organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A monoclinic polymorph of cyste­amine hydro­chloride

aDepartment of Chemistry, University of Engineering and Technology, Lahore 54890, Pakistan, bDepartment of Chemistry, University of Sargodha, Sargodha, Pakistan, and cInstitute of Physics, University of Neuchâtel, rue Emile Atgand 11, CH-2009 Neuchâtel, Switzerland
*Correspondence e-mail: helen.stoeckli-evans@unine.ch

(Received 8 December 2009; accepted 9 December 2009; online 12 December 2009)

The title compound (systematic name: 2-mercaptoethan­aminium chloride), C2H8NS+·Cl, the hydro­chloride salt of cysteamine, in contrast to the previously reported triclinic polymorph [Kim et al. (2002[Kim, C.-H., Parkin, S., Bharara, M. & Atwood, D. (2002). Polyhedron, 21, 225-228.]). Polyhedron, 21, 225–228], crystallized in the monoclinic crystal system. In the crystal, the cysteaminium cations are linked to the chloride anions via one S—H⋯Cl and three N—H⋯Cl hydrogen bonds. Two-dimensional slab-like networks are formed, which are stacked in [100]. This arrangement is similar to that observed in the triclinic polymorph.

Related literature

For the structure of the triclinic polymorph, see: Kim et al. (2002[Kim, C.-H., Parkin, S., Bharara, M. & Atwood, D. (2002). Polyhedron, 21, 225-228.]).

[Scheme 1]

Experimental

Crystal data
  • C2H8NS+·Cl

  • Mr = 113.60

  • Monoclinic, P 21 /c

  • a = 7.7441 (4) Å

  • b = 8.4931 (5) Å

  • c = 8.7126 (5) Å

  • β = 101.962 (4)°

  • V = 560.60 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.90 mm−1

  • T = 173 K

  • 0.40 × 0.40 × 0.40 mm

Data collection
  • Stoe IPDS-2 diffractometer

  • Absorption correction: numerical (X-SHAPE; Stoe & Cie, 2009[Stoe & Cie (2009). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany.]) Tmin = 0.738, Tmax = 0.860

  • 10581 measured reflections

  • 1506 independent reflections

  • 1426 reflections with I > 2σ(I)

  • Rint = 0.072

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.088

  • S = 1.10

  • 1506 reflections

  • 79 parameters

  • All H-atom parameters refined

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
S1—H1S⋯Cl1i 1.21 (3) 2.69 (3) 3.8003 (5) 152 (2)
N1—H1AN⋯Cl1ii 0.89 (3) 2.31 (3) 3.1485 (13) 159 (2)
N1—H1BN⋯Cl1iii 0.89 (2) 2.44 (2) 3.2563 (14) 152 (2)
N1—H1CN⋯Cl1 0.90 (3) 2.26 (3) 3.1437 (13) 169 (2)
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) -x+2, -y+1, -z+1.

Data collection: X-AREA (Stoe & Cie, 2009[Stoe & Cie (2009). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2009[Stoe & Cie (2009). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The crystal structure of the triclinic polymorph, (I), of the title compound has been reported previously (Kim et al., 2002). Those crystals were prepared by recrystallization of cysteamine hydrochloride from hot alchohols, such as n-butanol, 2-propanol or n-propanol.

The stucture of the monoclinic polymorph, (II), is illustrated in Fig. 1, and the geometrical parameters are available in the Supplementary Information and the archived CIF. Here the crystalline sample received from the producers was used without further recrystallization. In contrast to (I), that crystallized with two independent molecules per asymmetric unit, polymorph (II) crystallized with one independent molecule per asymmetric unit. The conformation of the cation (i.e. torsion angle S—C—C—N) is similar in the two polymorphs: 61.49 (16)° in (II), and -60.28 and 60.65° in (I).

In the crystal of (II) the cysteaminium cations are linked to the chloride anions, via one S—H···Cl and three N—H···Cl hydrogen bonds (Table 1). Two-dimensional slab-like networks are formed, which stack in the [100] direction (Fig. 2). A similar hydrogen-bonded slab-like arrangement was also observed in the crystal structure of the triclinic polymorph (I), see Fig. 3.

Related literature top

For the structure of the triclinic polymorph, see: Kim et al. (2002).

Experimental top

The sample used, supplied by Alfa Aesar (A Johnson Matthey Company) USA, consisted of colourless block-like crystals. A small piece of a large crystal was used for data collection.

Refinement top

The H-atoms were all located in a difference electron-density map and were freely refined: S—H = 1.21 (3) Å; N—H = 0.89 (3)–0.90 (3) Å; C—H = 0.95 (2)–0.991 (17) Å.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2009); cell refinement: X-AREA (Stoe & Cie, 2009); data reduction: X-RED32 (Stoe & Cie, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound, with the displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A view, along the b axis, of the crystal packing of the title compound. The S—H···Cl and N—H···Cl hydrogen bonds are shown as dotted cyan lines (see Table 1 for details).
[Figure 3] Fig. 3. A view, along the a axis, of the crystal packing in the triclinic polymorph of the title compound (Kim et al., 2002). The S—H···Cl and N—H···Cl hydrogen bonds are shown as dotted cyan lines.
2-mercaptoethanaminium chloride top
Crystal data top
C2H8NS+·ClF(000) = 240
Mr = 113.60Dx = 1.346 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 15168 reflections
a = 7.7441 (4) Åθ = 2.4–29.5°
b = 8.4931 (5) ŵ = 0.90 mm1
c = 8.7126 (5) ÅT = 173 K
β = 101.962 (4)°Block, colourless
V = 560.60 (5) Å30.40 × 0.40 × 0.40 mm
Z = 4
Data collection top
Stoe IPDS-2
diffractometer
1506 independent reflections
Radiation source: fine-focus sealed tube1426 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.072
ϕ and ω scansθmax = 29.2°, θmin = 2.7°
Absorption correction: numerical
(X-SHAPE; Stoe & Cie, 2009)
h = 1010
Tmin = 0.738, Tmax = 0.860k = 1111
10581 measured reflectionsl = 1111
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032All H-atom parameters refined
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0466P)2 + 0.1619P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
1506 reflectionsΔρmax = 0.30 e Å3
79 parametersΔρmin = 0.36 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.038 (9)
Crystal data top
C2H8NS+·ClV = 560.60 (5) Å3
Mr = 113.60Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.7441 (4) ŵ = 0.90 mm1
b = 8.4931 (5) ÅT = 173 K
c = 8.7126 (5) Å0.40 × 0.40 × 0.40 mm
β = 101.962 (4)°
Data collection top
Stoe IPDS-2
diffractometer
1506 independent reflections
Absorption correction: numerical
(X-SHAPE; Stoe & Cie, 2009)
1426 reflections with I > 2σ(I)
Tmin = 0.738, Tmax = 0.860Rint = 0.072
10581 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.088All H-atom parameters refined
S = 1.10Δρmax = 0.30 e Å3
1506 reflectionsΔρmin = 0.36 e Å3
79 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.85152 (6)0.67255 (4)0.96395 (5)0.0370 (1)
N10.83799 (17)0.42811 (15)0.67906 (15)0.0288 (3)
C10.6807 (2)0.53275 (19)0.87903 (17)0.0327 (4)
C20.67171 (19)0.4989 (2)0.70672 (17)0.0326 (4)
Cl10.77972 (4)0.40823 (4)0.31160 (4)0.0290 (1)
H1AN0.853 (3)0.335 (3)0.726 (3)0.045 (6)*
H1A0.711 (3)0.439 (3)0.942 (3)0.038 (5)*
H1B0.570 (3)0.572 (3)0.894 (3)0.045 (6)*
H1S0.795 (3)0.783 (3)0.881 (3)0.060 (7)*
H1BN0.935 (3)0.485 (3)0.714 (3)0.044 (6)*
H2A0.652 (3)0.597 (2)0.644 (2)0.033 (5)*
H2B0.575 (3)0.428 (3)0.668 (3)0.055 (7)*
H1CN0.834 (3)0.414 (3)0.576 (3)0.047 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0457 (3)0.0318 (2)0.0344 (2)0.0024 (1)0.0107 (2)0.0034 (1)
N10.0285 (6)0.0321 (6)0.0256 (6)0.0013 (4)0.0053 (4)0.0005 (5)
C10.0301 (7)0.0407 (8)0.0284 (7)0.0010 (6)0.0083 (5)0.0038 (6)
C20.0273 (6)0.0432 (8)0.0265 (6)0.0019 (6)0.0041 (5)0.0032 (6)
Cl10.0289 (2)0.0307 (2)0.0268 (2)0.0011 (1)0.0046 (1)0.0016 (1)
Geometric parameters (Å, º) top
S1—C11.8170 (16)C1—C21.516 (2)
S1—H1S1.21 (3)C1—H1A0.97 (3)
N1—C21.485 (2)C1—H1B0.95 (2)
N1—H1BN0.89 (2)C2—H2A0.991 (17)
N1—H1AN0.89 (3)C2—H2B0.97 (2)
N1—H1CN0.90 (3)
C1—S1—H1S96.9 (12)S1—C1—H1B108.4 (15)
H1AN—N1—H1CN108 (2)C2—C1—H1A111.2 (15)
H1BN—N1—H1CN105 (2)C2—C1—H1B110.1 (15)
C2—N1—H1AN108.7 (16)H1A—C1—H1B109 (2)
C2—N1—H1BN115.0 (16)N1—C2—H2A106.9 (13)
C2—N1—H1CN111.4 (15)N1—C2—H2B109.1 (15)
H1AN—N1—H1BN108 (2)C1—C2—H2A110.9 (10)
S1—C1—C2114.04 (11)C1—C2—H2B109.7 (15)
N1—C2—C1111.96 (12)H2A—C2—H2B108 (2)
S1—C1—H1A103.7 (15)
S1—C1—C2—N161.49 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
S1—H1S···Cl1i1.21 (3)2.69 (3)3.8003 (5)152 (2)
N1—H1AN···Cl1ii0.89 (3)2.31 (3)3.1485 (13)159 (2)
N1—H1BN···Cl1iii0.89 (2)2.44 (2)3.2563 (14)152 (2)
N1—H1CN···Cl10.90 (3)2.26 (3)3.1437 (13)169 (2)
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC2H8NS+·Cl
Mr113.60
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)7.7441 (4), 8.4931 (5), 8.7126 (5)
β (°) 101.962 (4)
V3)560.60 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.90
Crystal size (mm)0.40 × 0.40 × 0.40
Data collection
DiffractometerStoe IPDS2
diffractometer
Absorption correctionNumerical
(X-SHAPE; Stoe & Cie, 2009)
Tmin, Tmax0.738, 0.860
No. of measured, independent and
observed [I > 2σ(I)] reflections
10581, 1506, 1426
Rint0.072
(sin θ/λ)max1)0.685
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.088, 1.10
No. of reflections1506
No. of parameters79
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.30, 0.36

Computer programs: X-AREA (Stoe & Cie, 2009), X-RED32 (Stoe & Cie, 2009), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
S1—H1S···Cl1i1.21 (3)2.69 (3)3.8003 (5)152 (2)
N1—H1AN···Cl1ii0.89 (3)2.31 (3)3.1485 (13)159 (2)
N1—H1BN···Cl1iii0.89 (2)2.44 (2)3.2563 (14)152 (2)
N1—H1CN···Cl10.90 (3)2.26 (3)3.1437 (13)169 (2)
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x+2, y+1, z+1.
 

Acknowledgements

HSE is grateful to the XRD Application LAB, Microsystems Technology Division, Swiss Center for Electronics and Microtechnology, Neuchâtel, for access to the X-ray diffraction equipment.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKim, C.-H., Parkin, S., Bharara, M. & Atwood, D. (2002). Polyhedron, 21, 225–228.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2009). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds