.0030 (4) | 0.0057 (4) | −0.0055 (4) |
C16 | 0.0235 (6) | 0.0193 (6) | 0.0254 (6) | −0.0012 (4) | 0.0083 (5) | −0.0026 (5) |
C17 | 0.0213 (5) | 0.0241 (6) | 0.0224 (6) | 0.0009 (4) | 0.0065 (5) | 0.0004 (5) |
C18 | 0.0173 (5) | 0.0256 (6) | 0.0199 (5) | −0.0007 (4) | 0.0040 (4) | −0.0033 (4) |
C19 | 0.0157 (5) | 0.0229 (6) | 0.0134 (5) | −0.0045 (4) | 0.0029 (4) | −0.0025 (4) |
C20 | 0.0273 (6) | 0.0230 (6) | 0.0187 (5) | −0.0007 (5) | 0.0059 (5) | 0.0003 (4) |
C21 | 0.0320 (7) | 0.0307 (7) | 0.0169 (5) | −0.0034 (5) | 0.0062 (5) | 0.0030 (5) |
C22 | 0.0281 (6) | 0.0350 (7) | 0.0160 (5) | −0.0076 (5) | 0.0086 (5) | −0.0051 (5) |
C23 | 0.0262 (6) | 0.0297 (7) | 0.0217 (6) | 0.0005 (5) | 0.0084 (5) | −0.0056 (5) |
C24 | 0.0226 (5) | 0.0257 (6) | 0.0168 (5) | 0.0007 (4) | 0.0042 (4) | −0.0011 (4) |
C25 | 0.0232 (6) | 0.0355 (7) | 0.0248 (6) | −0.0028 (5) | 0.0115 (5) | −0.0004 (5) |
C26 | 0.0249 (6) | 0.0303 (7) | 0.0192 (6) | −0.0043 (5) | 0.0034 (5) | −0.0038 (5) |
Cl1—C5 | 1.7410 (12) | C13—C14 | 1.4087 (16) |
O1—C10 | 1.2239 (15) | C14—C15 | 1.3852 (17) |
O2—C15 | 1.3687 (14) | C14—H14A | 0.9300 |
O2—C26 | 1.4340 (16) | C15—C16 | 1.4012 (18) |
N1—C1 | 1.3192 (15) | C16—C17 | 1.3860 (17) |
N1—C2 | 1.3713 (15) | C16—H16A | 0.9300 |
C1—C9 | 1.4331 (16) | C17—C18 | 1.3913 (18) |
C1—C25 | 1.5030 (16) | C17—H17A | 0.9300 |
C2—C7 | 1.4184 (15) | C18—H18A | 0.9300 |
C2—C3 | 1.4200 (16) | C19—C20 | 1.3927 (17) |
C3—C4 | 1.3717 (18) | C19—C24 | 1.3947 (17) |
C3—H3A | 0.9300 | C20—C21 | 1.3938 (17) |
C4—C5 | 1.4135 (17) | C20—H20A | 0.9300 |
C4—H4A | 0.9300 | C21—C22 | 1.386 (2) |
C5—C6 | 1.3703 (16) | C21—H21A | 0.9300 |
C6—C7 | 1.4176 (16) | C22—C23 | 1.3876 (19) |
C6—H6A | 0.9300 | C22—H22A | 0.9300 |
C7—C8 | 1.4291 (15) | C23—C24 | 1.3901 (17) |
C8—C9 | 1.3765 (15) | C23—H23A | 0.9300 |
C8—C19 | 1.4931 (15) | C24—H24A | 0.9300 |
C9—C10 | 1.5163 (16) | C25—H25A | 0.9600 |
C10—C11 | 1.4643 (17) | C25—H25B | 0.9600 |
C11—C12 | 1.3395 (17) | C25—H25C | 0.9600 |
C11—H11A | 0.9300 | C26—H26A | 0.9600 |
C12—C13 | 1.4644 (17) | C26—H26B | 0.9600 |
C12—H12A | 0.9300 | C26—H26C | 0.9600 |
C13—C18 | 1.3956 (17) | ||
C15—O2—C26 | 117.77 (10) | C13—C14—H14A | 120.3 |
C1—N1—C2 | 118.32 (10) | O2—C15—C14 | 124.67 (11) |
N1—C1—C9 | 122.65 (10) | O2—C15—C16 | 114.72 (11) |
N1—C1—C25 | 117.00 (10) | C14—C15—C16 | 120.61 (11) |
C9—C1—C25 | 120.35 (11) | C17—C16—C15 | 119.79 (11) |
N1—C2—C7 | 122.80 (10) | C17—C16—H16A | 120.1 |
N1—C2—C3 | 117.91 (10) | C15—C16—H16A | 120.1 |
C7—C2—C3 | 119.27 (11) | C16—C17—C18 | 120.17 (12) |
C4—C3—C2 | 120.87 (11) | C16—C17—H17A | 119.9 |
C4—C3—H3A | 119.6 | C18—C17—H17A | 119.9 |
C2—C3—H3A | 119.6 | C17—C18—C13 | 120.21 (11) |
C3—C4—C5 | 119.07 (11) | C17—C18—H18A | 119.9 |
C3—C4—H4A | 120.5 | C13—C18—H18A | 119.9 |
C5—C4—H4A | 120.5 | C20—C19—C24 | 119.51 (11) |
C6—C5—C4 | 121.97 (11) | C20—C19—C8 | 119.73 (11) |
C6—C5—Cl1 | 118.79 (9) | C24—C19—C8 | 120.72 (10) |
C4—C5—Cl1 | 119.24 (9) | C19—C20—C21 | 120.13 (12) |
C5—C6—C7 | 119.55 (11) | C19—C20—H20A | 119.9 |
C5—C6—H6A | 120.2 | C21—C20—H20A | 119.9 |
C7—C6—H6A | 120.2 | C22—C21—C20 | 120.08 (12) |
C6—C7—C2 | 119.26 (10) | C22—C21—H21A | 120.0 |
C6—C7—C8 | 122.54 (10) | C20—C21—H21A | 120.0 |
C2—C7—C8 | 118.14 (10) | C21—C22—C23 | 119.98 (11) |
C9—C8—C7 | 117.92 (10) | C21—C22—H22A | 120.0 |
C9—C8—C19 | 122.16 (10) | C23—C22—H22A | 120.0 |
C7—C8—C19 | 119.86 (10) | C22—C23—C24 | 120.20 (12) |
C8—C9—C1 | 120.15 (10) | C22—C23—H23A | 119.9 |
C8—C9—C10 | 120.32 (10) | C24—C23—H23A | 119.9 |
C1—C9—C10 | 119.48 (10) | C23—C24—C19 | 120.10 (12) |
O1—C10—C11 | 121.37 (11) | C23—C24—H24A | 120.0 |
O1—C10—C9 | 119.18 (11) | C19—C24—H24A | 120.0 |
C11—C10—C9 | 119.44 (10) | C1—C25—H25A | 109.5 |
C12—C11—C10 | 123.47 (11) | C1—C25—H25B | 109.5 |
C12—C11—H11A | 118.3 | H25A—C25—H25B | 109.5 |
C10—C11—H11A | 118.3 | C1—C25—H25C | 109.5 |
C11—C12—C13 | 126.17 (11) | H25A—C25—H25C | 109.5 |
C11—C12—H12A | 116.9 | H25B—C25—H25C | 109.5 |
C13—C12—H12A | 116.9 | O2—C26—H26A | 109.5 |
C18—C13—C14 | 119.77 (11) | O2—C26—H26B | 109.5 |
C18—C13—C12 | 118.73 (11) | H26A—C26—H26B | 109.5 |
C14—C13—C12 | 121.45 (11) | O2—C26—H26C | 109.5 |
C15—C14—C13 | 119.40 (11) | H26A—C26—H26C | 109.5 |
C15—C14—H14A | 120.3 | H26B—C26—H26C | 109.5 |
C2—N1—C1—C9 | −0.89 (17) | C8—C9—C10—C11 | −84.74 (14) |
C2—N1—C1—C25 | 178.93 (11) | C1—C9—C10—C11 | 97.70 (13) |
C1—N1—C2—C7 | 1.39 (17) | O1—C10—C11—C12 | 172.29 (12) |
C1—N1—C2—C3 | −177.10 (11) | C9—C10—C11—C12 | −6.60 (18) |
N1—C2—C3—C4 | 177.64 (12) | C10—C11—C12—C13 | −176.37 (11) |
C7—C2—C3—C4 | −0.90 (19) | C11—C12—C13—C18 | 163.13 (12) |
C2—C3—C4—C5 | 0.5 (2) | C11—C12—C13—C14 | −14.47 (18) |
C3—C4—C5—C6 | 0.2 (2) | C18—C13—C14—C15 | −0.56 (17) |
C3—C4—C5—Cl1 | −178.61 (10) | C12—C13—C14—C15 | 177.02 (11) |
C4—C5—C6—C7 | −0.5 (2) | C26—O2—C15—C14 | 7.01 (17) |
Cl1—C5—C6—C7 | 178.35 (10) | C26—O2—C15—C16 | −173.30 (11) |
C5—C6—C7—C2 | 0.07 (18) | C13—C14—C15—O2 | 178.05 (11) |
C5—C6—C7—C8 | −177.16 (12) | C13—C14—C15—C16 | −1.62 (17) |
N1—C2—C7—C6 | −177.85 (11) | O2—C15—C16—C17 | −177.59 (11) |
C3—C2—C7—C6 | 0.61 (17) | C14—C15—C16—C17 | 2.11 (18) |
N1—C2—C7—C8 | −0.50 (17) | C15—C16—C17—C18 | −0.38 (18) |
C3—C2—C7—C8 | 177.97 (11) | C16—C17—C18—C13 | −1.81 (18) |
C6—C7—C8—C9 | 176.38 (11) | C14—C13—C18—C17 | 2.28 (17) |
C2—C7—C8—C9 | −0.88 (16) | C12—C13—C18—C17 | −175.37 (11) |
C6—C7—C8—C19 | −1.07 (17) | C9—C8—C19—C20 | −71.87 (15) |
C2—C7—C8—C19 | −178.33 (10) | C7—C8—C19—C20 | 105.47 (13) |
C7—C8—C9—C1 | 1.36 (16) | C9—C8—C19—C24 | 110.80 (13) |
C19—C8—C9—C1 | 178.75 (11) | C7—C8—C19—C24 | −71.86 (15) |
C7—C8—C9—C10 | −176.19 (10) | C24—C19—C20—C21 | 1.01 (18) |
C19—C8—C9—C10 | 1.20 (17) | C8—C19—C20—C21 | −176.35 (11) |
N1—C1—C9—C8 | −0.50 (18) | C19—C20—C21—C22 | −0.8 (2) |
C25—C1—C9—C8 | 179.69 (11) | C20—C21—C22—C23 | 0.0 (2) |
N1—C1—C9—C10 | 177.07 (11) | C21—C22—C23—C24 | 0.7 (2) |
C25—C1—C9—C10 | −2.74 (17) | C22—C23—C24—C19 | −0.54 (19) |
C8—C9—C10—O1 | 96.34 (14) | C20—C19—C24—C23 | −0.33 (18) |
C1—C9—C10—O1 | −81.22 (15) | C8—C19—C24—C23 | 177.01 (11) |
Cg1 and Cg2 are the centroids of the C13–C18 and C19–C24 rings, resepctively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C16—H16A···O2i | 0.93 | 2.40 | 3.3005 (15) | 163 |
C18—H18A···Cl1ii | 0.93 | 2.78 | 3.6948 (13) | 169 |
C26—H26B···O1iii | 0.96 | 2.54 | 3.4329 (17) | 155 |
C26—H26C···Cg1iv | 0.96 | 2.88 | 3.8412 (15) | 177 |
C17—H17A···Cg2v | 0.93 | 2.97 | 3.7592 (14) | 144 |
Symmetry codes: (i) −x+2, −y+2, −z+2; (ii) −x+1, −y+1, −z+1; (iii) −x+2, −y+1, −z+2; (iv) x, −y+1/2, z−1/2; (v) x, −y+1/2, z−3/2. |
Experimental details
Crystal data | |
Chemical formula | C26H20ClNO2 |
Mr | 413.88 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 100 |
a, b, c (Å) | 15.6338 (2), 14.0408 (2), 10.0321 (1) |
β (°) | 108.462 (1) |
V (Å3) | 2088.82 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.21 |
Crystal size (mm) | 0.33 × 0.25 × 0.17 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2005) |
Tmin, Tmax | 0.936, 0.967 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 51550, 6303, 5132 |
Rint | 0.042 |
(sin θ/λ)max (Å−1) | 0.713 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.042, 0.112, 1.05 |
No. of reflections | 6303 |
No. of parameters | 273 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.38, −0.41 |
Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
Cg1 and Cg2 are the centroids of the C13–C18 and C19–C24 rings, resepctively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C16—H16A···O2i | 0.93 | 2.40 | 3.3005 (15) | 163 |
C18—H18A···Cl1ii | 0.93 | 2.78 | 3.6948 (13) | 169 |
C26—H26B···O1iii | 0.96 | 2.54 | 3.4329 (17) | 155 |
C26—H26C···Cg1iv | 0.96 | 2.88 | 3.8412 (15) | 177 |
C17—H17A···Cg2v | 0.93 | 2.97 | 3.7592 (14) | 144 |
Symmetry codes: (i) −x+2, −y+2, −z+2; (ii) −x+1, −y+1, −z+1; (iii) −x+2, −y+1, −z+2; (iv) x, −y+1/2, z−1/2; (v) x, −y+1/2, z−3/2. |
Acknowledgements
WSL and HKF thank Universiti Sains Malaysia (USM) for the Research University Golden Goose Grant (1001/PFIZIK/811012). WSL thanks the Malaysian Government and USM for the award of the post of Assistant Research Officer under the Research University Golden Goose Grant (1001/PFIZIK/811012). VV is grateful to DST-India for funding through the Young Scientist Scheme (Fast Track Proposal).
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chen, Y.-L., Fang, K.-C., Sheu, J.-Y., Hsu, S.-L. & Tzeng, C.-C. (2001). J. Med. Chem. 44, 2374–2377. Web of Science CrossRef PubMed CAS Google Scholar
Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107. CrossRef CAS Web of Science IUCr Journals Google Scholar
Dimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. pp. 1125–1149. Google Scholar
Fun, H.-K., Loh, W.-S., Sarveswari, S., Vijayakumar, V. & Reddy, B. P. (2009). Acta Cryst. E65, o2688–o2689. Web of Science CrossRef IUCr Journals Google Scholar
Kalluraya, B. & Sreenivasa, S. (1998). Farmaco, 53, 399–404. Web of Science CrossRef CAS PubMed Google Scholar
Loh, W.-S., Fun, H.-K., Sarveswari, S., Vijayakumar, V. & Reddy, B. P. (2009). Acta Cryst. E65, o3144–o3145. Web of Science CSD CrossRef IUCr Journals Google Scholar
Markees, D. G., Dewey, V. C. & Kidder, G. W. (1970). J. Med. Chem. 13, 324–326. CrossRef CAS PubMed Web of Science Google Scholar
Michael, J. P. (1997). Nat. Prod. Rep. 14, 605–608. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zi, X. & Simoneau, A. R. (2005). Cancer Res. 65, 3479–3486. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The quinolines and their derivatives are very important compounds because of their wide occurrence in natural products (Michael, 1997) and biologically active compounds (Markees et al., 1970). A large variety of quinolines have interesting physiological activities and found attractive applications as pharmaceuticals, agrochemicals and as synthetic building blocks (Kalluraya & Sreenivasa, 1998; Chen et al., 2001). The chalcones are open-chain flavonoids, possessing a variety of biological activities, including antioxidant, anti-inflammation, antimicrobial, antiprotozoal, antiulcer, as well as other properties (Dimmock et al., 1999). Importantly, chalcones have shown several anticancer activities as inhibitors of cancer cell proliferation, carcinogenesis and metastasis (Zi & Simoneau, 2005).
In the title compound (Fig. 1), the quinoline ring system (C1–C9/N1) is approximately planar with a maximum deviation of 0.036 (1) Å at atom C11. This mean plane of quinoline ring forms a dihedral angle of 73.84 (5)° with the phenyl ring (C19–C24). Bond lengths (Allen et al., 1987) and angles are within the normal range and are comparable to closely related structures (Fun et al., 2009; Loh et al., 2009).
In the crystal packing (Fig. 2), two molecules are arranged into a large dimer by a pair of intermolecular C18—H18A···Cl1 interactions. A pair of intermolecular C16—H16A···O2 hydrogen bonds link two methoxyphenyl groups of the neighbouring molecules into another set of dimer, generating an R22(8) ring motif (Bernstein et al., 1995). The crystal structure is further stabilized by C—H···π interactions (Table 1), involving C13–C18 (centroid Cg1) and C19–C24 (centroid Cg2) rings.